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Ce sujet en trois parties étudie la convergence des polynômes d’interpolation de Lagrange
sous différentes hypothèses et aborde le phénomène de Runge.

La partie I est consacrée à l’étude de deux familles de polynômes, les polynômes de Lagrange
et les polynômes de Tchebychev.

La partie II donne des résultats généraux de convergence des polynômes d’interpolation de
Lagrange pour des fonctions de classe C∞ ; elle utilise également quelques résultats de la partie
I.

Enfin la partie III présente le phénomène de Runge. Elle s’appuie sur les sous-parties III.A
et III.B, qui portent sur une intégrale généralisée et sont indépendantes des parties I et II.

Notations
Si k1 et k2 sont deux entiers tels que k1 ⩽ k2, on note [[k1, k2]] l’ensemble des entiers k tels

que k1 ⩽ k ⩽ k2. Pour tout réel x, on note ⌊x⌋ la partie entière de x.
Pour n ∈ N, on note Rn[X] l’espace vectoriel des polynômes à coefficients dans R de degré

inférieur ou égal à n.

I. Étude de deux familles de polynômes

Soit n ∈ N∗ et (a1, . . . , an) une famille de n réels deux à deux distincts.
Pour tout i dans [[1, n]], on note Li le polynôme de degré n− 1 défini par

(I.1) Li(X) =
n∏

j=1
j ̸=i

X − aj
ai − aj

.

On dit que L1, . . . , Ln sont les polynômes de Lagrange associés à a1, . . . , an.

I.A - Polynômes de Lagrange
On définit l’application

⟨·, ·⟩ :

∣∣∣∣∣∣∣
Rn−1[X]× Rn−1[X] −→ R

(P,Q) 7−→
n∑

k=1

P (ak)Q(ak)

Q1. Montrer que ⟨·, ·⟩ est un produit scalaire sur Rn−1[X].

Q2. Montrer que, pour tout i et k dans [[1, n]],

Li(ak) =

{
1 si k = i
0 sinon

Q3. Montrer que, pour tout i ∈ [[1, n]] et tout P ∈ Rn−1[X],

⟨Li, P ⟩ = P (ai).

Q4. Montrer que la famille (L1, . . . , Ln) est une base orthonormée de Rn−1[X] muni du
produit scalaire ⟨·, ·⟩.

Q5. En déduire que, pour tout P ∈ Rn−1[X],

P =
n∑

i=1

P (ai)Li.
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Q6. Montrer que, pour tout polynôme P de degré inférieur ou égal à n− 2,

n∑
i=1

P (ai)
n∏

j=1
j ̸=i

(ai − aj)

= 0.

I.B - Polynômes de Tchebychev
Soit n ∈ N∗. On pose

Tn(X) =

⌊n/2⌋∑
p=0

(−1)p
(
n

2p

)
Xn−2p(1−X2)p.

Q7. En développant (1 + x)n pour deux réels x bien choisis, montrer que

⌊n/2⌋∑
p=0

(
n

2p

)
= 2n−1.

Q8. Montrer que Tn est un polynôme de degré n. Expliciter le coefficient dominant de Tn.

Q9. Montrer que Tn est l’unique polynôme à coefficients réels vérifiant la relation

∀θ ∈ R, Tn(cos(θ)) = cos(nθ).

Q10. Pour k ∈ [[1, n]], on pose yk,n = cos

(
(2k − 1)π

2n

)
. Montrer que

Tn(X) = 2n−1

n∏
k=1

(X − yk,n)

I.C - Soit n ∈ N∗ et W un polynôme unitaire de degré n. L’objectif de cette sous-partie est
de montrer que

(I.2) sup
x∈[−1,1]

|W (x)| ⩾ 1

2n−1

puis d’étudier dans quel cas il y a égalité.

Q11. Montrer que sup
x∈[−1,1]

|Tn(x)| = 1. En déduire un polynôme unitaire de degré n réalisant

le cas d’égalité dans (I.2).

On pose Q =
1

2n−1
Tn −W et, pour tout k ∈ [[0, n]], zk = cos

(
kπ

n

)
.

Q12. Montrer que Q est un polynôme de degré inférieur ou égal à n− 1.

Q13. Dans cette question, on montre (I.2) par l’absurde.

— Si on suppose que sup
x∈[−1,1]

|W (x)| < 1

2n−1
, montrer que, pour tout k ∈ [[0, n − 1]],

Q(zk)Q(zk+1) < 0.

— En déduire une contradiction et conclure.

On suppose maintenant que sup
x∈[−1,1]

|W (x)| = 1

2n−1
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Q14. Montrer que, pour tout k ∈ [[0, n]],

Q(zk)
n∏

j=0
j ̸=k

(zk − zj)

⩾ 0.

Q15. En déduire que Q = 0, puis que W =
1

2n−1
Tn.

On pourra considérer la somme des inégalités de la question précédente et exploiter la
question 6 appliquée à des données convenables.

II. Interpolation et convergence des polynômes d’interpolation pour
une fonction de classe C∞

II.A - Interpolation d’une fonction de classe Cn

Dans cette sous-partie, n est un entier naturel non nul et I est un segment [a, b] où a < b.
On considère n nombres réels distincts a1 < · · · < an de I.

On note L1, . . . , Ln les polynômes de Lagrange associés à a1, . . . , an définis par (I.1) et on

note W =
n∏

i=1

(X − ai).

Pour toute fonction f définie sur I, le polynôme

(II.1) Π(f) =
n∑

i=1

f(ai)Li

est l’unique polynôme P ∈ Rn−1[X] tel que P (ai) = f(ai) pour tout i ∈ [[1, n]]. On l’appelle
polynôme interpolateur de Lagrange de f associé à a1, . . . , an.

Q16. Soit r une fonction à valeurs réelles de classe Cn sur I et s’annulant en n + 1 points
distincts de I. Montrer qu’il existe c ∈ I tel que r(n)(c) = 0.

Q17. Soit f une fonction à valeurs réelles de Cn sur I. Soit P = Π(f) le polynôme interpolateur
de f associé aux réels a1, . . . , an comme défini en (II.1) ci-dessus. Pour tout x ∈ I,
montrer qu’il existe c ∈ I tel que

f(x)− P (x) =
f (n)(c)

n!
W (x).

Pour x distinct des ai, on pourra considérer la fonction r définie sur I par

r(t) = f(t)− P (t)−KW (t)

où le réel K est choisi de façon que r(x) = 0.

Q18. En déduire que

sup
x∈[a,b]

|f(x)− P (x)| ⩽ Mn (b− a)n

n!

où Mn = sup
x∈[a,b]

|f (n)(x)|.

II.B - Suites de polynômes interpolateurs
On considère encore un segment I et une fonction f définie sur I.
De plus, pour tout entier naturel non nul n, on suppose donnés des réels distincts a1,n <

· · · < an,n de I et on considère Pn = Πn(f) le polynôme interpolateur de Lagrange de f associé
à ces réels a1,n, . . . , an,n.
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En notant L1,n, L2,n, . . . , Ln,n les polynômes de Lagrange associés à a1,n, . . . , an,n on a donc

(II.2) Πn(f) =
n∑

i=1

f(ai,n)Li,n

et Πn(f) est l’unique polynôme Pn ∈ Rn−1[X] tel que Pn(ai,n) = f(ai,n) pour tout i ∈ [[1, n]].
On s’intéresse à la convergence uniforme sur I vers f de la suite de polynômes (Πn(f)) pour

divers exemples de fonctions C∞.

II.B.1) Convergence uniforme vers la fonction exponentielle
Dans cette section, I = [a, b], où a < b, et f est la restriction à I de la fonction exponentielle :

∀x ∈ I, f(x) = exp(x).

Pour tout n ∈ N∗, on considère Pn = Πn(f) le polynôme interpolateur comme défini par
(II.2).

Q19. Montrer que la suite (Pn)n∈N∗ converge uniformément vers f sur I.

Q20. Montrer qu’il existe une suite de polynômes (Qn)n∈N∗ qui converge uniformément vers
f sur I et telle que, pour tout n ∈ N∗, la fonction Qn ne cöıncide avec f en aucun point
de I, sauf peut-être en zéro :

∀n ∈ N∗, ∀x ∈ I ∖ {0}, Qn(x) ̸= exp(x)

II.B.2) Convergence uniforme vers une fonction rationnelle
Dans cette section, a est un réel strictement positif et I = [−a, a]. Soit

f :

∣∣∣∣∣ R → R
x 7→ 1

1 + x2

Q21. Montrer que f est de classe C∞ et que, pour tout k dans N et tout t ∈
]
−π

2
,
π

2

[
,

f (k)(tan t) = k! cosk+1(t) cos

(
(k + 1)t+

kπ

2

)
.

Pour tout n ∈ N∗, on considère Pn = Πn(f) le polynôme interpolateur de f sur I défini par
(II.2).

Q22. Montrer que, si a <
1

2
, la suite de polynômes (Pn)n∈N∗ converge uniformément vers f

sur [−a, a]

II.B.3) Cas de la somme d’une série entière

Soit
∑
k⩾0

ckx
k une série entière de rayon de convergence R > 0. On pose,

∀x ∈ ]−R,R[, f(x) =
+∞∑
k=0

ckx
k et ∀x ∈ ]− 1, 1[, g(x) =

+∞∑
k=0

xk.

Q23. Montrer que g est de classe C∞ sur ]− 1, 1[ et que

∀j ∈ N, ∀x ∈ ]− 1, 1[, g(j)(x) =
j!

(1− x)j+1
.

Q24. Soit r ∈ ]0, R[. Montrer qu’il existe C ∈ R tel que

∀k ∈ N, |ck| ⩽
C

rk
.
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Q25. En déduire que pour tout x ∈ ]− r, r[ et pour tout n ∈ N,

|f (n)(x)| ⩽ n! r C

(r − |x|)n+1
.

Q26. On suppose que a <
R

3
. Montrer que la suite de polynômes (Pn)n∈N∗ = (Πn(f))n∈N∗

converge uniformément vers f sur [−a, a].

II.B.4) Interpolation aux points de Tchebychev
Cette section reprend l’étude des deux sections précédentes dans le cas de points d’inter-

polation particuliers, liés aux racines des polynômes de Tchebychev. On considère a > 0 et
I = [−a, a].

Pour tout n ∈ N∗, les points de Tchebychev d’ordre n dans I sont :

a∗k,n = a cos

(
(2k − 1)π

2n

)
, pour k ∈ [[1, n]].

On pose W ∗
n(X) =

n∏
k=1

(X − a∗k,n).

Si f est une fonction définie sur I et si n ∈ N∗, on définit comme au (II.2) le polynôme
interpolateur P ∗

n = Π∗
n(f) de f aux points de Tchebychev d’ordre n.

C’est l’unique polynôme P ∗
n ∈ Rn−1[X] tel que P ∗

n(a
∗
k,n) = f(a∗k,n) pour tout k ∈ [[1, n]].

Q27. Pour tout x ∈ [−a, a], montrer que |W ∗
n(x)| ⩽ 2

(a
2

)n
.

Q28. On reprend dans cette question la fonction f étudiée dans la section II.B.2 :

f(x) =
1

1 + x2
pour x ∈ R. Montrer que, si a < 2, la suite (Π∗

n(f))n∈N∗ converge

uniformément vers f sur [−a, a].

Q29. On reprend dans cette question la fonction f somme de série entière étudiée dans la

section II.B.3. Montrer que, si a <
2R

3
, la suite (Π∗

n(f))n∈N∗ converge uniformément

vers f sur [−a, a].

III. Phénomène de Runge

III.A - Étude d’une intégrale généralisée

Pour tout réel α > 0, on considère la fonction hα : t 7→ ln

(
1− t2

α2 + t2

)
.

Q30. Montrer que hα est une fonction continue décroissante intégrable sur [0, 1[.

On pose Jα =

∫ 1

0

hα(t) dt.

Q31. Justifier que Jα =

∫ 1

0

ln(1− t) dt+

∫ 1

0

ln(1 + t) dt−
∫ 1

0

ln(α2 + t2) dt

=

∫ 2

0

ln(u) du−
∫ 1

0

ln(α2 + t2) dt.

Q32. En déduire que Jα = 2 ln(2)− ln(1 + α2)− 2α arctan

(
1

α

)
.

Q33. Montrer qu’il existe γ > 0 tel que, pour tout α ∈ ]0, γ[, Jα > 0.
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III.B - Application à une somme de Riemann
Pour tout n ∈ N∗, on considère dans ]0, 1[ les points ak,n donnés, pour k ∈ [[0, n − 1]], par

ak,n =
2k + 1

2n
et on pose

Sn(hα) =
1

n

n−1∑
k=0

hα(ak,n) =
1

n

(
hα

(
1

2n

)
+ hα

(
3

2n

)
+ · · ·+ hα

(
2n− 1

2n

))
.

Q34. Pour tout n ∈ N∗, montrer que∫ (2n−1)/2n

1/2n

hα(t) dt+
1

n
hα

(
2n− 1

2n

)
⩽ Sn(hα) ⩽

1

n
hα

(
1

2n

)
+

∫ (2n−1)/2n

1/2n

hα(t) dt.

Q35. En déduire que la suite (Sn(hα))n∈N∗ converge vers Jα.

Q36. Montrer que, pour α ∈ ]0, γ[, la suite

(∣∣∣∣∣
n−1∏
k=0

1− a2k,n
α2 + a2k,n

∣∣∣∣∣
)

n∈N∗

diverge vers +∞.

III.C - Le phénomène de Runge
Dans cette sous-partie I = [−1, 1] et α > 0. On considère

fα :

∣∣∣∣∣ [−1, 1] → R
x 7→ 1

α2 + x2

On reprend les points ak,n définis dans la sous-partie III.B :

∀n ∈ N∗, ∀k ∈ [[0, n− 1]], ak =
2k + 1

2n
.

On note, pour n ∈ N∗, Rn ∈ R2n−1[X] le polynôme interpolateur de fα aux 2n réels
{±ak,n ∈ I | k ∈ [[0, n− 1]]}. Autrement dit Rn est l’unique polynôme de degré au plus 2n− 1
qu cöıncide avec fα aux points

−2n− 1

2n
,−2n− 3

2n
, . . . ,− 3

2n
,− 1

2n
,
1

2n
,
3

2n
, . . .

2n− 3

2n
,
2n− 1

2n
.

On pose Qn(X) = 1− (X2 + α2)Rn(X).

Q37. Montrer que Rn est un polynôme pair et déterminer Qn(αi).

Q38. Montrer qu’il existe λn ∈ R tel que

∀x ∈ [−1, 1], Qn(x) = λn

n−1∏
k=0

(x2 − a2k,n).

Q39. En déduire que, pour tout x ∈ [−1, 1],

fα(x)−Rn(x) =
(−1)n

x2 + α2

n−1∏
k=0

1− a2k,n
α2 + a2k,n

.

Q40. On suppose que α < γ. Montrer que

lim
n→+∞

|fα(1)−Rn(1)| = +∞.
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