Exercice

Présentation générale

On rappelle le théorème de la division euclidienne pour les polynômes : si $U \in \mathbb{C} [X]$ et $V \in \mathbb{C} [X]$ sont deux polynômes avec $V \neq 0$, alors il existe un unique couple $(Q, R) \in (\mathbb{C} [X])^2$ tel que :

$$U = V Q + R \text{ et deg } (R) < \text{deg } (V).$$

Les polynômes Q et R sont respectivement appelés le quotient et le reste dans la division euclidienne du polynôme U par le polynôme V.

Dans cet exercice, on se donne un entier $n \in \mathbb{N}^*$ et un couple $(A, B) \in \mathbb{C}_n[X] \times \mathbb{C}[X]$ tel que deg (B) = n + 1. On considère l'application φ définie sur $\mathbb{C}_n[X]$ qui à tout polynôme $P \in \mathbb{C}_n[X]$ associe le reste dans la division euclidienne de AP par B.

Par exemple, si l'on suppose que l'on a n=2, $A=X^2$, $B=X^3-X$, $P=X^2+X+1$: alors en effectuant la division euclidienne de AP par B, on obtient $AP=X^4+X^3+X^2=BQ+R$ avec Q=X+1 et $R=2X^2+X$. Donc on a $\varphi(P)=2X^2+X$.

I - Linéarité de l'application φ

Dans cette partie, on démontre que φ est un endomorphisme de $\mathbb{C}_n [X]$.

1. Justifier que pour tout polynôme $P \in \mathbb{C}_n [x]$, on a $\varphi(P) \in \mathbb{C}_n [X]$.

On considère deux polynômes $P_1 \in \mathbb{C}_n \left[X \right]$ et $P_2 \in \mathbb{C}_n \left[X \right]$. Par le théorème de la division euclidienne rappelé dans la présentation, il existe $\left(Q_1, R_1 \right) \in \mathbb{C} \left[X \right] \times \mathbb{C}_n \left[X \right]$ et $\left(Q_2, R_2 \right) \in \mathbb{C} \left[X \right] \times \mathbb{C}_n \left[X \right]$ tels que : $A P_1 = B Q_1 + R_1 \text{ et } A P_2 = B Q_2 + R_2.$

2. Soit $\lambda \in \mathbb{C}$. Exprimer le quotient et le reste dans la division euclidienne de $A(P_1 + \lambda P_2)$ par B en fonction de λ et des polynômes Q_1 , Q_2 , R_1 , R_2 en justifiant votre réponse. En déduire que ϕ est un endomorphisme de l'espace vectoriel $\mathbb{C}_n[X]$.

II - Un exemple

Dans cette partie II et uniquement dans cette partie II, on suppose que n=2, que $A=X^2+2$ et que $B=X^3+X^2-X-1$.

1. Montrer que la matrice de φ dans la base canonique $\mathcal{B} = (1, X, X^2)$ de $\mathbb{C}_2[X]$ est :

$$M = \begin{pmatrix} 0 & 1 & 1 \\ 2 & 1 & 2 \\ 1 & 1 & 0 \end{pmatrix} \in \mathcal{M}_3 (\mathbb{C}) .$$

4

2. Montrer qu'il existe une base \mathscr{B} ' = (P_0, P_1, P_2) de $\mathbb{C}_2[X]$ (que l'on explicitera) dans laquelle la matrice de φ

est:

$$D = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{pmatrix}.$$

3. Pour $k \in \mathbb{N}$, en déduire la matrice de $\varphi^k = \underbrace{\varphi \circ \varphi \circ \cdots \circ \varphi}_{k \text{ fois}}$ dans la base \mathcal{B} .

III - Sur les polynômes interpolateurs de Lagrange

Dans cette partie, on suppose que B est scindé à racines simples. Soient x_0 , ..., $x_n \in \mathbb{C}$ les n+1 racines de B, deux à deux distinctes

On définit les polynômes de Lagrange L_0 , ..., $L_n \in \mathbb{C}_n [X]$ associé aux points x_0 , ..., x_n par :

$$\forall k \in [0, n], L_k = \prod_{\substack{i=0 \ i \neq k}}^n \frac{X - a_i}{a_k - a_i}.$$

En particulier, les relations suivantes sont vérifiées :

$$\forall \left(k,j\right) \in 0, n^{-2}, L_k\left(a_j\right) = \begin{cases} 1 & \text{si} & j=k \\ 0 & \text{sinon} \end{cases}.$$

- **8.** Soit $P \in \mathbb{C}_n[X]$. Montrer que $x_0, ..., x_n$ sont des racines du polynôme $D = P \sum_{i=0}^n P(x_i) L_i$.
- **9.** En déduire que pour tout $P \in \mathbb{C}_n [X]$, on a $P = \sum_{i=0}^n P(x_i) L_i$.
- 10. Montrer que $\left(L_0, ..., L_n \right)$ est une base de $\mathbb{C}_n \left[X \right]$.

Pour tout entier $k \in [0, n]$, on désigne respectivement par $Q_k \in \mathbb{C}[X]$ et $R_k \in \mathbb{C}_n[X]$ le quotient et le reste dans la division euclidienne de AL_k par B.

- 11. Soit $(j, \kappa) \in [0, n^{-2}]$. Montrer que $R_k(x_j) = [0, si j \neq k]$ et que $R_k(x_k) = A(x_k)$.
- 12. En déduire que pour tout $k \in [0, n]$, $\varphi(L_k) = A(x_k)L_k$.
- 13. Conclure qu'il existe une base de $\mathbb{C}_n [X]$ dans laquelle la matrice de φ est diagonale.

Fin de l'exercice, et fin du sujet