

Programme de colles S7

Du 17-11 au 21-11

Algèbre linéaire

Révisions de première année essentiellement. Points nouveaux :

- 1. Espace vectoriel produit : définition. En dimension finie, dimension d'un espace produit.
- 2. Sommes, sommes directes de n sous espaces vectoriels. $\sum_{i=1}^{n} E_i$ est le plus petit sous ev de E contenant chacun des E_i .

Toute famille obtenue par concaténation d'une famille génératrice de chacun des E_i est une famille génératrice de $\sum_{i=1}^{n} E_i$.

Caractérisation des sommes directes :

- La somme $\sum_{i=1}^{n} E_i$ est directe ssi une famille obtenue par concaténation d'une base de chacun des E_i est une base de la somme. On peut remplacer « une » par « toute ». Base adaptée à une décomposition en somme directe.
- La somme $\sum_{i=1}^{n} E_i$ est directe si et seulement si : $\forall (x_1,...,x_n) \in \prod_{i=1}^{n} E_i$, $\sum_{i=1}^{n} x_i = 0 \Rightarrow x_1 = ... = x_n = 0$.
- Lorsque les E_i sont de dimension finie : $\dim \left(\sum_{i=1}^n E_i\right) \leq \sum_{i=1}^n \dim \left(E_i\right)$, et les E_i sont en somme directe si et seulement si $\dim \left(\sum_{i=1}^n E_i\right) = \sum_{i=1}^n \dim \left(E_i\right)$.

On rappelle que, pour n > 2, le fait que l'intersection des E_i soit réduite à $\{0\}$, ou que les intersections deux à deux soient réduites à $\{0\}$, ne prouve pas que la somme $\sum_{i=1}^{n} E_i$ est directe.

- 3. Sous –espaces stables. Endomorphismes induits. Trigonalisation par blocs.
- **4.** Polynômes interpolateurs de Lagrange : définition, basicité, écriture d'un polynôme dans une base de Lagrange, cas particulier du polynôme constant égal à 1 . Lien avec les matrices de Vandermonde.
- **5.** Polynômes d'endomorphismes ou de matrices carrées. Polynômes annulateurs. En dimension finie, existence de polynômes annulateurs (non nuls).

Calculs de déterminants

Révisions de première année essentiellement. Points nouveaux :

- 1. Les déterminants de Vandermonde.
- 2. Les déterminants triangulaires par blocs.
- 3. Polynôme caractéristique : définition, premières propriétés (degré, coefficients de degré 0, 1, n-1, cas de matrices triangulaires ; polynôme caractéristique d'une transposée, de matrices semblables).

Réduction (chapitre incomplet)

I ÉLÉMENTS PROPRES D'UN ENDOMORPHISME OU D'UNE MATRICE CARRÉE

- 1. Définitions
- 2. Premières propriétés
- 3. En dimension finie, liens entre éléments propres d'un endomorphisme et ceux de sa matrice relativement à une base.

II DIAGONALISATION

1. Diagonalisablité

Définition d'une matrice diagonalisable, d'un endomorphisme diagonalisable (en dimension finie).

Un endomorphisme f est diagonalisable ssi il existe une base de l'espace formée de vecteurs propres de f; traduction matricielle de ce résultat.

2. Théorème fondamental

Les sous – espaces propres sont en somme directe.

3. Corollaires

- Toute famille obtenue par concaténation de bases (de familles libres) de sous espaces propres associés à des valeurs propres deux à deux distinctes, est libre.
- En dimension finie n, un endomorphisme admet au plus n valeurs propres, et la somme des dimensions des sous espaces propres est inférieure ou égale à n.
- En dimension finie, l'endomorphisme f de E est diagonalisable ssi $\bigoplus_{\lambda \in \operatorname{Spec}(f)} E_{\lambda}(f) = E$, ou

encore ssi
$$\sum_{\lambda \in \text{Spec}(f)} \dim (E_{\lambda}(f)) = \dim (E).$$

Cas particuliers: En dimension n, tout endomorphisme ayant n valeurs propres distinctes est diagonalisable, et ses sous — espaces propres sont de dimension 1. Un endomorphisme ayant une unique valeur propre distinctes n'est pas diagonalisable, sauf si c'est une homothétie.

Traductions matricielles.

4. Quelques aspects matriciels

Valeurs propres d'une matrice triangulaire

III POLYNÔME CARACTÉRISTIQUE

1. Définition (rappel)

Polynôme caractéristique d'une matrice carrée, d'un endomorphisme en dimension finie.

Le polynôme caractéristique d'un endomorphisme est égal à celui de sa matrice relativement à toute base de l'espace.

Conséquence : deux matrices semblables ont même polynôme caractéristique (réciproque fausse).

2. Spectre, et racines du polynôme caractéristique

Les valeurs propres sont les racines du polynôme caractéristique.

Définition de l'ordre de multiplicité d'une valeur propre. La dimension d'un sous – espace propre est inférieure ou égale à la multiplicité de la valeur propre correspondante (provisoirement admis). Cas des valeurs propres simples.

3. Quelques propriétés du polynôme caractéristique (rappels)

En dimension n: degré, coefficients de degré 0, n et n-1. Exemple de la dimension 2.

4. Polynômes caractéristiques scindés

Cas d'un polynôme caractéristique scindé à racines simples.

Un endomorphisme en dimension finie est diagonalisable ssi son polynôme caractéristique est scindé, et la dimension de tout sous – espace propre est égale à l'ordre de multiplicité de la valeur propre correspondante.

Matrice carrée trigonalisable ; en dimension finie, endomorphisme trigonalisable. La matrice carrée (resp.,

l'endomorphisme) est trigonalisable si et seulement si son polynôme caractéristique est scindé.

Démonstrations à connaître (liste non exhaustive) :

• Pour E_1 , ..., E_n sev de E: La somme $\sum_{i=1}^n E_i$ est directe si et seulement si :

$$\forall (x_1,...,x_n) \in \prod_{i=1}^n E_i, \sum_{i=1}^n x_i = 0 \Rightarrow x_1 = ... = x_n = 0.$$

• Pour E_1 , ..., E_n sev de dimension finie de E: $\dim \left(\sum_{i=1}^n E_i\right) \leq \sum_{i=1}^n \dim \left(E_i\right)$, et les E_i

sont en somme directe si et seulement si $\dim \left(\sum_{i=1}^{n} E_{i}\right) = \sum_{i=1}^{n} \dim \left(E_{i}\right)$.

- Polynômes interpolateurs de Lagrange : définition, basicité, écriture d'un polynôme dans une base de Lagrange,
 cas particulier du polynôme constant égal à 1.
- Polynômes d'endomorphismes ou de matrices carrées. Polynômes annulateurs. En dimension finie, existence de polynômes annulateurs (non nuls).
- Déterminants de Vandermonde (démonstration à connaître).
- Déterminants triangulaires par blocs (idem).
- Les sous espaces propres d'un endomorphisme sont en somme directe.

La semaine d'après

Réduction (chapitre au complet).