PC Lakanal - Mathématiques - DS N°3 - sujet soft

Durée: 4 heures

N.B.: Le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Si un candidat est amené à repérer ce qui peut lui sembler être une erreur d'énoncé, il le signalera sur sa copie et devra poursuivre sa composition en expliquant les raisons des initiatives qu'il a été amené à prendre.

Ce sujet est constitué d'un problème d'analyse, et d'un (gros) exercice d'algèbre. Il comporte 5 pages

Les calculatrices sont interdites

Problème

On s'intéresse ici à des suites et séries de fonctions en liaison avec des intégrales.

Dans la partie I, on calcule indépendamment deux intégrales particulières (les questions 1 et 2 pour l'une, la question 3 pour l'autre) qui interviennent dans les parties II et III. Les parties II et III sont indépendantes.

Partie I : calculs préliminaires

- 1. Justifier l'existence de l'intégrale $K = \int_0^{+\infty} \frac{1 \cos(t)}{t^2} dt$.
- 2. Pour tout A > 0, justifier l'existence de l'intégrale $D(A) = \int_0^A \frac{\sin(t)}{t} dt$.
- 3. Grâce à une intégration par parties, prouver que D(A) a une limite (réelle) quand A tend vers $+\infty$, égale à K, c'est-à-dire que : $K = \int_0^{+\infty} \frac{\sin(t)}{t} dt = \lim_{A \to +\infty} D(A)$. 4. Justifier que l'application $L \colon x \mapsto \int_0^{+\infty} \frac{1 - \cos(t)}{t^2} e^{-tx} dt$ est définie et continue sur \mathbb{R}_+ .
- 5. Montrer que, pour tout réel a>0, l'application L est de classe \mathcal{C}^2 sur l'intervalle $[a,+\infty[$. Établir ensuite que
- l'application L est de classe C^2 sur l'intervalle $]0, +\infty[$. **6.** Justifier que les fonctions $t \mapsto \frac{1-\cos(t)}{t^2}$ et $t \mapsto \frac{1-\cos(t)}{t}$ sont bornées sur $]0, +\infty[$.

Établir alors que les fonctions $x \mapsto |xL'(x)|$ et $x \mapsto |xL(x)|$ sont majorées sur \mathbb{R}_+^* . En déduire que : $\lim_{x \to +\infty} L'(x) = \lim_{x \to +\infty} L(x) = 0$.

7. Pour tout réel x > 0, exprimer L''(x) sans utiliser d'intégrale.

On pourra remarquer que $\cos(t) = \operatorname{Re}(e^{it})$.

- 8. En déduire L'(x) pour x > 0, puis L(x) pour $x \ge 0$. Conclure que $K = \frac{\pi}{2}$
- **9.** Justifier que la fonction $u \mapsto \frac{\ln(u)}{u-1}$ est intégrable sur]0, 1[.
- **10.** Pour tout $k \in \mathbb{N}$, justifier l'existence et calculer $\int_{\hat{a}}^{1} u^{k} \ln(u) du$.
- 11. Grâce à un développement en série de $\frac{1}{1-u}$ pour $u \in]0,1[$ et en précisant le théorème utilisé, justifier que :

$$\int_0^1 \frac{\ln(u)}{u-1} \, \mathrm{d}u = \sum_{k=0}^{+\infty} \frac{1}{(k+1)^2}.$$

Par ailleurs, on donne sans avoir à le justifier : $\sum_{k=0}^{+\infty} \frac{1}{(k+1)^2} = \frac{\pi^2}{6}.$

Partie II : étude de quelques suites d'intégrales

1

12. Rappeler avec précision le théorème de convergence dominée.

13. On considère ici une application continue $f: [0, +\infty[\mapsto \mathbb{R}.$

Pour tout $n \in \mathbb{N}$, on pose $I_n = \int_0^1 f(t^n) dt$. Déterminer $\lim_{n \to +\infty} I_n$.

14. On suppose ici de plus que $u \mapsto \frac{f(u)}{u}$ est intégrable sur]0,1].Déterminer $\lim_{n \to +\infty} nI_n$. On pourra transformer nI_n grâce à un changement de variable.

15. Application 1.

Déterminer un équivalent quand $n \to +\infty$ de $\int_0^1 \sin(t^n) dt$ (grâce à une intégrale).

On considère maintenant que $f: [0, +\infty[\mapsto \mathbb{R} \text{ est une application continue et intégrable sur } \mathbb{R}_+.$

16. Soit $n \in \mathbb{N}^*$.

Grâce à un changement de variable approprié, justifier l'existence de $A_n = \int_1^{+\infty} f(t^n) dt$.

- 17. Déterminer $\lim_{n\to+\infty} nA_n$ (grâce à une intégrale que l'on ne cherchera pas à calculer).
- **18.** Pour tout $n \in \mathbb{N}$, $n \ge 2$, et tout A > 1, on pose $C_n(A) = \int_1^A \sin(t^n) dt$.

Grâce à un changement de variable et une intégration par parties, exprimer $C_n(A)$ en fonction de $\int_1^{A^n} \frac{1-\cos(u)}{u^2} u^{\frac{1}{n}} du$ et de A.

- **19.** En déduire que $C_n(A)$ a une limite quand $A \to +\infty$, prouvant l'existence de $\int_{1}^{+\infty} \sin(t^n) dt$ pour tout $n \in \mathbb{N}$,
- **20.** Application 2.

Déterminer $\lim_{n\to+\infty} n \int_0^{+\infty} \sin(t^n) dt$ grâce à K calculée en **I-2.5**.

Partie III : étude de séries de fonctions

- **21.** Un premier exemple. On pose quand c'est possible, $F(x) = \sum_{i=1}^{n} x^{i}$.

a. Pour tout $x \in]-1,1[$, calculer F(x) ainsi que F'(x). **b.** Déterminer $\lim_{\substack{x < 1 \\ x \to 1}} F(x), \lim_{\substack{x < 1 \\ x \to 1}} (1-x)F(x), \lim_{\substack{x < 1 \\ x \to 1}} (1-x)F'(x)$ et $\lim_{\substack{x < 1 \\ x \to 1}} (1-x)^2 F'(x)$.

- **22.** Un deuxième exemple. Dans cette question, pour tout $x \in]-1,1[$, on pose cette fois : $F(x) = \sum_{n=0}^{+\infty} \frac{x^n}{1-x^n}$.
 - **a.** Soit $a \in]0,1[$. Prouver la convergence normale de cette série de fonctions sur le segment [-a,a]. En déduire que F est définie et continue sur] -1,1[
 - **b.** Montrer que, pour tout $x \in]0,1[$ et tout $n \in \mathbb{N}^*,$ on a $\frac{1-x^n}{1-x} \leqslant n$.

En déduire $\lim_{\substack{x<1\\x\to 1}} F(x)$ et $\lim_{\substack{x<1\\x\to 1}} (1-x)F(x)$.

- 23. Dans cette question, f est une application réelle continue et croissante sur [0,1[avec f(0)=0 et telle que $u\mapsto \frac{f(u)}{u}$ soit intégrable sur]0,1[. Soit $x\in]0,1[.$
 - **a.** Justifier l'existence de $G(x) = \int_0^{+\infty} f(x^t) dt$ et l'égalité $G(x) = -\frac{1}{\ln(x)} \int_0^1 \frac{f(u)}{u} du$.
 - **b.** Pour tout $n \in \mathbb{N}^*$, justifier l'encadrement :

$$\int_{n}^{n+1} f(x^{t}) dt \leqslant f(x^{n}) \leqslant \int_{n-1}^{n} f(x^{t}) dt.$$

c. En déduire l'existence de $F(x) = \sum_{n=1}^{+\infty} f(x^n)$, ainsi qu'un encadrement de F(x) par deux intégrales dépendant de x.

d. Conclure avec soin que $\lim_{\substack{x<1\\x\to 1}} (1-x)F(x) = \int_0^1 \frac{f(u)}{u} \, \mathrm{d}u.$

24. Un dernier exemple.

Pour tout $x \in]-1,1[$, on pose enfin cette fois : $F(x) = -\sum_{n=1}^{+\infty} \ln(1-x^n)$.

- a. Montrer que F est définie et de classe \mathcal{C}^1 sur]-1,1[et exprimer sa dérivée sous la forme d'une série de
- b. Grâce à Q23.d., montrer que $\lim_{\substack{x<1\\x\to 1}}(1-x)F(x)=\int_0^1\frac{\ln(u)}{u-1}\,\mathrm{d}u$ étudiée en Q11. c. Par une méthode similaire à celle de Q23, montrer que :

$$\lim_{\substack{x<1\\x\to 1}} \left((1-x)^2 \sum_{n=1}^{+\infty} \frac{nx^n}{1-x^n} \right) = \int_0^1 \frac{\ln(u)}{u-1} \, \mathrm{d}u.$$

En déduire $\lim_{\substack{x<1\\x\to 1}} ((1-x)^2 F'(x)).$

Fin du problème