

DS N°2

Corrigé de la version hard

Problème Mines MP 2023

1 Calcul de $\sigma(1)$

 $1 \triangleright On$ note D l'ensemble de définition de σ .

Soit $x \in \mathbb{R} \setminus [-1, 1]$, on a par croissance comparée : $\left| \frac{x^k}{k^2} \right| \xrightarrow[k \to +\infty]{} +\infty$

donc la série $\sum_{k \geqslant 1} \frac{x^k}{k^2}$ diverge grossièrement d'où D \subset [-1,1].

Par ailleurs, pour $k \in \mathbb{N}^*$ la fonction $x \mapsto \frac{x^k}{k^2}$ est continues sur l'intervalle [-1, 1] (i).

De plus $\forall x \in [-1,1], \ \left|\frac{x^k}{k^2}\right| \leqslant \frac{1}{k^2}$ et la série $\sum_{k \geqslant 1} \frac{1}{k^2}$ converge selon ce cher Georges.

Ainsi la série de fonctions $\sum_{k\geqslant 1}\left(x\mapsto \frac{x^k}{k^2}\right)$ converge normalement donc uniformément sur [-1,1].

2 \triangleright Soit α et $\beta \in \mathbb{R}$. On note $P = \alpha X^2 + \beta X$. Ainsi $P' = 2\alpha X + \beta$ et $P'' = 2\alpha$. Soit $n \in \mathbb{N}^*$. Par intégrations par parties successives (avec des fonctions de classe \mathcal{C}^1), on a

$$\int_{0}^{\pi} P(t) \cos(nt) dt = \left[P(t) \frac{\sin(nt)}{n} \right]_{t=0}^{t=\pi} - \int_{0}^{\pi} P'(t) \frac{\sin(nt)}{n} dt = 0 + \left[P'(t) \frac{\cos(nt)}{n^2} \right]_{t=0}^{t=\pi} - \int_{0}^{\pi} P''(t) \frac{\cos(nt)}{n^2} dt$$
or
$$\int_{0}^{\pi} P''(t) \frac{\cos(nt)}{n^2} dt = \left[2\alpha \frac{\sin(nt)}{n^2} \right]_{t=0}^{t=\pi} = 0 \text{ et } \left[P'(t) \frac{\cos(nt)}{n^2} \right]_{t=0}^{t=\pi} = \frac{(-1)^n P'(\pi) - P'(0)}{n^2} \text{ donc}$$

$$\int_{0}^{\pi} \left(\alpha t^2 + \beta t \right) \cos(nt) dt = \frac{(-1)^n (2\pi\alpha + \beta) - \beta}{n^2}$$

En prenant $\beta = -1$ et $\alpha = \frac{1}{2\pi}$, on a $(-1)^n (2\pi\alpha + \beta) - \beta = 1$. Ainsi

$$\forall n \in \mathbb{N}^*, \int_0^{\pi} \left(\frac{t^2}{2\pi} - t\right) \cos(nt) dt = \frac{1}{n^2}$$

Soit $t \in]0,\pi]$. On a donc $t/2 \in]0,\pi/2]$ et ainsi $\sin\left(\frac{t}{2}\right) \neq 0$ et les termes de l'égalité existent bien. Montrons l'égalité par récurrence sur $n \in \mathbb{N}$.

 $\underline{\text{L'initialisation}} \text{ est triviale } \text{car } \sum_{k=1}^{0} \cos(kt) = 0 = \frac{\sin\left(\frac{t}{2}\right)}{2\sin\left(\frac{t}{2}\right)} - \frac{1}{2}.$

Pour l'hérédité, on considère $n \in \mathbb{N}$ tel que l'égalité soit vraie au rang n. On a donc :

$$\sum_{k=1}^{n+1} \cos(kt) = \frac{\sin\left(\frac{(2n+1)t}{2}\right)}{2\sin\left(\frac{t}{2}\right)} - \frac{1}{2} + \cos\left((n+1)t\right) = \frac{\sin\left((n+1)t - \frac{t}{2}\right) + 2\sin\left(\frac{t}{2}\right)\cos\left((n+1)t\right)}{2\sin\left(\frac{t}{2}\right)} - \frac{1}{2}$$

Or $\sin\left((n+1)t - \frac{t}{2}\right) = \sin\left((n+1)t\right)\cos\left(\frac{t}{2}\right) - \cos\left((n+1)t\right)\sin\left(\frac{t}{2}\right)$ donc

$$\sin\left((n+1)t-\frac{t}{2}\right)+2\sin\left(\frac{t}{2}\right)\cos\left((n+1)t\right)=\sin\left((n+1)t\right)\cos\left(\frac{t}{2}\right)+\sin\left(\frac{t}{2}\right)\cos\left((n+1)t\right)=\sin\left((n+1)t+\frac{t}{2}\right)$$

On a donc l'égalité au rang n+1:

$$\sum_{k=1}^{n+1} \cos(kt) = \frac{\sin\left(\frac{(2n+3)t}{2}\right)}{2\sin\left(\frac{t}{2}\right)} - \frac{1}{2}$$

On peut donc conclure que la propriété est vraie pour tout $n \in \mathbb{N}$ et comme $\mathbb{N}^* \subset \mathbb{N}$, on a bien

$$\forall n \in \mathbb{N}^*, \ \sum_{k=1}^n \cos(kt) = \frac{\sin\left(\frac{(2n+1)t}{2}\right)}{2\sin\left(\frac{t}{2}\right)} - \frac{1}{2}$$

 $\textit{Comme } \cos(kt) = \text{Re } \big(e^{ikt} \big), \textit{ on aurait pu utiliser une somme géométrique de raison } e^{it} \neq 1 \textit{ car } t \in]0,\pi].$

3 ▷ On effectue une intégration par parties avec les fonctions de classe $C^1: \varphi$ et $t \mapsto \frac{-\cos(xt)}{x}$

$$\begin{split} &\int_0^\pi \varphi(t) \sin(xt) \mathrm{d}t = \left[\varphi(t) \frac{-\cos(xt)}{x} \right]_{t=0}^{t=\pi} + \int_0^\pi \varphi'(t) \frac{\cos(xt)}{x} \mathrm{d}t = \frac{\varphi(0) - \varphi(\pi) \cos(\pi x) + \int_0^\pi \varphi'(t) \cos(xt) \mathrm{d}t}{x} \\ & \text{Ainsi } \left| \int_0^\pi \varphi(t) \sin(xt) \mathrm{d}t \right| \leqslant \frac{|\varphi(0)| + |\varphi(\pi)| \cos(\pi x)| + \left| \int_0^\pi \varphi'(t) \cos(xt) \mathrm{d}t \right|}{x} \, \mathrm{donc} \\ & \left| \int_0^\pi \varphi(t) \sin(xt) \mathrm{d}t \right| \leqslant \frac{|\varphi(0)| + |\varphi(\pi)| \cdot |\cos(\pi x)| + \int_0^\pi |\varphi'(t)| \cdot |\cos(xt)| \, \mathrm{d}t}{x} \leqslant \frac{|\varphi(0)| + |\varphi(\pi)| + \int_0^\pi |\varphi'(t)| \, \mathrm{d}t}{x} \\ & \text{or } \frac{|\varphi(0)| + |\varphi(\pi)| + \int_0^\pi |\varphi'(t)| \, \mathrm{d}t}{x} \xrightarrow[x \to +\infty]{} 0, \end{split}$$

alors selon le théorème des gendarmes, on a montré le lemme de Riemann-Lebesgue pour φ de classe \mathcal{C}^1 : alors selon le théorème des gendarmes, on a montré le lemme de Riemann-Lebesgue pour φ de classe \mathcal{C}^1 :

$$\lim_{x \to +\infty} \int_0^{\pi} \varphi(t) \sin(xt) dt = 0$$

On a $\sigma(1) = \sum_{k=1}^{+\infty} \frac{1}{k^2}$ donc selon la première égalité de la question 2 :

$$\sigma(1) = \sum_{k=1}^{+\infty} \int_0^{\pi} \left(\frac{t^2}{2\pi} - t \right) \cos(kt) dt = \lim_{n \to +\infty} \sum_{k=1}^{n} \int_0^{\pi} \left(\frac{t^2}{2\pi} - t \right) \cos(kt) dt$$

Soit $n \in \mathbb{N}^*$. On a

$$\frac{\sin\left(\frac{(2n+1)t}{2}\right)}{2\sin\left(\frac{t}{2}\right)} \underset{t\to 0}{\sim} \frac{(2n+1)t}{2\frac{t}{2}} \xrightarrow[t\to 0]{} 2n+1$$

Comme $t \mapsto \frac{\sin\left(\frac{(2n+1)t}{2}\right)}{2\sin\left(\frac{t}{2}\right)}$ se prolonge par continuité en 0, avec la deuxième égalité de la question 2 on a :

$$\sum_{k=1}^{n} \int_0^{\pi} \left(\frac{t^2}{2\pi} - t \right) \cos(kt) dt = \int_0^{\pi} \left(\frac{t^2}{2\pi} - t \right) \left(\frac{\sin\left(\frac{(2n+1)t}{2}\right)}{2\sin\left(\frac{t}{2}\right)} - \frac{1}{2} \right) dt$$

On pose $g: t \mapsto \frac{t^2 - 2\pi t}{4\pi \sin\left(\frac{t}{2}\right)}$ qui se prolonge par continuité sur $[0,\pi]$ car $g(t) \underset{t \to 0}{\sim} \frac{-2\pi t}{2\pi t} = -1$.

En notant φ le prolongement continu de g sur $[0, \pi]$, on a

$$\sum_{k=1}^{n} \int_{0}^{\pi} \left(\frac{t^2}{2\pi} - t \right) \cos(kt) dt = \int_{0}^{\pi} \sin\left(\frac{(2n+1)t}{2} \right) \varphi(t) dt - \int_{0}^{\pi} \left(\frac{t^2 - 2\pi t}{4\pi} \right) dt$$

On a φ continue sur $[0,\pi]$ (i) et φ est dérivable sur $]0,\pi]$ (ii) et

$$\forall t \in]0,\pi], \varphi'(t) = \frac{(2t-2\pi)\sin(t/2) - (1/2)(t^2 - 2\pi t)\cos(t/2)}{4\pi\sin^2(t/2)} = \frac{4(t-\pi)\sin(t/2) - (t^2 - 2\pi t)\cos(t/2)}{8\pi\sin^2(t/2)}$$

Quand $t \longrightarrow 0$, on a

$$4(t-\pi)\sin(t/2) - (t^2 - 2\pi t)\cos(t/2) = 4t\left(t/2 + o\left(t^2\right)\right) - 4\pi\left(t/2 + o\left(t^2\right)\right) - t^2\left(1 + o(t)\right) + 2\pi t\left(1 + o\left(t\right)\right)$$

Ainsi
$$4(t-\pi)\sin(t/2) - (t^2 - 2\pi t)\cos(t/2) = t^2 + o(t^2) \sim t^2$$
 d'où $\varphi'(t) \sim \frac{t^2}{8\pi(t/2)^2}$

On a donc $\varphi'(t) \xrightarrow[t \to 0]{} \frac{1}{2\pi}$ (iii)

Avec (i), (ii) et (iii), le théorème du prolongement de la dérivée s'applique :

$$\varphi$$
 est dérivable en 0 et $\varphi'(0) = \lim_{t \to 0} \varphi'(t)$

donc φ' est continue en 0 or φ' est continue sur $]0,\pi]$.

Ainsi φ est de classe \mathcal{C}^1 sur $[0, \pi]$ et le lemme de Riemann-Lebesgue s'applique :

$$\lim_{n \to +\infty} \int_0^{\pi} \varphi(t) \sin((2n+1)t) dt = 0$$

donc
$$\sum_{t=1}^{+\infty}\int_0^\pi \left(\frac{t^2}{2\pi}-t\right)\cos(kt)\mathrm{d}t=0-\int_0^\pi \left(\frac{t^2-2\pi t}{4\pi}\right)\mathrm{d}t. \text{ Ainsi}$$

$$\sigma(1) = \int_0^{\pi} \left(\frac{2\pi t - t^2}{4\pi} \right) dt = \left[\frac{3\pi t^2 - t^3}{12\pi} \right]_{t=0}^{t=\pi} = \frac{3\pi^3 - \pi^3}{12\pi} - 0$$

On a bien $\sigma(1) = \frac{\pi^2}{6}$

 $\mathbf{4} \vartriangleright \operatorname{Soit} x \in \mathbb{R}$. La fonction $t \mapsto (\sin(t))^x = \exp(x \ln(\sin(t)))$ est continue sur $[0, \pi/2]$. Or

$$(\sin(t))^x \sim_{x\to 0^+} t^x = \frac{1}{t^{-x}}$$

Par équivalence, la fonction $t \mapsto (\sin(t))^x$ est intégrable en 0 si et seulement si $t \mapsto \frac{1}{t-x}$ l'est.

Ainsi $t \mapsto (\sin(t))^x$ est intégrable sur $]0, \pi/2]$ si et seulement si -x < 1.

Comme $t \mapsto (\sin(t))^x$ est positive sur $]0, \pi/2]$, le domaine de définition de f est I

Soit $x \in I$. On a $x + 2 \in I$.

On effectue alors une intégration par parties, sous réserve de convergence du bloc tout intégré :

$$f(x+2) = \int_0^{\pi/2} (\sin(t))^{x+1} \sin(t) dt = \left[-(\sin(t))^{x+1} \cos(t) \right]_{t\to 0}^{t=\pi/2} + \int_0^{\pi/2} (x+1)(\sin(t))^x \cos^2(t) dt$$

$$f(x+2) = (x+1) \left(\int_0^{\pi/2} (x+1) (\sin(t))^x dt - \int_0^{\pi/2} (\sin(t))^{x+2} dt \right) = (x+1) f(x) - (x+1) f(x+2)$$

On a bien
$$(x+1)f(x) = (x+2)f(x+2)$$
 (1)

$$\mathbf{5} \, \triangleright \, \text{ On pose } g \, : \, \left\{ \begin{array}{ccc} \mathrm{I} \times \,]0, \pi/2] & \longrightarrow & \mathbb{R} \\ (x,t) & \longmapsto & (\sin(t))^x \end{array} \right.$$

- (i) Soit $t \in]0, \pi/2]$. La fonction $g(\cdot, t) : x \longmapsto \exp(x \ln(\sin(t)))$ est de classe \mathcal{C}^2 sur I de dérives successives : $\frac{\partial g}{\partial x}(\cdot, t) : x \longmapsto \ln(\sin(t)) \exp(x \ln(\sin(t))) = \ln(\sin(t)) (\sin(t))^x \text{ et } \frac{\partial^2 g}{\partial x^2}(\cdot, t) : x \longmapsto \ln^2(\sin(t)) (\sin(t))^x$
- (ii) Soit $x \in I$. Les fonctions $g(x,\cdot), \frac{\partial g}{\partial x}(x,\cdot)$ et $\frac{\partial^2 g}{\partial x^2}(x,\cdot)$ sont continues sur $]0,\pi/2]$ (argument inutile!) La fonction $g(x,\cdot)$ est intégrable sur $]0,\pi/2]$ selon la question précédente. Quand $t \longrightarrow 0^+$, on a $\ln(\sin(t))(\sin(t))^x = \ln(\sin(t))(\sin(t))^{\frac{x+1}{2}}(\sin(t))^{\frac{x-1}{2}}$ On a $\frac{x+1}{2} > 0$ donc par croissance comparée et par composition $\ln(\sin(t))(\sin(t))^{\frac{x+1}{2}} \longrightarrow 0$

Ainsi $\frac{\partial g}{\partial x}(x,t) = o\left(\left(\sin(t)\right)^{\frac{x-1}{2}}\right)$ Comme $\frac{x-1}{2} > -1$, la fonction $t \mapsto \left(\sin(t)\right)^{\frac{x-1}{2}}$ est intégrable sur $]0,\pi/2]$ comme en question 3.

Par comparaison la fonction $t \mapsto \frac{\partial g}{\partial x}(x,t)$ est intégrable sur $]0,\pi/2].$

(iii) Soit a < b dans I. On a alors l'hypothèse de domination :

$$\forall x \in [a, b], \ \forall t \in]0, \pi/2], \ \left| \frac{\partial^2 g}{\partial x^2}(x, t) \right| = \ln^2 \left(\sin(t) \right) \left(\sin(t) \right)^x \leqslant \ln^2 \left(\sin(t) \right) \left(\sin(t) \right)^a$$

avec la fonction $t \mapsto \ln^2(\sin(t))(\sin(t))^a$ intégrable sur $]0,\pi/2]$, comme en (ii).

Avec (i), (ii) et (iii), le théorème de la classe C^2 pour les intégrales s'applique : f est de classe C^2 sur I De plus pour tout $x \in I$, on a

$$f'(x) = \int_0^{\pi/2} \ln(\sin(t)) (\sin(t))^x dt \leqslant 0 \text{ et } f''(x) = \int_0^{\pi/2} \ln^2(\sin(t)) (\sin(t))^x dt \geqslant 0$$

ainsi f est décroissante et convexe sur I

- $\mathbf{6} \, \triangleright \, \text{ Quand } x \longrightarrow -1, \, f(x) = \frac{(x+2)f(x+2)}{x+1} \text{ selon 4 et } (x+2)f(x+2) \longrightarrow 1 \times f(1) \text{ car } f \text{ continue sur I et } 1 \in \mathbf{I}.$ $\text{Par ailleurs } f(1) = [-\cos(t)]_{t\to 0}^{t=\pi/2} = 1 \neq 0, \text{ on peut conclure que } \boxed{f(x) \underset{x\to -1}{\sim} \frac{1}{x+1}}$
- $7 \triangleright \text{ Soit } n \in \mathbb{N}.$

On a $n \in I$ et en multipliant par f(n+1), on a : (n+1)f(n)f(n+1) = (n+2)f(n+1)f(n+2)Ainsi la suite $((n+1)f(n)f(n+1))_{n \in \mathbb{N}}$ est constante.

 $\text{Comme } f(0) = \int_0^{\pi/2} \mathrm{d}t = \frac{\pi}{2} \text{ ainsi pour tout } n \in \mathbb{N}, \ (n+1)f(n)f(n+1) = 1f(0)f(1) = \frac{\pi}{2}.$

On peut conclure que $f(n)f(n+1) = \frac{\pi}{2(n+1)}$

Comme f est décroissante et positive, on a donc $f(n+1)^2 \le \frac{\pi}{2(n+1)} \le f(n)^2$

d'où $\forall n \in \mathbb{N}^*, \, \frac{\pi}{2(n+1)} \leqslant f(n)^2 \leqslant \frac{\pi}{2n}$ ainsi $\forall n \in \mathbb{N}^*, \, \sqrt{\frac{\pi}{2(n+1)}} \leqslant f(n) \leqslant \sqrt{\frac{\pi}{2n}}$

Soit $x\geqslant 1$. On note $\lfloor x\rfloor$ la partie entière de x. On a donc $1\leqslant \lfloor x\rfloor\leqslant x\leqslant \lfloor x\rfloor+1$. Ainsi

$$\sqrt{\frac{\pi}{2(\lfloor x \rfloor + 2)}} \leqslant f\left(\lfloor x \rfloor + 1\right) \leqslant f(x) \leqslant f\left(\lfloor x \rfloor\right) \leqslant \sqrt{\frac{\pi}{2\lfloor x \rfloor}}$$

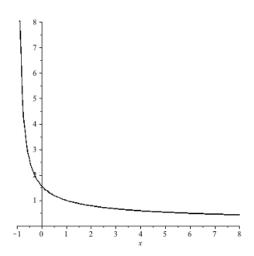
Or $x - 1 \le \lfloor x \rfloor \le x \le \lfloor x \rfloor + 2 \le x + 2$

Quand $x \longrightarrow +\infty$, on a $x-1 \sim x \sim x+2$, d'où par encadrement d'équivalents, on a $\lfloor x \rfloor \sim x$ et $\lfloor x \rfloor + 2 \sim x$.

À nouveau par encadrement d'équivalents, on a bien $f(x) \underset{x \to +\infty}{\sim} \sqrt{\frac{\pi}{2x}}$

8 \triangleright Sur le graphique doivent apparaître les points $(0, f(0)) = (0, \pi/2), (1, f(1)) = (1, 1)$, les asymptotes d'équations x = -1 et y = 0.

On observera que f est décroissante et convexe.



Il n'est pas aisé de faire apparaître les équivalents sur un graphique surtout à main levée.

3 Développement en série entière

9 \triangleright Soit $n \in \mathbb{N}$. La fonction $t \mapsto (\ln(\sin(t)))^n$ est continue sur $]0, \pi/2]$.

Quand $t \longrightarrow 0^+$, on a $\sqrt{\sin(t)}(\ln(\sin(t)))^n \longrightarrow 0$ par croissance comparée.

or $\sin(t) \sim t$, donc $\sqrt{t}(\ln(\sin(t)))^n \longrightarrow 0$

D'où $(\ln(\sin(t)))^n=o\left(\frac{1}{t^{1/2}}\right)$ or $t\mapsto\frac{1}{t^{1/2}}$ est intégrable en 0.

Par comparaison à une fonction intégrable, $t \mapsto (\ln(\sin(t)))^n$ est intégrable sur $[0, \pi/2]$.

Ainsi l'intégrale généralisée D_n converge absolument donc converge

Le changement de variable $t = \frac{\pi}{2} - u$; dt = -du nous donne : $D_1 = -\int_{\pi/2}^0 \ln(\sin(\pi/2 - u)) du$

On a bien
$$\boxed{ \mathbf{D}_1 = \int_0^{\pi/2} \ln(\cos(t)) \mathrm{d}t }$$

 $\mathbf{10} \, \triangleright \, \text{ En utilisant 5, on a } f'(0) = \int_0^{\pi/2} \ln(\sin(t)) \, \, \mathrm{d}t = \mathrm{D}_1 \, \operatorname{et} \, f'(1) = \int_0^{\pi/2} \ln(\sin(t)) \sin(t) \, \, \mathrm{d}t.$

Avec 9 et en effectuant le changement de variable u = 2t; du = 2dt, on a

$$2D_1 = \int_0^{\pi/2} \ln(\sin(t)\cos(t)) dt = \int_0^{\pi/2} \ln\left(\frac{\sin(2t)}{2}\right) dt = \frac{1}{2} \int_0^{\pi} \ln(\sin(u)) du - \frac{\ln(2)\pi}{2}$$

En effectuant le changement de variable $u=\pi-t,$ $\mathrm{d}u=-\mathrm{d}t,$ on a :

$$\int_{\pi/2}^{\pi} \ln(\sin(u)) \, du = -\int_{\pi/2}^{0} \ln(\sin(\pi - t)) \, dt = \int_{0}^{\pi/2} \ln(\sin(t)) \, dt = D_{1}$$

donc
$$2D_1 = \frac{2}{2}D_1 - \frac{\ln(2)\pi}{2}$$
. Ainsi $f'(0) = D_1 = -\frac{\ln(2)\pi}{2}$

On effectue une intégration par parties sous réserve :

$$f'(1) = \left[(1 - \cos(t)) \ln(\sin(t)) \right]_{t \to 0}^{t = \pi/2} - \int_0^{\pi/2} \frac{(1 - \cos(t)) \cos(t)}{\sin(t)} dt$$

5

On a vu en 9 que
$$\ln(\sin(t)) \underset{t \to 0^+}{=} o\left(1/\sqrt{t}\right)$$
 or $1 - \cos(t) \underset{t \to 0^+}{\sim} t^2/2$ d'où $(1 - \cos(t)) \ln(\sin(t)) \xrightarrow[t \to 0^+]{} 0$ et $\left[(1 - \cos(t)) \ln(\sin(t))\right]_{t \to 0}^{t = \pi/2} = 0$; ce qui valide l'intégration par parties.

On avait choisi la seule primitive qui pouvait convenir.

On a donc avec le changement de variable $u = \cos(t)$; $du = -\sin(t)dt$:

$$f'(1) = -\int_0^{\pi/2} \frac{(1 - \cos(t))\cos(t)}{1 - \cos(t)^2}\sin(t) dt = -\int_0^{\pi/2} \frac{\cos(t)}{1 + \cos(t)}\sin(t) dt = +\int_1^0 \frac{u}{1 + u} du = \int_0^1 \left(\frac{1}{u + 1} - 1\right) du$$

Ainsi
$$f'(1) = [\ln |u+1| - u]_{u=0}^{u=1} = \ln(2) - 1 - \ln(1) + 0$$

On peut conclure que $f'(1) = \ln(2) - 1$

Exercice

Je donne le corrigé sur demande, mais finalement il n'était pas dans le sujet que vous avez eu....