

DS_{N°3}

Version hard, corrigé

Problème (d'après Centrale I PC 2007)

Partie I

Q1 1.a. La fonction $x \mapsto x^n f(x)$ est continue sur \mathbb{R} , et dominée au voisinage de $\pm \infty$ par la fonction $x \mapsto \frac{1}{x^2}$, donc est intégrable sur \mathbb{R} .

1.b. La fonction $x \mapsto x f(x)$ est impaire, donc son intégrale sur \mathbb{R} est nulle: $\boxed{m_1 = 0}$

1.c. Intégrons par parties sur un segment [-a, a]:

$$\int_{-a}^{a} x^{n-1} x e^{-\frac{x^2}{2}} dx = \left[-x^{n-1} e^{-\frac{x^2}{2}} \right]_{-a}^{a} + \int_{-a}^{a} (n-1) x^{n-2} e^{-\frac{x^2}{2}} dx$$

En faisant tendre a vers $+\infty$, et en divisant par $\sqrt{2\pi}$, il vient: $m_n=(n-1)m_{n-2}$

Partant de $m_0 = 1$, on obtient: $m_{2n} = (2n - 1)(2n - 3)...3.1$.

Et partant de $m_1 = 0$, $m_{2n+1} = 0$.

$$m_{2n} = \frac{(2n)!}{2^n n!}$$
, $m_{2n+1} = 0$

Q2 La fonction $x \mapsto e^{-tx} f(x)$ est continue sur \mathbb{R} , et dominée au voisinage de $\pm \infty$ par la fonction $x \mapsto \frac{1}{x^2}$, donc est intégrable sur \mathbb{R} .

$$-\frac{x^2}{2} - tx = -\frac{1}{2}(x+t)^2 + \frac{1}{2}t^2, \text{ d'où } \int_{\mathbb{R}} e^{-tx} f(x) dx = \frac{1}{\sqrt{2\pi}} e^{\frac{t^2}{2}} \int_{\mathbb{R}} e^{-\frac{1}{2}(x+t)^2} dx.$$

Le changement de variable u=x+t donne: $\int_{\mathbb{R}}e^{-tx}\,f\left(x\right)dx=e^{\frac{t^{2}}{2}}$

Q3 3.a. D'après le développement en série de la fonction exponentielle: $\lim_{n\to\infty}S_n(x)=e^{-tx}\,f\left(x\right)$

3.b.
$$\forall (x,t) \in \mathbb{R}^2, \forall n \in \mathbb{N}, |S_n(x)| \leq \sum_{k=0}^n \frac{|tx|^k}{k!} f(x) \leq e^{|tx|} f(x)$$

La fonction $x \mapsto e^{|tx|} f(x)$ est intégrable sur \mathbb{R} , donc cette hypothèse de domination , jointe à la convergence simple du **3.a.**, nous donne:

$$\lim_{n \to \infty} \int_{\mathbb{R}} S_n(x) dx = \int_{\mathbb{R}} e^{-tx} f(x) dx$$

Mais comme $\int_{\mathbb{R}} S_n(x) dx = \sum_{k=0}^n \frac{(-1)^k t^k}{k!} \int_{\mathbb{R}} x^k f(x) dx$ par linéarité de l'intégrale,

l'égalité ci-dessus se récrit: $\int_{\mathbb{R}} e^{-tx} \, f(x) dx = \sum_{k=0}^{\infty} \frac{(-1)^k t^k}{k!} \cdot m_k$

3.c. en remplaçant m_k par sa valeur obtenue en **1.c.**, il vient:

$$\int_{\mathbb{R}} e^{-tx} f(x) dx = \sum_{k=0}^{\infty} \frac{t^{2k}}{(2k)!} \frac{(2k)!}{2^k k!} = \sum_{k=0}^{\infty} \frac{1}{k!} \left(\frac{t^2}{2}\right)^k = e^{\frac{t^2}{2}}$$

On retrouve bien le résultat de Q2.

Partie II

Q4 E est une partie du \mathbb{R} -espace vectoriel $\mathcal{C}(\mathbb{R},\mathbb{R})$ des fonctions continues de \mathbb{R} dans \mathbb{R} , non vide (elle contient la fonction nulle).

Soit $(g,h) \in E^2$ et $p \in \mathbb{R}$. Montrons que $g + ph \in E$.

On a l'existence de M,N positifs, λ et μ strictement positifs, tels que:

$$\forall x \in \mathbb{R}, |g(x)| \le M f(\lambda x) \text{ et } |h(x)| \le N f(\mu x)$$

Soit $\rho = \min(\lambda, \mu)$.

Puisque
$$-\frac{\lambda^2 x^2}{2} \le -\frac{\rho^2 x^2}{2}$$
 et $-\frac{\mu^2 x^2}{2} \le -\frac{\rho^2 x^2}{2}$, on obtient:

$$\forall x \in \mathbb{R}, \ |(g+ph)(x)| \le (M+|p|N) f(\rho x).$$
 Donc $g+ph \in E$.

Ainsi, E est un sous-espace vectoriel du \mathbb{R} -espace vectoriel $\mathcal{C}(\mathbb{R},\mathbb{R})$. C'est donc lui-même un \mathbb{R} -espace vectoriel.

Enfin, il est clair que la fonction f est dans E.

Q5 5.a. Pour x fixé dans \mathbb{R} , la fonction $t \mapsto u(t)v(x-t)$ est continue sur \mathbb{R} .

On a l'existence de M,N positifs, λ et μ strictement positifs, tels que:

$$\forall t \in \mathbb{R}, \ |u(t)| \le M f(\lambda t) \text{ et } |v(x-t)| \le N f(\mu(x-t)).$$

Donc:
$$\forall t \in \mathbb{R}, \ |u(t)v(x-t)| \le \frac{MN}{2\pi} \exp\left(-\frac{\lambda^2 t^2}{2} - \frac{\mu^2 (x-t)^2}{2}\right)$$

$$|u(t)v(x-t)| \le \frac{MN}{2\pi} \exp\left(-\frac{(\lambda^2 + \mu^2)t^2}{2} + \mu^2 xt - \frac{\mu^2 x^2}{2}\right)$$

Cette fonction est dominée au voisinage de $\pm \infty$ par la fonction $t \mapsto \frac{1}{t^2}$, donc est intégrable sur \mathbb{R} .

Ainsi, pour tout x dans \mathbb{R} , la fonction $t \mapsto u(t)v(x-t)$ est intégrable sur \mathbb{R} , donc la fonction u*v est définie sur \mathbb{R} .

5.b. le changement de variable $s = \varphi(t) = x - t$, bijection C^1 de \mathbb{R} sur \mathbb{R} , avec $|\varphi'(t)| = 1$, donne de suite le résultat:

$$u * v = v * u$$

5.c.
$$(f * f)(x) = \frac{1}{2\pi} \int_{\mathbb{R}} \exp\left(-\frac{t^2}{2} - \frac{(x-t)^2}{2}\right) dt = \frac{e^{-\frac{x^2}{2}}}{2\pi} \int_{\mathbb{R}} \exp\left(-t^2 + xt\right) dt.$$

Faisons le changement de variable $u = \sqrt{2}t$:

$$\left(\,f\ast f\,\right)\left(x\right) = \frac{e^{-\frac{x^2}{2}}}{2\pi\sqrt{2}} \int_{\,\mathbb{R}} \exp\left(-\frac{u^2}{2} + \frac{xu}{\sqrt{2}}\right) du = \frac{e^{-\frac{x^2}{2}}}{\sqrt{2\pi}\sqrt{2}} \int_{\,\mathbb{R}} \exp\left(\frac{xu}{\sqrt{2}}\right) \,f\left(u\right) du$$

D'où, avec **Q.2.**:
$$(f * f)(x) = \frac{e^{-\frac{x^2}{2}}}{2\sqrt{\pi}}e^{\frac{x^2}{4}}$$
 $(f * f)(x) = \frac{1}{2\sqrt{\pi}}e^{-\frac{x^2}{4}} = \frac{1}{\sqrt{2}}f\left(\frac{x}{\sqrt{2}}\right)$

5.d. Il faut d'abord montrer que u * v est continue sur \mathbb{R} :

Pour cela, on remarque que:

- Pour x fixé dans \mathbb{R} , la fonction $t \mapsto u(t)v(x-t)$ est continue sur \mathbb{R} .
- Pour t fixé dans \mathbb{R} , la fonction $x \mapsto u(t)v(x-t)$ est continue sur \mathbb{R} .
- domination locale: soit J = [-A, A] un segment de \mathbb{R} . En reprenant la majoration du IIB1), on a:

$$\forall x \in J, \ \forall t \in \mathbb{R}, \ |u(t)v(x-t)| \le \frac{MN}{2\pi} \exp\left(-\frac{(\lambda^2 + \mu^2)t^2}{2} + \mu^2 A|t|\right)$$

La fonction majorante obtenue ne dépend pas de x et elle est intégrable sur \mathbb{R} (dominée au voisinage de l'infini par la fonction habituelle $t \mapsto t^{-2}$).

Ces trois hypothèses nous permettent de conclure que $\underline{u*v}$ est continue sur \mathbb{R}

Puis majorons |(u*v)(x)| en utilisant: $|u(t)| \le M(u) f(\lambda t)$ et $|v(x-t)| \le M(v) f(\mu(x-t))$

En posant $\rho = \min(\lambda, \mu)$, il vient : $|(u * v)(x)| \le M(u)M(v) \int_{\mathbb{R}^n} f(\rho t) f(\rho(x-t)) dt$

Posons $s = \rho t$: $\int_{\mathbb{R}^n} f(\rho t) f(\rho(x-t)) dt = \frac{1}{\rho} \int_{\mathbb{R}^n} f(s) f(\rho x - s) ds$

$$= \frac{1}{\rho} (f * f) (\rho x) = \frac{1}{\rho \sqrt{2}} f \left(\frac{\rho x}{\sqrt{2}}\right).$$

Donc: $\forall x \in \mathbb{R}$, $|(u*v)(x)| \leq \frac{M(u)M(v)}{\rho\sqrt{2}} f\left(\frac{\rho x}{\sqrt{2}}\right)$ Ainsi: $\underline{u*v \in E}$

Q6 6.a. Soit $u \in E$ et $t \in \mathbb{R}$.

La fonction $x \mapsto e^{-tx}u(x)$ est continue sur \mathbb{R} , et dominée au voisinage de l'infini par la fonction $x \mapsto x^{-2}$, donc est intégrable sur \mathbb{R} . Ainsi, \widehat{u} est définie sur \mathbb{R}

6.b. La fonction $U:(t,x)\mapsto e^{-tx}u(x)$ est de classe C^2 sur \mathbb{R}^2 (produit de deux fonctions de classe C^2).

$$\frac{\partial U}{\partial t}\left(x,t\right) = -xe^{-tx}u(x) \qquad \frac{\partial^2 U}{\partial t^2}\left(x,t\right) = x^2e^{-tx}u(x) \quad .$$

Domination locale: soit J = [-A, A] un segment de \mathbb{R} .

$$\forall t \in J, \, \forall x \in \mathbb{R}, \ \, \left| \frac{\partial U}{\partial t} \left(x, t \right) \right| \leq x e^{A|x|} u(x) \quad \text{ et } \quad \left| \frac{\partial^2 U}{\partial t^2} \left(x, t \right) \right| \leq x^2 e^{A|x|} u(x) \quad .$$

Ces deux fonctions dominantes sont intégrables sur \mathbb{R} .

Donc la fonction \hat{u} est de classe C^2 sur \mathbb{R} , avec:

$$\widehat{u}'(t) = -\int_{\mathbb{R}} x e^{-tx} u(x) dx$$
 et $\widehat{u}''(t) = \int_{\mathbb{R}} x^2 e^{-tx} u(x) dx$

Il suffit de prendre
$$a=\frac{1}{4}$$
. En effet, pour tout x et pour tout t : $t^2+(x-t)^2-\frac{1}{4}(t^2+x^2)=\frac{7}{4}t^2+\frac{3}{4}x^2-2tx=\frac{3}{4}(x^2-\frac{8}{3}tx)+\frac{7}{4}t^2=\frac{3}{4}(x-\frac{4}{3}t)^2+(\frac{7}{4}-\frac{4}{3})t^2\geq 0$ 7.b. les fonctions u et v sont dans E , donc $u*v$ aussi (5.c.).

Donc u * v est intégrable sur \mathbb{R} (6.a.).

On souhaite appliquer le résultat d'interversion donné par l'énoncé à la fonction F:

$$F(x,t) = u(t)v(x-t).$$

F est bien continue sur \mathbb{R}^2 .

Reprenons la majoration du **5.d.**; en posant $K = \frac{MN}{2\pi}$ et $\rho = \min(\lambda, \mu)$, on a:

$$|F(x,t)| \le K \exp(-\rho^2 t^2 - \rho^2 (x-t)^2) \le K \exp(-a\rho^2 (t^2 + x^2))$$
.

En notant: $h_1(t) = K \exp(-a\rho^2 t^2)$ et $h_2(x) = \exp(-a\rho^2 x^2)$, on a bien l'hypothèse de l'énoncé (h_1 et h_2 sont intégrables sur \mathbb{R}). Donc:

$$\int_{\mathbb{R}} \left(u * v \right)(x) dx = \int_{\mathbb{R}} \left(\int_{\mathbb{R}} u(t) v(x-t) dt \right) dx = \int_{\mathbb{R}} u(t) \left(\int_{\mathbb{R}} v(x-t) dx \right) dt.$$

Le changement de variable s=x-t dans l'intégrale intérieure donne:

$$\int_{\mathbb{D}} v(x-t)dx = \int_{\mathbb{D}} v(s)ds.$$

D'où:
$$\int_{\mathbb{R}} (u * v) (x) dx = \int_{\mathbb{R}} u(x) dx \int_{\mathbb{R}} v(x) dx$$

7.c. Cette égalité peut encore s'écrire: $\widehat{u*v}(0) = \widehat{u}(0)\widehat{v}(0)$ Généralisons:

$$\widehat{u*v}\left(\theta\right) = \int_{\mathbb{R}} e^{-\theta x} \left(u*v\right)(x) dx = \int_{\mathbb{R}} \left(\int_{\mathbb{R}} u(t)v(x-t)e^{-\theta x} dt\right) dx.$$

Soit $G(x,t) = u(t)v(x-t)e^{-\theta x}$. G est continue sur \mathbb{R}^2 .

$$|G(x,t)| \le Ke^{-\theta x} \exp\left(-a\rho^2\left(t^2 + x^2\right)\right)$$

On a bien encore les hypothèses pour intervertir les deux intégrales, en posant cette fois:

$$h_1(t) = K \exp(-a\rho^2 t^2)$$
 et $h_2(x) = \exp(-a\rho^2 x^2 - \theta x)$ donc:

$$\widehat{u*v}(\theta) = \int_{\mathbb{R}} u(t) \left(\int_{\mathbb{R}} v(x-t)e^{-\theta x} dx \right) dt.$$

Le changement de variable s=x-t dans l'intégrale intérieure donne:

$$\int_{\mathbb{R}} v(x-t)e^{-\theta x}dx = \int_{\mathbb{R}} v(s)e^{-\theta(s+t)}ds = e^{-\theta t}\widehat{v}\left(\theta\right).$$

Et finalement:

$$\widehat{u * v} (\theta) = \widehat{u} (\theta) \widehat{v} (\theta)$$

Partie III

Q8 Soit h dans E_1 .

8.a. Soit $\mathcal{P}(n): h_n \in E_1$. $\mathcal{P}(1)$ est vraie. Supposons $\mathcal{P}(n)$.

Alors $h_{n+1} = h_n * h$ est bien définie et appartient à E (Q5.d.).

De plus
$$\int_{\mathbb{R}} h_{n+1}(x)dx = \int_{\mathbb{R}} h_n(x)dx \int_{\mathbb{R}} h(x)dx = 1$$
. Donc $h_{n+1} \in E_1$.

Par réurrence, on a bien montré: $\forall n \in \mathbb{N}^*, h_n \in E_1$.

8.b. Avec **7.d**, on a: $\widehat{h_n}(x) = \widehat{h_{n-1}}(x)\widehat{h}(x)$, d'où, par une récurrence évidente:

$$\widehat{h_n}(x) = \left(\widehat{h}(x)\right)^n$$

Q9 suite (f_n) associée à f:

9.a. le calcul de $f_2 = f * f$ a été fait en **5.c.**: $f_2(x) = K_2 e^{-\frac{x^2}{4}}$, avec $K_2 = \frac{1}{2\sqrt{\pi}}$.

9.b. Supposons qu'il existe une constante K_n telle que $f_n(x) = K_n \exp\left(-\frac{x^2}{2n}\right)$.

Alors
$$f_{n+1}(x) = \int_{\mathbb{R}} f_n(t) f_1(x-t) dt = \frac{K_n}{\sqrt{2\pi}} \int_{\mathbb{R}} \exp\left(-\frac{t^2}{2n} - \frac{(x-t)^2}{2}\right) dt$$
$$= \frac{K_n}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right) \int_{\mathbb{R}} \exp\left(-t^2\left(\frac{1}{2n} + \frac{1}{2}\right) + xt\right) dt$$

Faisons le changement de variable $s = \sqrt{\frac{n+1}{n}}t$.

$$f_{n+1}(x) = \frac{K_n}{\sqrt{2\pi}} \sqrt{\frac{n}{n+1}} \exp\left(-\frac{x^2}{2}\right) \int_{\mathbb{R}} \exp\left(-\frac{s^2}{2} + x\sqrt{\frac{n}{n+1}}s\right) ds.$$

Avec **Q2**:
$$f_{n+1}(x) = K_n \sqrt{\frac{n}{n+1}} \exp\left(-\frac{x^2}{2}\right) \exp\left(\frac{n}{n+1} \frac{x^2}{2}\right) = K_n \sqrt{\frac{n}{n+1}} \exp\left(-\frac{x^2}{2(n+1)}\right)$$

Donc
$$f_{n+1}(x) = K_{n+1} \exp\left(-\frac{x^2}{2(n+1)}\right)$$
, avec $K_{n+1} = K_n \sqrt{\frac{n}{n+1}}$.

Par récurrence, on a bien montré, pour tout $n \in \mathbb{N}^*$, l'existence d'une constante K_n telle que:

$$f_n(x) = K_n \exp\left(-\frac{x^2}{2n}\right)$$
. De plus, partant de $K_1 = \frac{1}{\sqrt{2\pi}}$, on obtient:

$$K_n = \prod_{p=1}^{n-1} \sqrt{\frac{p}{p+1}} \frac{1}{\sqrt{2\pi}} = \frac{1}{\sqrt{2\pi n}}$$

$$f_n(x) = \frac{1}{\sqrt{2\pi n}} \exp\left(-\frac{x^2}{2n}\right)$$

9.c.
$$\widehat{f_n}\left(\frac{t}{\sqrt{n}}\right) = \left[\widehat{f}\left(\frac{t}{\sqrt{n}}\right)\right]^n = \left[\exp\left(\frac{t^2}{2n}\right)\right]^n = \exp\left(\frac{t^2}{2}\right).$$

La suite proposée est constante, sa limite vaut $\exp\left(\frac{t^2}{2}\right)$.

Q10 suite
$$(g_n)$$
 associée à $g: g(x) = \begin{cases} \frac{1}{2} \cos(x) & \text{si } x \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \\ 0 & \text{sinon} \end{cases}$

Q10.a. g est clairement continue sur \mathbb{R}

$$\text{Pour } x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right], \ \frac{|g(x)|}{f\left(x\right)} \leq \frac{1}{2}\sqrt{2\pi} \exp\left(\frac{x^2}{2}\right) \leq \sqrt{\frac{\pi}{2}} \exp\left(\frac{\pi^2}{8}\right).$$

Et comme g est nulle en dehors de ce segment, g vérifie bien une majoration requise pour être dans E, avec par exemple $\lambda=1$ et $M\left(g\right)=\sqrt{\frac{\pi}{2}}\exp\left(\frac{\pi^2}{8}\right)$.

Enfin:
$$\int_{\mathbb{R}} g(x)dx = \frac{1}{2} \int_{-\pi/2}^{\pi/2} \cos(x)dx = \frac{1}{2} \left[\sin(x) \right]_{-\pi/2}^{\pi/2} = 1$$
. Donc $g \in E_1$.

Q10.b.
$$(g * g)(-x) = \int_{\mathbb{R}} g(t)g(-x-t)dt = \int_{\mathbb{R}} g(-u)g(-x+u)du.$$

Puisque
$$g$$
 est paire: $(g * g)(-x) = \int_{\mathbb{R}} g(u)g(x-u)du = (g * g)(x)$.

Donc g * g est paire.

Supposons $x \ge \pi$. Alors, puisque t + (x - t) = x, l'un des nombres t ou x - t est supérieur ou égal à $\pi/2$, donc g(t)g(x - t) = 0. Ainsi g * g est nulle sur $[\pi, +\infty[$.

Soit
$$x \in [0, \pi]$$
. $(g * g)(x) = \frac{1}{2} \int_{-\pi/2}^{\pi/2} \cos(t) g(x - t) dt$.

$$x-t \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \Longleftrightarrow t \in \left[x-\frac{\pi}{2}, x+\frac{\pi}{2}\right]. \quad \text{Comme} \quad -\frac{\pi}{2} \le x-\frac{\pi}{2} \le \frac{\pi}{2} \le x+\frac{\pi}{2},$$

il vient:
$$(g * g)(x) = \frac{1}{4} \int_{x-\pi/2}^{\pi/2} \cos(t) \cos(x-t) dt = \frac{1}{8} \int_{x-\pi/2}^{\pi/2} [\cos(x) + \cos(2t-x))] dt$$
$$= \frac{1}{8} \left((\pi - x) \cos(x) + \frac{1}{2} [\sin(2t-x)]_{x-\pi/2}^{\pi/2} \right).$$

$$(g*g)(x) = \frac{1}{8}((\pi - x)\cos(x) + \sin(x))$$
 si $x \in [0, \pi], (g*g)(x) = 0$ si $x \ge \pi$

10.c. Soit $\mathcal{P}(n)$: g_n est paire, et nulle en dehors d'un segment $[-a_n, a_n]$

$$\mathcal{P}\left(1\right)$$
 est vraie, avec $a_{1}=\frac{\pi}{2},\ \mathcal{P}\left(2\right)$ est vraie, avec $a_{2}=\pi.$

Supposons $\mathcal{P}(n)$ vraie.

Alors $g_{n+1} = g_n * g$ est paire (même démonstration qu'au début du **10.b.**).

Soit $x \ge a_n + \frac{\pi}{2}$. Alors, puisque t + (x - t) = x, on a nécessairement $t \ge a_n$ ou $x - t \ge \frac{\pi}{2}$ donc $g_n(t)g(x - t) = 0$. Ainsi g_{n+1} est nulle sur $[a_n + \frac{\pi}{2}, +\infty[$.

Donc g_{n+1} est nulle en dehors de $[-a_{n+1}, a_{n+1}]$, avec $a_{n+1} = a_n + \frac{\pi}{2}$.

Par récurrence, on a montré que, pour tout $n \in \mathbb{N}^*$, g_n est paire est nulle en dehors du segment $\left[-\frac{n\pi}{2}, \frac{n\pi}{2}\right]$.

10.d.
$$\widehat{g}(t) = \frac{1}{2} \int_{-\pi/2}^{\pi/2} \cos(x) e^{-xt} dx = \frac{1}{2} \operatorname{Re} \left(\int_{-\pi/2}^{\pi/2} e^{(-t+i)x} dx \right).$$

$$\int_{-\pi/2}^{\pi/2} e^{(-t+i)x} dx = \left[\frac{e^{(-t+i)x}}{-t+i} \right]_{-\pi/2}^{\pi/2} = -\frac{t+i}{t^2+1} \left(ie^{-t\pi/2} + ie^{t\pi/2} \right)$$

D'où:
$$\widehat{g}(t) = \frac{1}{t^2 + 1} \operatorname{ch}\left(\frac{t\pi}{2}\right)$$

10.e.
$$\widehat{g_n}\left(\frac{t}{\sqrt{n}}\right) = \left[\widehat{g}\left(\frac{t}{\sqrt{n}}\right)\right]^n$$
. Prenons le logarithme $(\widehat{g} \text{ est strictement positive}).$

$$\ln \left(\ \widehat{g_n} \left(\frac{t}{\sqrt{n}} \right) \right) = n \ln \widehat{g} \left(\frac{t}{\sqrt{n}} \right) = n \left[\ln \left(\operatorname{ch} \frac{t\pi}{2\sqrt{n}} \right) - \ln \left(1 + \frac{t^2}{n} \right) \right].$$

Faisons un développement limité pour n tendant vers l'infini:

$$\ln\left(\operatorname{ch}\frac{t\pi}{2\sqrt{n}}\right) = \ln\left(1 + \frac{t^2\pi^2}{8n} + o\left(\frac{1}{n}\right)\right) = \frac{t^2\pi^2}{8n} + o\left(\frac{1}{n}\right)$$

D'où:
$$\ln\left(\widehat{g_n}\left(\frac{t}{\sqrt{n}}\right)\right) = n\left(\frac{t^2\pi^2}{8n} - \frac{t^2}{n} + o\left(\frac{1}{n}\right)\right),$$

et
$$\lim \ln \left(\widehat{g_n} \left(\frac{t}{\sqrt{n}} \right) \right) = \left(\frac{\pi^2}{8} - 1 \right) t^2.$$

$$\lim_{n \to \infty} \widehat{g_n} \left(\frac{t}{\sqrt{n}} \right) = \exp \left(\left(\frac{\pi^2}{8} - 1 \right) t^2 \right)$$

Partie IV

Q11 11.a. On applique le **6.b.** à la fonction h_n , qui est dans E:

 $\widehat{h_n}$ est $C^2,$ donc admet un développement limité à l'ordre 2 en 0 :

$$\widehat{h_n}(t) = 1 + \widehat{h_n}'(0)t + \frac{1}{2}\widehat{h_n}''(0)t^2 + o(t^2) = 1 - M_{1,n}t + \frac{1}{2}M_{2,n}t^2 + o(t^2).$$

11.b. Par ailleurs:
$$\widehat{h_n}(t) = \left(\widehat{h}(t)\right)^n = \left(1 - M_{1,1}t + \frac{1}{2}M_{2,1}t^2 + o(t^2)\right)^n$$

= $1 - nM_{1,1}t + \left(\frac{n}{2}M_{2,1} + \frac{n(n-1)}{2}M_{1,1}^2\right)t^2 + o(t^2).$

Par unicité du D.L., on en déduit: $M_{1,n}=nM_{1,1}$ et $M_{2,n}=nM_{2,1}+n\left(n-1\right)M_{1,1}^2$, donc $V_n=M_{2,n}-M_{1,n}^2=nM_{2,1}-nM_{1,1}^2=nV_1$.

$$M_{1,n} = nM_{1,1} \quad \text{et} \quad V_n = nV_1$$

Q12
$$\widehat{h_n}\left(\frac{t}{\sqrt{n}}\right) = \left[\widehat{h}\left(\frac{t}{\sqrt{n}}\right)\right]^n$$

Pour n tendant vers l'infini: $\hat{h}\left(\frac{t}{\sqrt{n}}\right) = 1 + \frac{M_{2,1}t^2}{2n} + o\left(\frac{1}{n}\right) \quad (M_{1,1} = 0)$.

Donc $\widehat{h}\left(\frac{t}{\sqrt{n}}\right)$ est strictement positif pour n assez grand. On peut prendre le logarithme:

$$\ln\left(\widehat{h_n}\left(\frac{t}{\sqrt{n}}\right)\right) = n\ln\left(\widehat{h}\left(\frac{t}{\sqrt{n}}\right)\right) = n\ln\left(1 + \frac{M_{2,1}t^2}{2n} + o\left(\frac{1}{n}\right)\right)$$

D'où
$$\lim \ln \left(\widehat{h_n} \left(\frac{t}{\sqrt{n}} \right) \right) = \frac{M_{2,1} t^2}{2}$$
 et $\lim_{n \to \infty} \widehat{h_n} \left(\frac{t}{\sqrt{n}} \right) = \exp \left(\frac{M_{2,1} t^2}{2} \right)$

remarque: on peut vérifier les résultats obtenus en III pour les fonctions f et g:

Pour
$$f: M_{1,1} = 0, M_{2,1} = m_2 = 1.$$
 On a bien $\lim_{n \to \infty} \widehat{f_n} \left(\frac{t}{\sqrt{n}} \right) = \exp\left(\frac{t^2}{2} \right).$

Pour $g: M_{1,1} = 0$ car $x \mapsto xg(x)$ est impaire.

$$\begin{split} M_{2,1} &= \int_{-\pi/2}^{\pi/2} \frac{1}{2} x^2 \cos(x) dx = \int_{0}^{\pi/2} x^2 \cos(x) dx = \left[x^2 \sin(x) \right]_{0}^{\pi/2} - \int_{0}^{\pi/2} 2x \sin(x) dx \\ &= \frac{\pi^2}{4} + 2 \left[x \cos(x) \right]_{0}^{\pi/2} - 2 \int_{0}^{\pi/2} \cos(x) dx = \frac{\pi^2}{4} - 2 \end{split}$$
 On retrouve:
$$\lim_{n \to \infty} \widehat{g_n} \left(\frac{t}{\sqrt{n}} \right) = \exp\left(\left(\frac{\pi^2}{8} - 1 \right) t^2 \right)$$

Exercice (extrait de Centrale PC 2016)

I. - L'opérateur de translation

I.1. Soit $P = \sum_{k=0}^{d} a_k X^k$, un polynôme non nul de $\mathbb{R}_n[X]$, de degré $d = \deg(P)$ (i.e. $a_d \neq 0$). Alors, $\tau(P)$ est de la forme :

$$P(X+1) = \sum_{k=0}^{d} a_k (X+1)^k = a_d X^d + (da_d + a_{d-1}) X^{d-1} + \sum_{k=0}^{d-2} b_k X^k$$

Comme $a_d \neq 0$:

$$\deg(\tau(P)) = \deg(P) \text{ et } \operatorname{cd}(\tau(P)) = \operatorname{cd}(P)$$

I.2. Notons que $\tau^0(P) = P$.

Et que si $\tau^{k}(P)(X) = P(X+k)$, alors $\tau^{k+1}(P)(X) = \tau(\tau^{k}(P))(X) = P((X+k)+1) = P(X+(k+1))$. Ainsi, par récurrence

$$\forall k \in \mathbb{N}, \ \tau(P)(X) = P(X+k)$$

I.3. D'après la formule du binôme de Newton (changement de variable i = h + 1),

$$\forall j \in \mathbb{N}_{n+1}, \ \tau(P_j)(X) = (X+1)^{j-1} = \sum_{h=0}^{j-1} \binom{j-1}{h} X^h = \sum_{i=1}^{j} \binom{j-1}{i-1} P_i$$

M est donc triangulaire supérieure et les coefficients de M vérifient donc

$$\forall i, j \in [1, n], (M)_{i,j} = \begin{cases} \binom{j-1}{i-1} & \text{pour } i \leq j \\ 0 & \text{sinon} \end{cases}$$

I.4. La matrice M est triangulaire supérieure, donc ses valeurs propres se trouvent sur la diagonale. Il s'agit des nombres $\binom{j-1}{j-1} = 1$.

Comme M et τ ont les mêmes valeurs propres,

$$Sp(\tau) = \{1\}$$

Si M était diagonalisable, elle serait alors semblable à la matrice unité, et donc elle serait égale à la matrice unité.

Ainsi,

$$M$$
 et τ ne sont pas diagonalisable

I.5 0 n'étant pas valeur propre de τ ,

$$au$$
 est bijective

Puis si on considère $\overline{\tau}: \mathbb{R}_n[X] \to \mathbb{R}_n[X], P(X) \mapsto P(X-1)$, on montre qu'il s'agit d'un endomorphisme de $\mathbb{R}_n[X]$. Il vérifie : $\tau \circ \overline{\tau} = \overline{\tau} \circ \tau = \mathrm{id}$:

$$\forall P \in \mathbb{R}_n[X], \ \tau(\overline{\tau}(P))(X) = \overline{\tau}(P)(X+1) = P(X) = \tau(\overline{\tau}(P))(X)$$

Donc

$$\tau^{-1}(P)(X) = P(X-1)$$

Puis, comme pour la question 2), on montre que pour tout $k \in \mathbb{N}$, $\tau^{-k}(P)(X) = P(X - k)$. Donc la formule est toujours vraie :

$$\forall k \in \mathbb{Z}, \ \tau(P)(X) = P(X+k)$$

I.6. Avec l'expression de τ^{-1} , on applique la même méthode qu'en 3) et on obtient :

$$\forall j \in \mathbb{N}_{n+1}, \ \tau^{-1}(P_j)(X) = (X-1)^{j-1} = \sum_{h=0}^{j-1} \binom{j-1}{h} (-1)^{j-1-h} X^h = \sum_{i=1}^{j} (-1)^{j-i} \binom{j-1}{i-1} P_i$$

Puis

$$\forall i, j \in [[1, n]], (M^{-1})_{i,j} = \begin{cases} (-1)^{j-i} {j-1 \choose i-1} & \text{pour } i \leq j \\ 0 & \text{sinon} \end{cases}$$

I.7. La $k + 1^e$ ligne du calcul $V = Q \times U$ est justement

$$v_k = \sum_{j=1}^{n+1} Q_{k+1,j} u_{j-1} = \sum_{j=0}^{k} {k \choose j} u_j$$

On peut identifier (après changement d'indice) : $Q_{k,j} = \begin{cases} \binom{k-1}{j-1} & \text{pour } j \leq k \\ 0 & \text{sinon} \end{cases}$

$$Q = M^T$$

I.8 M est inversible, donc $Q = M^T$ également et $Q^{-1} = (M^T)^{-1} = (M^{-1})^T$. Puis par équivalence : $V = Q \times U \iff U = Q^{-1} \times V = (M^{-1})^T \times V$. La $k+1^e$ ligne de ce calcul donne alors

$$u_k = \sum_{j=1}^{n+1} \left((M^{-1})^T \right)_{k+1,j} v_{j-1} = \sum_{j=1}^{n+1} \left((M^{-1}) \right)_{j,k+1} v_{j-1} = \sum_{j=0}^{n} \left((M^{-1}) \right)_{j+1,k+1} v_{j-1} = \sum_{j=0}^{n} \left($$

$$u_k = \sum_{j=0}^k (-1)^{k-j} \binom{k}{j} v_j$$

I.9. On a alors

$$v_k = \sum_{j=0}^k \binom{k}{j} \lambda^j = (\lambda + 1)^k$$

On vérifie bien:

$$\sum_{j=0}^{k} (-1)^{k-j} \binom{k}{j} v_j = \sum_{j=0}^{k} \binom{k}{j} (\lambda + 1)^j (-1)^{k-j} = ((\lambda + 1) - 1)^k = u_k$$

II. - L'opérateur de différence

II.1. Avec les mêmes notations qu'en **I.1.**, avec *P* non constant on a :

$$\delta(P)(X) = a_d X^d + (da_d + a_{d-1}) X^{d-1} + \sum_{k=0}^{d-2} b_k X^k - a_d X^d - a_{d-1} X^{d-1} - \sum_{k=0}^{d-2} a_k X^k = da_d X^{d-1} + \sum_{k=0}^{d-2} c_k X^k$$

Comme $a_d \neq 0$:

si
$$P$$
, non constant, $deg(\delta(P)) = deg(P) - 1$ et $cd(\delta(P)) = deg(P) \times cd(P)$

II.2 D'après la question précédente, si P n'est pas constant, $\deg(P) \ge 1$ et $\deg(\delta(P)) \ge 0$, donc $\delta(P)$ n'est pas nul. Ainsi, si $\delta(P) = 0$, alors P est constant.

Réciproquement, si P est constant, le calcul (simple) donne $\delta(P) = 0$.

Donc

$$\ker(\delta) = \mathbb{R}_0[X]$$

La question précédente montre aussi que $\operatorname{Im}(\delta) \subset \mathbb{R}_{n-1}[X]$.

Or d'après le théorème du rang : $\dim(\operatorname{Im}(\delta)) = n + 1 - \dim(\ker(\delta)) = n = \dim(\mathbb{R}_{n-1}[X])$.

Donc:

$$\operatorname{Im}(\delta) = \mathbb{R}_{n-1}[X]$$

II.3 Si $\ker(\delta^j) = \mathbb{R}_{j-1}[X]$, avec j < n.

$$P \in \ker(\delta^{j+1}) \iff \delta^{j+1}(P) = 0 = \delta^j(\delta(P)) \iff \delta(P) \in \mathbb{R}_{j-1}[X]$$

Donc

$$P \in \ker(\delta^{j+1}) \iff \deg(P) = \deg(\delta(P)) + 1 \leqslant (j-1) + 1 = j \iff P \in \mathbb{R}_i[X]$$

Ainsi, par récurrence :

$$\forall j \in [1, n], \ker(\delta^j) = \mathbb{R}_{j-1}[X]$$

Si $P \in \text{Im}(\delta^j)$, alors il existe $Q \in \mathbb{R}_n[X]$ tel que $P = \delta^j(Q)$.

Or une récurrence simple (suite arithmétique) montre que $\deg P = \deg(Q) - j$, donc $\deg(P) \le n - j$.

Par conséquent, $P \in \mathbb{R}_{n-j}[X]$, et donc $\operatorname{Im}(\delta^j) \subset \mathbb{R}_{n-j}[X]$.

Le théorème du rang assure par ailleurs que ces deux espaces ont même dimension, donc :

$$\forall j \in [1, n], \operatorname{Im}(\delta^j) = \mathbb{R}_{n-j}[X]$$

II.4. Notons Δ , la matrice de δ dans la base (P_k).

Par construction de $\delta = \tau - \mathrm{id}$, on a $\Delta = M - I_{n+1}$.

Puis comme M commute avec I_{n+1} , alors d'après la formule de Newton : $\Delta^k = \sum_{j=0}^k {k \choose j} (-1)^{k-j} M^j$. Ce qui permet d'affirmer, en revenant aux endomorphismes :

$$\forall k \in \mathbf{N}, \, \delta^k = \sum_{j=0}^k (-1)^{k-j} \binom{k}{j} \tau^j$$

II.5. Si $P \in \mathbb{R}_{n-1}[X] = \ker(\delta^n)$, alors $\delta^n(P) = 0$. Donc :

$$0(X) = [\delta^{n}(P)](X) = [\sum_{j=0}^{n} (-1)^{n-j} {n \choose j} \tau^{j}(P)](X) = \sum_{j=0}^{n} (-1)^{n-j} {n \choose j} [\tau^{j}(P)(X)] = \sum_{j=0}^{n} (-1)^{n-j} {n \choose j} P(X+j)$$

il s'agit bien du polynôme nul.

Et en particulier en la valeur réelle X = 0:

$$\sum_{j=0}^{n} (-1)^{n-j} \binom{n}{j} P(j) = 0$$

II.6. a) $u \circ \delta^2 = u \circ [u^2 \circ u^2] = u^5 = [u^2 \circ u^2] \circ u = \delta^2 \circ u$.

Donc

$$u$$
 et δ^2 commutent

b) Soit $P \in \mathbb{R}_1[X] = \ker \delta^2$, alors

$$\delta^2(u(P)) = u(\delta^2(P)) = u(0) = 0$$

Donc $u(P) \in \ker(\delta^2) = \mathbb{R}_1[X]$. Par conséquent

$$\mathbb{R}_1[X]$$
 est stable par u

c) Si $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ vérifie $A^2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, alors

$$\left(\begin{array}{cc} 0 & a \\ 0 & c \end{array}\right) = A \times A^2 = A^3 = A^2 \times A = \left(\begin{array}{cc} c & d \\ 0 & 0 \end{array}\right)$$

Donc a=d et c=0, ainsi $A=\begin{pmatrix} a & b \\ 0 & a \end{pmatrix}$, puis $A^2=\begin{pmatrix} a^2 & 2ab \\ 0 & a^2 \end{pmatrix}$, et ainsi nécessairement a=0, puis 2ab=0; ce qui est contradictoire avec ab=1.

aucune matrice
$$A$$
 ne vérifie $A^2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$

d) Puisque $\mathbb{R}_1[X]$ est stable par u, notons $\tilde{u}: \mathbb{R}_1[X] \to \mathbb{R}_1[X], P \mapsto u(P)$. Considérons alors A, la matrice de \tilde{u} dans la base (P_1, P_2) de $\mathbb{R}_1[X]$.

Alors A^2 est égale à la matrice de δ sur $\mathbf{R}_1[X]$ donc $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$.

Or d'après la question précédente, ceci est impossible. Donc

Il n'existe pas d'endomorphisme
$$u$$
 de $\mathbb{R}_n[X]$ tel que $u^2 = \delta$

II..7 a) On a vu (questions *I.B.*3)) que $\deg(\delta^i(P)) = \deg(P) - i = d - i$. Ainsi, la famille $(P, \delta(P), \dots \delta^d(P))$ est une famille de degré échelonné (de d à 0).

C'est une famille libre et vect
$$(P, \delta(P), \dots \delta^d(P)) = \mathbb{R}_d[X]$$

b) Soit *V* stable par δ .

Si $P \in V$, alors $\delta^i(P) \in V$ et donc $\mathbb{R}_{\deg(P)}[X] = \operatorname{vect}(P, \delta(P), \dots \delta^n(P)) \subset V$.

Il reste à montrer l'égalité, il faut prendre le polynôme en degré maximum...

V est un sous-espace vectoriel de $\mathbb{R}_n[X]$. Notons $d = \dim(V) - 1$.

Notons $(e_0, ... e_d)$ une base de V. Nécessairement, l'un des e_i est un polynôme de degré supérieur ou égal à d.

Sinon, on aurait une famille libre de d + 1 vecteurs de $\mathbb{R}_d[X]$, ce qui est impossible.

Donc il existe P dans V de degré $r \ge d$.

Si $\deg P = r > d$, alors d'après la remarque précédente, $\mathbb{R}_r[X] = \mathrm{vect}(P, \delta(P), \dots \delta^r(P)) \subset V$ et V ne peut être de dimension d+1. Donc il existe P de degré d dans V et $\mathbb{R}_d[X] \subset V$ et par égalité des dimensions :

il existe
$$d \in [[0, n]]$$
 tel que $V = \mathbb{R}_d[X]$