

DM_{N°3}

Version soft

Notations et objectifs

Dans tout ce problème n est un entier naturel supérieur ou égal à 2 et E est un espace vectoriel de dimension finie n sur le corps $\mathbb R$ des nombres réels.

 $\mathcal{L}(E)$ désigne l'algèbre des endomorphismes de E et GL(E) l'ensemble des endomorphismes de E qui sont bijectifs.

On note 0 l'endomorphisme nul et id l'application identité.

Pour tout endomorphisme f, Ker (f) et Im (f) désigneront respectivement le noyau et l'image de f.

L'ensemble des valeurs propres de f sera noté Sp(f) et on notera :

$$\mathcal{R}(f) = \{ h \in \mathcal{L}(E) \mid h^2 = f \}$$

 $\mathbb{R}[X]$ désigne l'espace des polynômes à coefficients réels.

Étant donné $f\in\mathcal{L}(E)$ et $P\in\mathbb{R}[X]$ donné par $P(X)=\sum_{k=0}^\ell a_k X^k,$ on définit $P(f)\in\mathcal{L}(E)$ par :

$$P(f) = \sum_{k=0}^{\ell} a_k f^k$$

où $f^0 = \text{id}$ et pour $k \in \mathbb{N}^{\star}$, $f^k = \underbrace{f \circ \ldots \circ f}_{k \text{ fois}}$.

Si f_1, \ldots, f_q désignent q endomorphismes de E $(q \in \mathbb{N}^*)$ alors $\prod_{1 \leq i \leq q} f_i$ désignera l'endomorphisme $f_1 \circ \ldots \circ f_q$.

Pour tout entier p non nul, $\mathcal{M}_p(\mathbb{R})$ désigne l'espace des matrices carrées à p lignes et p colonnes à coefficients dans \mathbb{R} .

 I_p est la matrice identité de $\mathcal{M}_p(\mathbb{R})$.

L'objectif du problème est d'étudier des conditions nécessaires ou suffisantes à l'existence de racines carrées d'un endomorphisme f et de décrire dans certains cas l'ensemble $\mathcal{R}(f)$.

On admet dans tout ce problème qu'un endomorphisme de E est diagonalisable si et seulement si il admet un polynôme annulateur scindé à racines simples.

PARTIE I

A) On désigne par f l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est donnée par :

$$A = \begin{pmatrix} 8 & 4 & -7 \\ -8 & -4 & 8 \\ 0 & 0 & 1 \end{pmatrix}$$

- 1) Montrer que f est diagonalisable.
- 2) Déterminer une base (v_1, v_2, v_3) de \mathbb{R}^3 formée de vecteurs propres de f et donner la matrice D de f dans cette nouvelle base.
- 3) Soit P la matrice de passage de la base canonique à la base (v_1, v_2, v_3) . Soit un entier $m \ge 1$. Sans calculer l'inverse de P, exprimer A^m en fonction de D, P et P^{-1} .
 - 4) Calculer P^{-1} , puis déterminer la matrice de f^m dans la base canonique.
- 5) Déterminer toutes les matrices de $\mathcal{M}_3(\mathbb{R})$ qui commutent avec la matrice D trouvée à la question 2).
 - 6) Montrer que si $H \in \mathcal{M}_3(\mathbb{R})$ vérifie $H^2 = D$, alors H et D commutent.
- 7) Déduire de ce qui précède toutes les matrices H de $\mathcal{M}_3(\mathbb{R})$ vérifiant $H^2 = D$, puis déterminer tous les endomorphismes h de \mathbb{R}^3 vérifiant $h^2 = f$ en donnant leur matrice dans la base canonique.
- B) Soient f et j les endomorphismes de \mathbb{R}^3 dont les matrices respectives A et J dans la base canonique sont données par :

$$A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix} \quad \text{et} \quad J = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

- 1) Calculer J^m pour tout entier $m \ge 1$.
- 2) En déduire que pour tout $m \in \mathbb{N}^*$, $f^m = \mathrm{id} + \frac{1}{3}(4^m 1)j$. Cette relation est-elle encore valable pour m = 0?
 - 3) Montrer que f admet deux valeurs propres distinctes λ et μ telles que $\lambda < \mu$.
- 4) Montrer qu'il existe un unique couple (p,q) d'endomorphismes de \mathbb{R}^3 tel que pour tout entier $m \geq 0$, $f^m = \lambda^m p + \mu^m q$ et montrer que ces endomorphismes p et q sont linéairement indépendants.
- 5) Après avoir calculé p^2 , q^2 , $p \circ q$ et $q \circ p$, trouver tous les endomorphismes h, combinaisons linéaires de p et q qui vérifient $h^2 = f$.
- 6) Montrer que f est diagonalisable et trouver une base de vecteurs propres de f. Écrire la matrice D de f, puis la matrice de p et de q dans cette nouvelle base.
- 7) Déterminer une matrice K de $\mathcal{M}_2(\mathbb{R})$ non diagonale telle que $K^2 = I_2$, puis une matrice Y de $\mathcal{M}_3(\mathbb{R})$ non diagonale telle que $Y^2 = D$.
- 8) En déduire qu'il existe un endomorphisme h de \mathbb{R}^3 vérifiant $h^2=f$ qui n'est pas combinaison linéaire de p et q.
 - 9) Montrer que tous les endomorphismes h de \mathbb{R}^3 vérifiant $h^2=f$ sont diagonalisables.

2

PARTIE II

Soit f un endomorphisme de E. On suppose qu'il existe $(\lambda, \mu) \in \mathbb{R}^2$ et deux endomorphismes non nuls p et q de E tels que :

$$\lambda \neq \mu \text{ et } \begin{cases} \text{id} = p+q \\ f = \lambda p + \mu q \\ f^2 = \lambda^2 p + \mu^2 q \end{cases}$$

- 1) Calculer $(f \lambda id) \circ (f \mu id)$. En déduire que f est diagonalisable.
- 2) Montrer que λ et μ sont valeurs propres de f et qu'il n'y en a pas d'autres.
- 3) Déduire de la relation trouvée dans la question 1) que $p \circ q = q \circ p = 0$ puis montrer que $p^2 = p$ et $q^2 = q$.
- 4) On suppose jusqu'à la fin de cette partie que $\lambda \mu \neq 0$. Montrer que f est un isomorphisme et écrire f^{-1} comme combinaison linéaire de p et q.
 - 5) Montrer que pour tout $m \in \mathbb{Z}$:

$$f^m = \lambda^m p + \mu^m q$$

- 6) Soit F le sous-espace de $\mathcal{L}(E)$ engendré par p et q. Déterminer la dimension de F.
- 7) On suppose dans la suite de cette partie que λ et μ sont strictement positifs. Déterminer $\mathcal{R}(f) \cap F$.
- 8) Soit k un entier supérieur ou égal à 2. Déterminer une matrice K de $\mathcal{M}_k(\mathbb{R})$ non diagonale et vérifiant $K^2 = I_k$.
- 9) Montrer que si l'ordre de multiplicité de la valeur propre λ est supérieur ou égal à 2, alors il existe un endomorphisme $p' \in \mathcal{L}(E) \setminus F$ tel que $p'^2 = p$ et $p' \circ q = q \circ p' = 0$.
 - 10) En déduire que si dim $(E) \geqslant 3$, alors $\mathcal{R}(f) \not\subset F$.

PARTIE III

Soient p_1, \ldots, p_m , m endomorphismes non nuls de E et $\lambda_1, \ldots, \lambda_m$, m nombres réels distincts. Soit f un endomorphisme de E vérifiant pour tout entier $k \in \mathbb{N}$:

$$f^k = \sum_{i=1}^m \lambda_i^k p_i$$

1) Montrer que pour tout $P \in \mathbb{R}[X]$, on a :

$$P(f) = \sum_{i=1}^{m} P(\lambda_i) p_i$$

- 2) En déduire que $\prod_{i=1} (f \lambda_i id) = 0$, puis que f est diagonalisable.
- 3) Pour tout entier ℓ tel que $1 \leq \ell \leq m$, on considère le polynôme :

$$L_{\ell}(X) = \prod_{\substack{1 \leqslant i \leqslant m \\ i \neq \ell}} \frac{(X - \lambda_i)}{(\lambda_{\ell} - \lambda_i)}$$

Montrer que pour tout entier ℓ , tel que $1 \leq \ell \leq m$, on a $p_{\ell} = L_{\ell}(f)$. En déduire que Im $(p_{\ell}) \subset \text{Ker } (f - \lambda_{\ell} \text{id})$, puis que le spectre de f est :

$$\operatorname{Sp}(f) = \{\lambda_1, \ldots, \lambda_m\}$$

4) Vérifier que pour tout couple d'entiers (i,j) tels que $1\leqslant i,j\leqslant m,$ on a :

$$p_i \circ p_j = \begin{cases} 0 & \text{si } i \neq j \\ p_i & \text{si } i = j \end{cases}$$

- 5) Justifier le fait que la somme $\sum_{i=1}^{m} \text{Ker } (f \lambda_i \text{id})$ est directe et égale à E et que les projecteurs associés à cette décomposition de E sont les p_i .
- 6) Soit F le sous-espace vectoriel de $\mathcal{L}(E)$ engendré par $\{p_1, \ldots, p_m\}$. Déterminer la dimension de F.
 - 7) Déterminer $\mathcal{R}(f) \cap F$ dans le cas où $\lambda_1, \dots, \lambda_m$ sont des réels positifs ou nuls.
 - 8) Dans cette question, on suppose de plus que m = n.
 - 8.1) Préciser alors la dimension des sous-espaces propres de f.
- 8.2) Montrer que si $h \in \mathcal{R}(f)$, tout vecteur propre de f est également vecteur propre de h.
- 8.3) En déduire que $\mathcal{R}(f) \subset F$ et donner une condition nécessaire et suffisante sur les λ_i pour que $\mathcal{R}(f)$ soit non vide.
 - 9) Montrer que si m < n et si tous les λ_i sont positifs ou nuls, alors $\mathcal{R}(f) \not\subset F$.

PARTIE IV

- A) Soit f un endomorphisme non nul de E tel qu'il existe un entier p > 1 tel que $f^p = 0$ et $f^{p-1} \neq 0$.
- 1) Montrer qu'il existe $x \in E$ non nul tel que la famille $(x, f(x), f^2(x), \dots, f^{p-1}(x))$ est libre. En déduire que $p \leq n$ et que $f^n = 0$.
 - 2) Montrer que si $\mathcal{R}(f) \neq \emptyset$ alors $2p 1 \leqslant n$.
 - 3) Déterminer les réels a_0, \ldots, a_{n-1} tels que $\sqrt{1+x} = \sum_{k=0}^{n-1} a_k x^k + O(x^n)$ au voisinage
- de 0. Dans la suite, P_n désigne le polynôme défini par $P_n(X) = \sum_{k=0}^{n-1} a_k X^k$.
- 4) Montrer qu'il existe une fonction η bornée au voisinage de 0 telle que l'on ait $P_n^2(x) x 1 = x^n \eta(x)$. En déduire que X^n divise $P_n^2 X 1$.
- 5) Montrer alors que $\mathcal{R}(f+\mathrm{id}) \neq \emptyset$. Plus généralement, montrer que pour tout α réel, $\mathcal{R}(\alpha f+\mathrm{id}) \neq \emptyset$, puis que pour tout β réel strictement positif, $\mathcal{R}(f+\beta\mathrm{id}) \neq \emptyset$.
- B) 1) Soit $T = (a_{ij})_{1 \leq i,j \leq n}$ une matrice triangulaire supérieure de $\mathcal{M}_n(\mathbb{R})$ dont tous les coefficients diagonaux sont égaux à un réel λ .

Montrer que $(T - \lambda I_n)^n = 0$.

- 2) On suppose dans toute la suite que f est un endomorphisme de E dont le polynôme caractéristique est scindé et qui n'admet qu'une seule valeur propre λ . Déduire de la question précédente que $E = \operatorname{Ker} (f \lambda \operatorname{id})^n$.
 - 3) Montrer que si $\lambda > 0$ alors $\mathcal{R}(f) \neq \emptyset$.

Fin de l'énoncé

DM N°6

Version hard

Ne pas traiter les questions au-delà de IV.F1.

Dans ce problème, $\mathbb K$ désigne le corps $\mathbb R$ ou le corps $\mathbb C$ et E est un $\mathbb K$ -espace vectoriel non nul.

Si f est un endomorphisme de E, pour tout sous-espace F de E stable par f on note f_F l'endomorphisme de F induit par f, c'est-à-dire défini sur F par $f_F(x) = f(x)$ pour tout x dans F.

Pour tout endomorphisme f d'un \mathbb{K} -espace vectoriel E on définit la suite $(f^n)_{n\in\mathbb{N}}$ des puissances de f par

$$\begin{cases} f^0 = \mathrm{id}_E, \\ f^{k+1} = f \circ f^k = f^k \circ f \quad \text{pour tout k dans \mathbb{N}.} \end{cases}$$

On note $\mathbb{K}[X]$ l'espace vectoriel sur \mathbb{K} des polynômes à coefficients dans \mathbb{K} et, pour tout n de \mathbb{N} , $\mathbb{K}_n[X]$ le sous-espace de $\mathbb{K}[X]$ des polynômes de degré au plus égal à n.

Pour $n \ge 1$, $\mathcal{M}_n(\mathbb{K})$ est l'espace des matrices carrées à n lignes et à éléments dans \mathbb{K} et $\mathcal{M}_{n,1}(\mathbb{K})$ est l'espace des matrices colonnes à n lignes et à éléments dans \mathbb{K} .

I Première partie

Dans cette partie, f est un endomorphisme d'un \mathbb{K} -espace vectoriel E.

I.A – Montrer qu'une droite F engendrée par un vecteur u est stable par f si et seulement si u est un vecteur propre de f.

I.B -

- I.B.1) Montrer qu'il existe au moins deux sous-espaces de E stables par f et donner un exemple d'un endomorphisme de \mathbb{R}^2 qui n'admet que deux sous-espaces stables.
- I.B.2) Montrer que si E est de dimension finie $n \ge 2$ et si f est non nul et non injectif, alors il existe au moins trois sous-espaces de E stables par f et au moins quatre lorsque n est impair.

 Donner un exemple d'endomorphisme de \mathbb{R}^2 qui n'admet que trois sous-espaces stables.

I.C -

- I.C.1) Montrer que tout sous-espace engendré par une famille de vecteurs propres de f est stable par f. Préciser l'endomorphisme induit par f sur tout sous-espace propre de f.
- I.C.2) Montrer que si f admet un sous-espace propre de dimension au moins égale à 2 alors il existe une infinité de droites de E stables par f.
- I.C.3) Que dire de f si tous les sous-espaces de E sont stables par f?
- I.D Dans cette sous-partie, E est un espace de dimension finie.
- I.D.1) Montrer que si f est diagonalisable alors tout sous-espace de E admet un supplémentaire dans E stable par f. On pourra partir d'une base de F et d'une base de E constituée de vecteurs propres de f.
- I.D.2) Montrer que si $\mathbb{K} = \mathbb{C}$ et si tout sous-espace de E stable par f admet un supplémentaire dans E stable par f, alors f est diagonalisable. Qu'en est-il si $\mathbb{K} = \mathbb{R}$?

II Deuxième partie

Dans cette partie, n et p sont deux entiers naturels au moins égaux à 2, f est un endomorphisme diagonalisable d'un \mathbb{K} -espace vectoriel E de dimension n, qui admet p valeurs propres distinctes $\{\lambda_1, \ldots, \lambda_p\}$ et, pour tout i dans [1, p], on note E_i le sous-espace propre de f associé à la valeur propre λ_i .

- II.A Il s'agit ici de montrer qu'un sous-espace F de E est stable par f si et seulement si $F = \bigoplus_{i=1}^p (F \cap E_i)$.
- II.A.1) Montrer que tout sous-espace F de E tel que $F = \bigoplus_{i=1}^{p} (F \cap E_i)$ est stable par f.

- II.A.2) Soit F un sous-espace de E stable par f et x un vecteur non nul de F. Justifier l'existence et l'unicité de $(x_i)_{1 \le i \le p}$ dans $E_1 \times \cdots \times E_p$ tel que $x = \sum_{i=1}^p x_i$.
- II.A.3) Si on pose $H_x = \{i \in [\![1,p]\!] \mid x_i \neq 0\}$, H_x est non vide et, quitte à renuméroter les valeurs propres (et les sous-espaces propres), on peut supposer que $H_x = [\![1,r]\!]$ avec $1 \leqslant r \leqslant p$. Ainsi on a $x = \sum_{i=1}^r x_i$ avec $x_i \in E_i \setminus \{0\}$ pour tout i de $[\![1,r]\!]$.

On pose $V_x = \text{Vect}(x_1, \dots, x_r)$.

Montrer que $\mathcal{B}_x = (x_1, \dots, x_r)$ est une base de V_x .

- II.A.4) Montrer que pour tout j de [1, r], $f^{j-1}(x)$ appartient à V_x et donner la matrice de la famille $(f^{j-1}(x))_{1 \leq j \leq r}$ dans la base \mathcal{B}_x .
- II.A.5) Montrer que $(f^{j-1}(x))_{1 \leq j \leq r}$ est une base de V_x .
- II.A.6) En déduire que pour tout i de [1, r], x_i appartient à F et conclure.
- II.B Dans cette sous-partie, on se place dans le cas où p = n.
- II.B.1) Préciser la dimension de E_i pour tout i dans [1, p].
- II.B.2) Combien y a-t-il de droites de E stables par f?
- II.B.3) Si $n \ge 3$ et $k \in [2, n-1]$, combien y a-t-il de sous-espaces de E de dimension k et stables par f?
- II.B.4) Combien y a-t-il de sous-espaces de E stables par f dans ce cas? Les donner tous.

III Troisième partie

- III.A On considère l'endomorphisme D de dérivation sur $\mathbb{K}[X]$ défini par D(P) = P' pour tout P dans $\mathbb{K}[X]$.
- III.A.1) Vérifier que pour tout n de \mathbb{N} , $\mathbb{K}_n[X]$ est stable par D et donner la matrice A_n de l'endomorphisme induit par D sur $\mathbb{K}_n[X]$ dans la base canonique de $\mathbb{K}_n[X]$.
- III.A.2) Soit F un sous-espace de $\mathbb{K}[X]$, de dimension finie non nulle, stable par D.
 - a) Justifier l'existence d'un entier naturel n et d'un polynôme R de degré n tels que $R \in F$ et $F \subset \mathbb{K}_n[X]$.
 - b) Montrer que la famille $(D^i(R))_{0 \le i \le n}$ est une famille libre de F.
 - c) En déduire que $F = \mathbb{K}_n[X]$.
- III.A.3) Donner tous les sous-espaces de $\mathbb{K}[X]$ stables par D.
- III.B On considère un endomorphisme f d'un \mathbb{K} -espace vectoriel E de dimension $n \geqslant 2$ tel que $f^n = 0$ et $f^{n-1} \neq 0$.
- III.B.1) Déterminer l'ensemble des vecteurs u de E tels que la famille $\mathcal{B}_{f,u}=(f^{n-i}(u))_{1\leqslant i\leqslant n}$ soit une base de E.
- III.B.2) Dans le cas où $\mathcal{B}_{f,u}$ est une base de E, quelle est la matrice de f dans $\mathcal{B}_{f,u}$?
- III.B.3) Déterminer une base de E telle que la matrice de f dans cette base soit A_{n-1} .
- III.B.4) Donner tous les sous-espaces de E stables par f. Combien y en a-t-il? Donner une relation simple entre ces sous-espaces stables et les noyaux $\ker(f^i)$ pour i dans [0, n].

IV Quatrième partie

Dans cette partie, n est un entier naturel non nul, M est dans $\mathcal{M}_n(\mathbb{R})$ et f est l'endomorphisme de $E = \mathcal{M}_{n,1}(\mathbb{R})$ défini par f(X) = MX pour tout X de E.

IV.A – Si on pose
$$X_i = \begin{pmatrix} \delta_{1,i} \\ \vdots \\ \delta_{n,i} \end{pmatrix}$$
 où $\delta_{k,\ell} = \begin{cases} 1 & \text{si } k = \ell, \\ 0 & \text{si } k \neq \ell \end{cases}$ et $\mathcal{B}_n = (X_i)_{1 \leqslant i \leqslant n}$ la base canonique de E , quelle est la matrice de f dans \mathcal{B}_n ?

- IV.B Montrer que si n est impair, alors f admet au moins une valeur propre réelle.
- IV.C Dans cette question, $\lambda = \alpha + i\beta$, avec (α, β) dans \mathbb{R}^2 , est une valeur propre non réelle de M et Z de $\mathcal{M}_{n,1}(\mathbb{C})$, non nul est tel que $MZ = \lambda Z$.

Si $M=(m_{i,j})_{1\leqslant i,j\leqslant n}$, on pose $\overline{M}=(m'_{i,j})_{1\leqslant i,j\leqslant n}$ avec $m'_{i,j}=\overline{m_{i,j}}$ (conjugué du nombre complexe $m_{i,j}$) pour

tout
$$(i,j)$$
 de $[\![1,n]\!]^2$ et si $Z=\begin{pmatrix} z_1 \\ \vdots \\ z_n \end{pmatrix}$, on pose $\overline{Z}=\begin{pmatrix} z_1' \\ \vdots \\ z_n' \end{pmatrix}$ avec $z_i'=\overline{z_i}$ pour tout i de $[\![1,n]\!]$.

- IV.C.1) Vérifier que X et Y sont dans E et montrer que la famille (X,Y) est libre dans E.
- IV.C.2) Montrer que le plan vectoriel F engendré par X et Y est stable par f et donner la matrice de f_F dans la base (X,Y).
- IV.D Que penser de l'affirmation : « tout endomorphisme d'un espace vectoriel réel de dimension finie admet au moins une droite ou un plan stable » ?

- IV.E Existe-t-il un endomorphisme de $\mathbb{R}[X]$ n'admettant ni droite ni plan stable?
- IV.F Dans cette question on considère le système différentiel linéaire $\mathcal{S}: X' = AX$ associé à la matrice $A = \begin{pmatrix} 1 & -4 & 0 \\ 1 & -2 & -1 \\ 1 & 1 & 0 \end{pmatrix}$.

On appelle trajectoires de S les arcs de l'espace \mathbb{R}^3 paramétrés par les solutions de S. On veut déterminer les trajectoires rectilignes et les trajectoires planes de S.

- IV.F.1) Construire une matrice P inversible et une matrice $T = \begin{pmatrix} \alpha & \beta & 0 \\ -\beta & \alpha & 0 \\ 0 & 0 & \gamma \end{pmatrix}$ avec (α, β, γ) dans $(\mathbb{R}^*)^3$ telles que $P^{-1}AP = T$, et déterminer un plan F et une droite G stables par l'endomorphisme de \mathbb{R}^3 canoniquement associé à A et supplémentaires dans \mathbb{R}^3 .
- IV.F.2) Déterminer l'unique solution du problème de Cauchy \mathcal{P}_U : $\left\{ \begin{array}{l} X' = AX \\ X(0) = U \end{array} \right.$ lorsque U appartient à G.
- IV.F.3) Pour tout $\sigma = (a, b)$ de \mathbb{R}^2 , on considère le problème de Cauchy \mathcal{C}_{σ} : $\begin{cases} x' = -x + 2y, \\ y' = -2x y, \\ x(0) = a, \ y(0) = b, \end{cases}$ et $\varphi = (x, y)$ dans $\mathcal{C}^1(\mathbb{R}, \mathbb{R}^2)$ l'unique solution de \mathcal{C}_{σ} .

Préciser x'(0) et y'(0); montrer que x et y sont solutions d'une même équation différentielle linéaire homogène du second ordre à coefficients constants et ainsi en déduire φ en fonction de a et de b.

IV.F.4) Déterminer les trajectoires rectilignes et les trajectoires planes du système différentiel X' = AX.

V Cinquième partie

Dans cette partie E est un espace vectoriel réel de dimension n muni d'une base $\mathcal{B} = (\varepsilon_i)_{1 \leq i \leq n}$. On considère un endomorphisme f de E et on note A sa matrice dans la base \mathcal{B} .

V.A -

- V.A.1) Montrer qu'il existe un unique produit scalaire sur E pour lequel $\mathcal B$ est orthonormée. Ce produit scalaire est noté de manière usuelle par $\langle u,v\rangle$ ou plus simplement $u\cdot v$ pour tout (u,v) de E^2 .
- V.A.2) Si u et v sont représentés par les matrices colonnes respectives U et V dans la base \mathcal{B} , quelle relation simple existe-t-il entre $u \cdot v$ et le produit matriciel tUV (où tU est la transposée de U)?
- V.B Soit H un hyperplan de E et D son supplémentaire orthogonal. Si (u) est une base de D et si U est la matrice colonne de u dans \mathcal{B} , montrer que H est stable par f si et seulement si U est un vecteur propre de la transposée de A.
- V.C Déterminer ainsi le(s) plan(s) stable(s) de f lorsque n=3 et A est la matrice considérée en IV.F.
- V.D Dans cette question, E est un espace vectoriel réel de dimension n et f est un endomorphisme de E.
- V.D.1) Montrer que si f est diagonalisable alors il existe n hyperplans de E, $(H_i)_{1 \le i \le n}$, tous stables par f, tels que $\bigcap_{i=1}^n H_i = \{0\}$.
- V.D.2) Un endomorphisme f de E pour lequel il existe n hyperplans de E stables par f et d'intersection réduite au vecteur nul est-il nécessairement diagonalisable?