Exercice

Dans tout l'exercice :

Pour a < b dans \mathbb{Z} , on note [a, b] l'ensemble $[a, b] \cap \mathbb{Z}$.

Pour $k \in \mathbb{N}^*$, on note P_k le polynôme X^{k-1} . On rappelle que $\mathbb{R}_n[X]$ est un \mathbb{R} -espace vectoriel de dimension n+1 dont la famille $(P_k)_{k \in [\![1,n+1]\!]}$ est une base.

Pour $P \in \mathbb{R}_n[X]$, on note $\deg(P)$ le degré de P et, lorsque P est non nul, $\operatorname{cd}(P)$ désigne le coefficient dominant de P, c'est-à-dire le coefficient du monôme $X^{\deg(P)}$.

Pour un ensemble E et $f:E\to E$, on définit l'application $f^k:E\to E$ par récurrence sur $k\in\mathbb{N}$ de la façon suivante :

$$f^0 = \operatorname{Id}_E \text{ et } f^{k+1} = f \circ f^k$$

I L'opérateur de translation

L'opérateur de translation est l'endomorphisme τ de $\mathbb{R}_n[X]$ donné par :

$$\tau: \mathbb{R}_n[X] \to \mathbb{R}_n[X]
P(X) \mapsto P(X+1)$$

- **I.1.** Pour un polynôme non nul $P \in \mathbb{R}_n[X]$, exprimer $\deg(\tau(P))$ et $\operatorname{cd}(\tau(P))$ à l'aide de $\deg(P)$ et $\operatorname{cd}(P)$.
- **1.2.** Soit $P \in \mathbb{R}_n[X]$. Pour $k \in \mathbb{N}$, donner l'expression de $\tau^k(P)$ en fonction de P.
- **1.3.** Donner la matrice $M = (M_{i,j})_{1 \leq i,j \leq n+1}$ de τ dans la base $(P_k)_{k \in [1,n+1]}$. On exprimera les coefficients $M_{i,j}$ en fonction de i et j.
- 1.4. Préciser l'ensemble des valeurs propres de τ . L'application τ est-elle diagonalisable?
- **1.5.** L'application τ est-elle bijective? Si oui, préciser τ^{-1} . L'expression de τ^j trouvée à la question I.2. pour $j \in \mathbb{N}$ est-elle valable pour $j \in \mathbb{Z}$?
- **1.6.** Que vaut M^{-1} ? Exprimer les coefficients $(M^{-1})_{i,j}$ en fonction de i et j.
- **1.7.** On se donne une suite réelle $(u_k)_{k\in\mathbb{N}}$ et on définit, pour tout entier $k\in\mathbb{N}$

$$v_k = \sum_{j=0}^k \binom{k}{j} u_j \tag{I.1}$$

Déterminer une matrice $Q \in \mathcal{M}_{n+1}(\mathbb{R})$ telle que

$$\begin{pmatrix} v_0 \\ v_1 \\ \vdots \\ v_n \end{pmatrix} = Q \begin{pmatrix} u_0 \\ u_1 \\ \vdots \\ u_n \end{pmatrix}$$

1.8. En déduire la formule d'inversion : pour tout entier $k \in \mathbb{N}$,

$$u_k = \sum_{j=0}^{k} (-1)^{k-j} \binom{k}{j} v_j$$
 (I.2)

1.9. On considère un réel λ et la suite $(u_k = \lambda^k)_{k \in \mathbb{N}}$. Quelle est la suite $(v_k)_{k \in \mathbb{N}}$ définie par la formule (I.1)? Vérifier alors la formule (I.2).

II L'opérateur de différence

L'opérateur de différence est l'endomorphisme δ de $\mathbb{R}_n[X]$ tel que $\delta = \tau - \mathrm{Id}_{\mathbb{R}_n[X]}$:

$$\delta: \mathbb{R}_n[X] \to \mathbb{R}_n[X]$$

 $P(X) \mapsto P(X+1) - P(X)$

- II.1. Pour un polynôme non constant $P \in \mathbb{R}_n[X]$, exprimer $\deg(\delta(P))$ et $\operatorname{cd}(\delta(P))$ à l'aide de $\deg(P)$ et $\operatorname{cd}(P)$.
- II.2. En déduire le noyau $Ker(\delta)$ et $Im(\delta)$ de l'endomorphisme δ .
- II.3. Plus généralement, pour $j \in [1, n]$, montrer les égalités suivantes :

$$\operatorname{Ker}(\delta^{j}) = \mathbb{R}_{j-1}[X]$$
 et $\operatorname{Im}(\delta^{j}) = \mathbb{R}_{n-j}[X]$ (II.1)

- **II.4.** Pour $k \in \mathbb{N}$ et $P \in \mathbb{R}_n[X]$, exprimer $\delta^k(P)$ en fonction des $\tau^j(P)$ pour $j \in [0, k]$.
- **II.5.** Soit $P \in \mathbb{R}_{n-1}[X]$. Montrer que :

$$\sum_{j=0}^{n} (-1)^{n-j} \binom{n}{j} P(j) = 0$$
 (II.2)

- II.6. Dans cette question, on veut montrer qu'il n'existe pas d'application linéaire $u: \mathbb{R}_n[X] \to \mathbb{R}_n[X]$ telle que $u \circ u = \delta$. On suppose, par l'absurde, qu'une telle application u existe.
 - (a) Montrer que u et δ^2 commutent.
 - (b) En déduire que $\mathbb{R}_1[X]$ est stable par l'application u.
 - (c) Montrer qu'il n'existe pas de matrice $A \in \mathcal{M}_2(\mathbb{R})$ telle que :

$$A^2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

- (d) Conclure.
- II.7. Dans cette question, on cherche tous les sous-espaces vectoriels de $\mathbb{R}_n[X]$ stables par l'application δ .
 - (a) Pour P polynôme non nul de degré $d \leq n$, montrer que la famille $(P, \delta(P), \dots, \delta^d(P))$ est libre. Quel est l'espace vectoriel engendré par cette famille?
 - (b) En déduire que si V est un sous-espace vectoriel de $\mathbb{R}_n[X]$ stable par δ et non réduit à $\{0\}$, il existe un entier $d \in [0, n]$ tel que $V = \mathbb{R}_d[X]$.