PC Lakanal - Mathématiques - DS N°3 Sujet Hard

N.B.: Le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Si un candidat est amené à repérer ce qui peut lui sembler être une erreur d'énoncé, il le signalera sur sa copie et devra poursuivre sa composition en expliquant les raisons des initiatives qu'il a été amené à prendre.

Ce sujet est constitué d'un problème d'analyse, et d'un (gros) exercice d'algèbre. Il comporte 5 pages

Problème

Dans tout le problème, on notera f la fonction définie sur \mathbb{R} par :

$$f(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}.$$

Partie I

Q1 -

1.a. Montrer que pour tout entier naturel n, la fonction $x \mapsto x^n f(x)$ est intégrable sur \mathbb{R} .

On pose $m_n(f) = \int_{\mathbb{R}} x^n f(x) dx$.

On admettra dans toute la suite de ce problème que $\int_{\mathbb{R}} f(x) dx = 1$.

- **1.b.** Déterminer m_1 .
- **1.c.** Lorsque $n \ge 2$, donner une relation de récurrence liant m_n et $m_{n'2}$.

En déduire une expression de m_n en fonction de n.

Q2 - Montrer que pour tout $t \in \mathbb{R}$, l'intégrale $\int_{\mathbb{R}} e^{-tx} f(x) dx$ est convergente et déterminer sa valeur en fonction de t.

On pourra considérer la forme canonique du trinôme $x\mapsto -\frac{x^2}{2}-tx$.

Q3 -

- **3.a.** Le réel t étant fixé, pour tout $x \in \mathbb{R}$, on pose $S_n(x) = \sum_{k=0}^n \frac{(-1)^k t^k x^k}{k!} f(x)$. Calculer $\lim_{n \to +\infty} S_n(x)$.
- **3.b.** Montrer à l'aide du théorème de convergence dominée que pour tout $t \in \mathbb{R}$,

$$\int_{\mathbb{R}} e^{-tx} f(x) \, \mathrm{d}x = \sum_{k=0}^{+\infty} (-1)^k m_k \frac{t^k}{k!}.$$

3.c. Retrouver la valeur de $\int_{\mathbb{R}} e^{-tx} f(x) dx$ obtenue précédemment.

Partie II

Dans toute la suite du problème, on note E l'ensemble des fonctions g continues sur \mathbb{R} à valeurs réelles, telles qu'il existe un réel positif M(g) et un réel strictement positif λ vérifiant : $\forall x \in \mathbb{R}, |g(x)| \leq M(g)f(\lambda x)$.

- Q4 Démontrer que E muni des lois + et · usuelles est un espace vectoriel sur \mathbb{R} , qui contient f.
- **Q5** Soient u et v deux éléments de E. On note u * v l'application définie, pour tout réel x pour lequel la formule a un sens, par

$$(u * v)(x) = \int_{\mathbb{R}} u(t)v(x - t) dt.$$

- **5.a.** Démontrer que u * v est définie sur \mathbb{R} .
- **5.b.** Démontrer que u * v = v * u.
- **5.c.** Déterminer (f * f)(x).
- **5.d.** Démontrer que u * v appartient à E (on utilisera le résultat de la question précédente).
- **Q6** Soit $u \in E$. On définit l'application \widehat{u} par : $\widehat{u}(t) = \int_{\mathbb{R}} e^{-tx} u(x) dx$.
 - **6.a.** Montrer que \widehat{u} est bien définie sur \mathbb{R} .
 - **6.b.** Montrer que \widehat{u} est de classe \mathcal{C}^2 sur \mathbb{R} et déterminer une expression de $\widehat{u}'(t)$ et $\widehat{u}''(t)$ à l'aide d'intégrales.
- Q7 Dans cette question Q7 seulement, on admet le résultat suivant :

Soit $f:(x,y)\mapsto f(x,y)$ une application continue de \mathbb{R}^2

dans $\mathbb R$ telle qu'il existe deux applications h_1 et h_2 continues sur $\mathbb R$ et intégrables sur $\mathbb R$ avec :

$$\forall (x,y) \in \mathbb{R}^2, \quad |f(x,y)| \leqslant h_1(x)h_2(y),$$

- alors $\int_{\mathbb{R}} (\int_{\mathbb{R}} f(x, y) dx) dy$ et $\int_{\mathbb{R}} (\int_{\mathbb{R}} f(x, y) dy) dx$ sont convergentes et ces deux intégrales sont égales. Soient u et v deux éléments de E.
- **7.a.** Démontrer qu'il existe une constante a>0 telle que pour tout couple $(x,t)\in\mathbb{R}^2$:

$$-t^{2} - (x - t)^{2} \leqslant -a(t^{2} + x^{2}).$$

7.b. Démontrer la formule :

$$\int_{\mathbb{R}} (u * v)(x) dx = \int_{\mathbb{R}} u(x) dx \int_{\mathbb{R}} v(x) dx.$$

7.c. Démontrer la relation, pour tout $\theta \in \mathbb{R}$:

$$\widehat{u * v}(\theta) = \int_{\mathbb{R}} e^{-x\theta} (u * v)(x) \, \mathrm{d}x = \widehat{u}(\theta)\widehat{v}(\theta).$$

On pourra utiliser l'égalité

$$\left(t + \frac{\theta}{2\gamma}\right)^2 + \left(\left(x + \frac{\theta}{\gamma}\right) - \left(t + \frac{\theta}{2\gamma}\right)\right)^2 = t^2 + (x - t)^2 + \frac{\theta x}{\gamma} + \frac{\theta^2}{2\gamma^2}$$

Dans la suite de ce problème, on considère le sous-ensemble E_1 de E dont les éléments sont les

fonctions $h \in E$ telles que $\int_{\mathbb{R}} h(x) dx = 1$.

On notera que la fonction f de la partie I est un élément de E_1 . À toute fonction $h \in E_1$, on associe la suite de fonctions $(h_n)_{n \in \mathbb{N}^*}$ définie par la récurrence suivante :

$$h_1 = h$$
 et pour tout $n \geqslant 2$, $h_n = h_{n-1} * h_1$.

On remarquera que la fonction h_n est alors élément de E d'après II.B.4.

L'objectif est d'étudier certaines propriétés de cette suite de fonctions, dans un premier temps sur des exemples puis dans le cas général.

Partie III

- $\mathbf{Q8}$ Soit h un élément de E_1 .
 - **8.a.** Démontrer que la suite $(h_n)_{n\in\mathbb{N}^*}$ est une suite d'éléments de E_1 .
 - **8.b.** Exprimer, pour tout $n \in \mathbb{N}$ et pour tout $x \in \mathbb{R}$, $\widehat{h_n}(x)$ en fonction de $\widehat{h}(x)$ et de n.
- **Q9** Dans cette question, on étudie la suite $(f_n)_{n\in\mathbb{N}}$ associée à la fonction $f: t \mapsto \frac{1}{\sqrt{2\pi}}e^{-t^2/2}$ étudiée dans la partie I (on a donc posé h=f).
 - **9.a.** Déterminer une constante K_2 telle que $\forall x \in \mathbb{R}, f_2(x) = K_2 e^{-x^2/4}$.
 - **9.b.** Déterminer une constante K_n telle que $\forall x \in \mathbb{R}, f_n(x) = K_n e^{-x^2/(2n)}$.
 - **9.c.** Déterminer $\lim_{n\to+\infty}\widehat{f}_n(\frac{t}{\sqrt{n}})$ en fonction de $t\in\mathbb{R}$.
- **Q10** Soit g la fonction définie sur \mathbb{R} par :

$$g(x) = \begin{cases} \frac{1}{2}\cos(x) & \text{si } x \in [-\pi/2, \pi/2], \\ 0 & \text{sinon.} \end{cases}$$

- **10.a.** Démontrer que $g \in E_1$.
- **10.b.** Montrer que la fonction g * g est paire. Donner pour $x \ge 0$ l'expression de (g * g)(x) en fonction des valeurs de x: on distinguera deux intervalles pour x.
- **10.c.** Démontrer que g_n est nulle en dehors d'un intervalle $[-a_n, a_n]$ que l'on précisera.
- **10.d.** Déterminer l'expression de $\widehat{g}(t)$ en fonction de t.
- **10.e.** Déterminer $\lim_{n\to+\infty} \widehat{g_n}(\frac{t}{\sqrt{n}})$ en fonction de t.

Partie IV

Soit h un élément de E_1 . On pose, pour $n \in \mathbb{N}^*$:

$$M_{1,n} = \int_{\mathbb{R}} x h_n(x) dx$$
, $M_{2,n} = \int_{\mathbb{R}} x^2 h_n(x) dx$ et $V_n = M_{2,n} - M_{1,n}^2$.

- Q11 -
 - **11.a.** Montrer que la fonction $\widehat{h_n}$ possède un développement limité à l'ordre 2 en zéro dont on précisera les coefficients à l'aide de $M_{1,n}$ et $M_{2,n}$.
 - **11.b.** En déduire que $M_{1,n} = nM_{1,1}$ et $V_n = nV_1$.
- Q12 On suppose dans cette question que la fonction h est telle que $M_{1,1} = 0$. Déterminer la limite de la suite $(\widehat{h_n}(\frac{t}{\sqrt{n}}))_{n \in \mathbb{N}^*}$.

Fin