
PC Lakanal

DM4 soft - problème I

Ce problème comporte 3 parties indépendantes.

Notations et définitions

— N désigne l’ensemble des entiers naturels, N∗ désigne l’ensemble des entiers naturels non nuls.
— R désigne l’ensemble des nombres réels.
— R[X] désigne le R-espace vectoriel des polynômes à coefficients réels et, pour tout entier n ∈ N,

Rn[X] le R-espace vectoriel des polynômes à coefficients réels et de degré inférieur ou égal à n.
— Si n1 et n2 sont deux entiers naturels, on note [[n1, n2]] l’ensemble des entiers naturels compris (au

sens large) entre n1 et n2.

Objectifs

On s’intéresse dans ce problème à l’équation différentielle x2y′′+axy′+ by = 0. La partie I est une partie
d’algèbre qui traite des solutions polynomiales de cette équations lorsque a et b sont des constantes réelles.
Dans la partie II, on détermine l’ensemble des solutions de l’équation lorsque a et b sont des constantes
réelles. La partie III traite des solutions de cette équation lorsque a = 1 et b est la fonction carré.

On admet le résultat suivant (théorème de Cauchy) : soient u, v, w trois fonctions continues sur un
intervalle ouvert I de R. Soit t0 un point de I, et α, β deux réels. Alors, il existe une une fonction y
solution sur I du problème de Cauchy

∀t ∈ I, y′′(t0) + u(t)y′(t) + w(t)y(t) = w(t)
y(t0) = α, y′(t0) = β

Partie I - Endomorphismes

Dans toute cette partie, n désigne un entier naturel non nul et a et b des constantes réelles.

Q1. On note ∆ l’endomorphisme de R[X] défini par :

∀ P ∈ R[X] , ∆(P ) = XP ′.

Calculer ∆(Xk) pour tout k ∈ J0;nK.

Q2. Montrer que pour tout P ∈ R[X], X2P ′′ = ∆◦(∆−Id)(P ), où Id désigne l’endomorphisme identité
sur R[X].

Q3. Montrer que si P ∈ Rn[X], alors ∆(P ) ∈ Rn[X].

On notera ∆n l’endomorphisme de Rn[X] induit par ∆.

Q4. Déterminer la matrice de ∆n dans la base canonique (1, X, . . . ,Xn) de Rn[X].

Q5. On définit l’application Φ par :

∀ P ∈ R[X], Φ(P ) = X2P ′′ + aXP ′.

Montrer que Φ = ∆2 + (a− 1)∆ et en déduire que Φ définit un endomorphisme de R[X].
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Q6. Montrer que Φ induit un endomorphisme Φn de Rn[X].

Q7. Montrer que Φn est diagonalisable.

On considère l’endomorphisme φ de R[X] défini par :

∀ P ∈ R[X], φ(P ) = X2P ′′ + aXP ′ + bP.

Q8. Montrer que φ induit un endomorphisme de Rn[X], endomorphisme que l’on notera φn.

Exprimer φn en fonction de ∆n.

Q9. Exprimer la matrice de φn dans la base canonique de Rn[X].

On considère l’équation :
s2 + (a− 1)s+ b = 0. (1)

Q10. Expliciter le noyau de φn lorsque l’équation (1) admet deux racines entières distinctes m1, m2 dans
J0;nK.

Q11. Expliciter le noyau de φn lorsque l’équation (1) admet une unique racine entière m ∈ J0;nK.

Q12. Déterminer le noyau de φ. En déduire qu’il est de dimension finie et déterminer sa dimension.

Partie II - Une équation différentielle

On considère dans cette partie l’équation différentielle

x2y′′ + axy′ + by = 0, (2)

où a et b sont des constantes réelles.

Q13. Que déduit-on du théorème de Cauchy quant à la structure de l’ensemble des solutions de l’équation (2)
sur I =]0,+∞[ ? Et sur J =]−∞, 0[ ?

Q14. Montrer que si y est une solution de (2) sur I, alors g = y ◦exp est une solution sur R de l’équation
différentielle linéaire à coefficients constants :

u′′ + (a− 1)u′ + bu = 0. (3)

Q15. Réciproquement, soit t 7−→ g(t) une solution de (3) sur R. Montrer que la fonction g ◦ ln est
solution de (2) sur I.

Q16. Donner les solutions à valeurs réelles de l’équation (3) dans le cas où a = 3 et b = 1 et dans le cas
où a = 1 et b = 4. En déduire, dans chacun des cas, les solutions à valeurs réelles de l’équation (2)
sur l’intervalle I.

On suppose dans les deux questions suivantes uniquement que a = 1 et b = −4.

Q17. Montrer que si y est solution de (2) sur J , alors h = y ◦ (− exp) est solution de (3) sur R.
Q18. Déduire de ce qui précède l’ensemble des solutions de (2) de classe C2 sur R.

Partie III - Une équation de Bessel

On se propose dans cette partie d’étudier l’équation différentielle :

x2y′′ + xy′ + x2y = 0. (4)

Q19. Rappeler la définition du rayon de convergence d’une série entière.
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Série entière dont la somme est solution de (4).

On suppose qu’il existe une série entière
∑
k⩾0

ckx
k, avec c0 = 1, de rayon de convergence R non nul et

dont la fonction somme J0 est solution de (4) sur ]−R,R[.

Q20. Montrer que pour tout k ∈ N, on a :
c2k+1 = 0

c2k =
(−1)k

4k (k!)2
.

Q21. Déterminer le rayon de convergence de la série entière
∑
k⩾0

ckx
k.

Q22. Soient r > 0 et f une autre solution de (4) sur ]0, r[. Montrer que si (J0, f) est liée dans l’espace
vectoriel des fonctions de classe C2 sur ]0, r[, alors f est bornée au voisinage de 0.

Inverse d’une série entière non nulle en 0

Soit
∑
k⩾0

αkx
k une série entière de rayon de convergence Rα > 0 telle que α0 = 1. L’objectif de ce

paragraphe est de montrer l’existence et l’unicité d’une série entière
∑
k⩾0

βkx
k de rayon de convergence

Rβ > 0 telle que pour tout x appartenant aux domaines de convergence des deux séries :(
+∞∑
k=0

αkx
k

)(
+∞∑
k=0

βkx
k

)
= 1.

Q23. Montrer que si
∑
k⩾0

βkx
k est solution , alors la suite (βk)k∈N satisfait aux relations suivantes :


β0 = 1

∀n ∈ N∗,
n∑

k=0

αkβn−k = 0.
(5)

Soit r un réel tel que 0 < r < Rα.

Q24. Montrer qu’il existe un réel M > tel que pour tout k ∈ N : |αk| ⩽
M

rk
.

Q25. Montrer que (5) admet une unique solution (βk)k∈N et que, pour tout k ∈ N∗ :

|βk| ⩽
M(M + 1)k−1

rk
.

On pourra raisonner par récurrence.

Q26. Que peut-on dire du rayon de convergence Rβ > 0 de la série entière
∑
k⩾0

βkx
k ?

Ensemble des solutions de (4)

Q27. Soient r > 0 et λ une fonction de classe C2 sur ]0, r[.
Montrer que la fonction y : x 7−→ λ(x)J0(x) est solution de (4) sur ]0, r[ si et seulement si la fonc-
tion x : 7−→ xJ2

0 (x)λ
′(x) est de dérivée nulle sur ]0, r[.
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Q28. Montrer que J2
0 est somme d’une série entière dont on donnera le rayon de convergence. Que vaut

J2
0 (0) ?

Q29. En déduire l’existence d’une fonction η somme d’une série entière de rayon de convergence Rη > 0
telle que :

x 7−→ η(x) + J0(x) ln(x)

soit solution de (4) sur un intervalle ]0, Rη[.

Q30. En déduire l’ensemble des solutions de (4) sur ]0, Rη[.
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