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Ce sujet en trois parties étudie la convergence des polynomes d’interpolation de Lagrange
sous différentes hypotheses et aborde le phénomene de Runge.

La partie I est consacrée a I’étude de deux familles de polynomes, les polynomes de Lagrange
et les polynomes de Tchebychev.

La partie II donne des résultats généraux de convergence des polynomes d’interpolation de
Lagrange pour des fonctions de classe C™ ; elle utilise également quelques résultats de la partie
L.

Enfin la partie III présente le phénomene de Runge. Elle s’appuie sur les sous-parties II1.A
et I11.B, qui portent sur une intégrale généralisée et sont indépendantes des parties I et 1I.

Notations

Si k1 et ko sont deux entiers tels que k; < ko, on note [k, ko] 'ensemble des entiers k tels
que k; < k < ky. Pour tout réel x, on note |x] la partie entiere de x.

Pour n € N, on note R,[X] I'espace vectoriel des polynomes a coefficients dans R de degré
inférieur ou égal a n.

I. Etude de deux familles de polynomes

Soit n € N* et (ay,...,a,) une famille de n réels deux a deux distincts.
Pour tout ¢ dans [1,n], on note L; le polynéme de degré n — 1 défini par

n

(L1) LX) =[[ 2%

i a; — Clj
J#i

On dit que L4, ..., L, sont les polynomes de Lagrange associés a aq, ..., ay,.

I.A - Polynomes de Lagrange
On définit 'application

R, 1[X] x Ro1[X] — R
A (P,Q) — > Plan)Q(a)

Q1. Montrer que (-, ) est un produit scalaire sur R, _1[X].
Q2. Montrer que, pour tout ¢ et k dans [1,n],

Li(ak):{l sik=1

0 sinon
Q3. Montrer que, pour tout i € [1,n] et tout P € R,,_1[X],

Q4. Montrer que la famille (Ly,...,L,) est une base orthonormée de R,,_1[X] muni du
produit scalaire (-, -).

Q5. En déduire que, pour tout P € R,,_[X],

i=1
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Q6. Montrer que, pour tout polynome P de degré inférieur ou égal a n — 2,

n

>
= (e - a)
7=1
J#
I.B - Polynémes de Tchebychev
Soit n € N*. On pose

[n/2] n
To(X) =) (=1 (Qp) X" (1 — X2,

Q7. En développant (1 + x)™ pour deux réels x bien choisis, montrer que

[n/2] n
> (g) =2
2p

p=0
Q8. Montrer que T, est un polynome de degré n. Expliciter le coefficient dominant de T},.

Q9. Montrer que T;, est 'unique polynome a coefficients réels vérifiant la relation
Vo € R, T, (cos(f)) = cos(nd).

2k —1)m

Q10. Pour k € [1,n], on pose yy,,, = cos (( 5 > Montrer que
n

n

To(X) =2 [T(X = )

I.C - Soit n € N* et W un polynome unitaire de degré n. L’objectif de cette sous-partie est
de montrer que

(L.2) sup W ()| >

z€[-1,1] 2n—1
puis d’étudier dans quel cas il y a égalité.
Q11. Montrer que sup |7T,(z)| = 1. En déduire un polynéme unitaire de degré n réalisant

z€[—1,1]
le cas d’égalité dans (1.2).

1 k
On pose Q = FTR — W et, pour tout k € [0,n], zx = cos <_7r)
n- n

Q12. Montrer que @) est un polynome de degré inférieur ou égal a n — 1.

Q13. Dans cette question, on montre (1.2) par I'absurde.

1
— Si on suppose que sup |W(z)| < ——, montrer que, pour tout k € [0,n — 1],

ze[—1,1] 2n—1’
Q(z1r)Q(2p41) < 0.
— En déduire une contradiction et conclure.

1
On suppose maintenant que sup |W(z)| = S
z€[—1,1]




Q14. Montrer que, pour tout k € [0,n],
Q(Zk)

[T —2)

7=0
Gk

= 0.

1
Q15. En déduire que Q = 0, puis que W = FTH.

On pourra considérer la somme des inégalités de la question précédente et exploiter la
question 6 appliquée a des données convenables.

II. Interpolation et convergence des polynémes d’interpolation pour
une fonction de classe C*™

II.A - Interpolation d’une fonction de classe C"
Dans cette sous-partie, n est un entier naturel non nul et I est un segment [a,b] ot a < b.
On considere n nombres réels distincts a1 < --- < a,, de 1.
On note Ly, ..., L, les polynomes de Lagrange associés a ay,...,a, définis par (I.1) et on
n

note W = H(X —a;).
i=1

Pour toute fonction f définie sur I, le polynome
(IL1) 0(f) =) fla)L;
i=1

est I'unique polynome P € R, _1[X] tel que P(a;) = f(a;) pour tout ¢ € [1,n]. On 'appelle
polynome interpolateur de Lagrange de f associé a ay, ..., a,.

Q16. Soit r une fonction a valeurs réelles de classe C" sur I et s’annulant en n + 1 points
distincts de I. Montrer qu'il existe ¢ € I tel que r™(c) = 0.

Q17. Soit f une fonction a valeurs réelles de C" sur I. Soit P = II( f) le polynéme interpolateur
de f associé aux réels ay,...,a, comme défini en (I.1) ci-dessus. Pour tout = € I,
montrer qu’il existe ¢ € I tel que

Pour x distinct des a;, on pourra considérer la fonction r définie sur I par
r(t) = f(t) = P(t) - KW(t)
ou le réel K est choisi de facon que r(z) = 0.
Q18. En déduire que

M, (b—a)"
sup | (z) — Pa)] < Mzlb=0)"
z€[a,b] n:

ot M, = sup |f™(x)|.
z€[a,b]
II.B - Suites de polynémes interpolateurs
On considere encore un segment I et une fonction f définie sur /.
De plus, pour tout entier naturel non nul n, on suppose donnés des réels distincts a;, <
-+ < Qpy de I et on considere P, = I1,,(f) le polynome interpolateur de Lagrange de f associé
a ces réels aj p, ..., G p.



En notant Ly, Loy, ..., Ly, les polynomes de Lagrange associés a ajp, ..., a,, on a donc
(I1.2) I.(f) =Y fain)Lin
i=1

et IL,(f) est 'unique polynéme P, € R,,_;[X] tel que P,(a;,) = f(a;,) pour tout i € [1,n].
On s’intéresse a la convergence uniforme sur [ vers f de la suite de polynémes (II,,(f)) pour
divers exemples de fonctions C*.

I1.B.1) Convergence uniforme vers la fonction exponentielle
Dans cette section, I = [a,b], ol a < b, et f est la restriction a I de la fonction exponentielle :

Ve el, f(z) = exp(z).
Pour tout n € N*, on considere P, = II,(f) le polynéme interpolateur comme défini par
(I1.2).
Q19. Montrer que la suite (P,),en+ converge uniformément vers f sur /.

Q20. Montrer qu’il existe une suite de polynomes (@ )nen+ qui converge uniformément vers
f sur I et telle que, pour tout n € N*, la fonction @),, ne coincide avec f en aucun point
de I, sauf peut-étre en zéro :

Vn e N*, Ve elI~{0}, Qn.(x)+#exp(x)

I1.B.2) Convergence uniforme vers une fonction rationnelle

Dans cette section, a est un réel strictement positif et I = [—a, a]. Soit
R - R
: 1
/ x
1+ a?

T
Q21. Montrer que f est de classe C*™ et que, pour tout k dans N et tout t € ]—5, 5 [,

f® (tant) = k! cos"™ () cos ((k + 1)t + k;) :

Pour tout n € N*, on considere P, = II,,(f) le polynéme interpolateur de f sur I défini par

(I1.2).

1
Q22. Montrer que, si a < 27 la suite de polynémes (P, ),en+ converge uniformément vers f
sur [—a, al
I1.B.3) Cas de la somme d’une série entiére
Soit Z ¢,z une série entiere de rayon de convergence R > 0. On pose,

k>0
+00 400
Vo] -RR[ fl@)=) i’ et Voe]-11 gla)=> a"
k=0 k=0
Q23. Montrer que g est de classe C* sur | — 1, 1] et que
1l
j - G) () — J:
VieN, Vexe]-1,1] gV (z) = T

Q24. Soit r € ]0, R[. Montrer qu’il existe C' € R tel que

C
r



Q25. En déduire que pour tout = € | — r,r[ et pour tout n € N,

IrC
|f (SL’)| = (7"— |x|)n+1'

R
Q26. On suppose que a < 3 Montrer que la suite de polynomes (P,)nens = (IL,(f))nent

converge uniformément vers f sur [—a, al.

I1.B.4) Interpolation aux points de Tchebychev

Cette section reprend 'étude des deux sections précédentes dans le cas de points d’inter-
polation particuliers, liés aux racines des polynomes de Tchebychev. On considere a > 0 et
I =[—a,al.

Pour tout n € N*, les points de Tchebychev d’ordre n dans I sont :

2k —1
ajy, = a cos ((2—)7T> , pour k € [1,n].
’ n

On pose W} (X) = H(X —ap,)
k=1
Si f est une fonction définie sur I et si n € N*, on définit comme au (II.2) le polynome
interpolateur P! = II*(f) de f aux points de Tchebychev d’ordre n.
C’est 'unique polynome Py € R, 1[X] tel que P;(aj,,) = f(aj,) pour tout k € [1,n].

Q27. Pour tout = € [—a, a|, montrer que |W*(x)| < 2 (g) :
Q28. On reprend dans cette question la fonction f étudiée dans la section 11.B.2 :

uniformément vers f sur [—a,al.

pour x € R. Montrer que, si a < 2, la suite (I’ (f))nen+ converge

Q29. On reprend dans cette question la fonction f somme de série entiere étudiée dans la

2R
section II.B.3. Montrer que, si a < 5 la suite (IT}(f))nen+ converge uniformément

vers f sur [—a,al.

I1I. Phénomeéne de Runge

III.A - Etude d’une intégrale généralisée

— 2
Pour tout réel a > 0, on considere la fonction hy : t — In| —— ] .
a? 4 t?

Q30. Montrer que h, est une fonction continue décroissante intégrable sur [0, 1].

1
On pose J, = / ha(t) dt.
0

1 1 1
Q31. Justifier que J, = / In(1 —¢)dt + / In(1+¢)dt — / In(a? + t?) dt
0, Jo 0
= / In(u) du — / In(a? + %) dt.
0 0

1
Q32. En déduire que J, = 2In(2) — In(1 + a?) — 2« arctan (—)
a

Q33. Montrer qu'il existe v > 0 tel que, pour tout « € ]0,7[, J, > 0.
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II1.B - Application a une somme de Riemann

Pour tout n € N*, on considere dans ]0, 1[ les points ay,, donnés, pour k € [0,n —
2k +1
Ap = et on pose
n—1
1 1 1 3 2n — 1
nha:_ ha n) — — ha o ha o ha .
Sn(ha) n = (a10) n< (2n)+ (2n)+ i < 2n >>

Q34. Pour tout n € N*, montrer que

/2n n 2n /2n

Q35. En déduire que la suite (S, (ha))nens converge vers J,.

1—a2
Q36. Montrer que, pour « € |0, 7|, la suite ( H 5 kg’n > diverge vers +o00.
o ac+ag ., e
II1.C - Le phénomene de Runge
Dans cette sous-partie I = [—1,1] et & > 0. On considere
-1,1] — R
: 1
|

a? + x?

On reprend les points ay, définis dans la sous-partie III.B :

2k +1
Vne N, Vke[o,n—1], a= 2+ .
n
On note, pour n € N*, R, € Ry, _1[X] le polynéme interpolateur de f, aux 2n réels
{xarn, € I| ke [0,n—1]}. Autrement dit R,, est 'unique polynéome de degré au plus
qu coincide avec f, aux points
2n—1 2n-3 3 1 1 3 2n—3 2n—1

on 7 2n 77 20’ 272020’ 2n 7 2n
On pose Q,(X) =1— (X? + a?)R,(X).
Q37. Montrer que R, est un polynéme pair et déterminer @, (ai).
Q38. Montrer qu’il existe A, € R tel que

Voe =11, Qul@) =\ ][[G*—ai,).

Q39. En déduire que, pour tout x € [—1, 1],

(-1 Y 1—a,

2 2H 2 2 -
i+ at At tag,

Jo(x) = Bp(x) =

Q40. On suppose que a < . Montrer que
lim |f,(1) — R.(1)] = +o0.

n—-+4o0o

1], par

(2n—1)/2n 1 m—1 1 1 (2n—1)/2n
/ ha(t) dt + ~ha ( - ) < Sn(ha) < ~ha ( ) +/ ha(t) dt.
1 n 2 n 1

2n —1



