PC Lakanal
DM4 soft - probleme I

Ce probléme comporte 3 parties indépendantes.
Notations et définitions

— N désigne ’ensemble des entiers naturels, N* désigne ’ensemble des entiers naturels non nuls.

— R désigne I'ensemble des nombres réels.

— RJ[X] désigne le R-espace vectoriel des polynomes a coefficients réels et, pour tout entier n € N,
R, [X] le R-espace vectoriel des polynémes a coefficients réels et de degré inférieur ou égal a n.

— Sing et ng sont deux entiers naturels, on note [[n1,n2]] ’ensemble des entiers naturels compris (au
sens large) entre nj et no.

Objectifs
2.1

On s’intéresse dans ce probleme & 1’équation différentielle x=y” 4 axy’ 4 by = 0. La partie I est une partie
d’algebre qui traite des solutions polynomiales de cette équations lorsque a et b sont des constantes réelles.
Dans la partie II, on détermine ’ensemble des solutions de I’équation lorsque a et b sont des constantes
réelles. La partie III traite des solutions de cette équation lorsque a = 1 et b est la fonction carré.

On admet le résultat suivant (théoréme de Cauchy) : soient u, v, w trois fonctions continues sur un
intervalle ouvert I de R. Soit ¢y un point de I, et «, 8 deux réels. Alors, il existe une une fonction y
solution sur I du probléeme de Cauchy

vt e I,y" (to) +u(t)y' (t) + w(t)y(t) = w(t)
y(to) = o, 9/ (to) = B

Partie I - Endomorphismes

Dans toute cette partie, n désigne un entier naturel non nul et a et b des constantes réelles.

Q1. On note A ’endomorphisme de R[X] défini par :
vV PeR[X], A(P)=XP.

Calculer A(X*) pour tout k € [0;n].
Q2. Montrer que pour tout P € R[X], X?P"” = Ao(A—1d)(P), ou Id désigne "endomorphisme identité
sur R[X].
Q3. Montrer que si P € R,[X], alors A(P) € R,,[X].
On notera A,, 'endomorphisme de R,,[X] induit par A.
Q4. Déterminer la matrice de A,, dans la base canonique (1, X,..., X") de R,[X].

Q5. On définit 'application ® par :
V P c R[X], ®(P) = X?P" +aXP'.

Montrer que ® = A% 4 (a — 1)A et en déduire que ® définit un endomorphisme de R[X].



Q6. Montrer que ® induit un endomorphisme ®,, de R, [X].
Q7. Montrer que ®,, est diagonalisable.

On consideére 'endomorphisme ¢ de R[X] défini par :
VY P € R[X], (P) = X?P" 4+ aXP +bP.

Q8. Montrer que ¢ induit un endomorphisme de R,,[X], endomorphisme que ’on notera ¢,,.
Exprimer ¢,, en fonction de A,.

Q9. Exprimer la matrice de ¢,, dans la base canonique de R,,[X].

On considere I’équation :
2+ (a—1)s+b=0. (1)

Q10. Expliciter le noyau de ¢, lorsque ’équation (1) admet deux racines entieres distinctes my, mo dans
[0;n].
Q11. Expliciter le noyau de ¢, lorsque I’équation (1) admet une unique racine entiere m € [0;n].

Q12. Déterminer le noyau de ¢. En déduire qu’il est de dimension finie et déterminer sa dimension.

Partie II - Une équation différentielle

On considere dans cette partie ’équation différentielle

/!

2*y" + axy’ + by =0, (2)

ou a et b sont des constantes réelles.

Q13. Que déduit-on du théoréme de Cauchy quant & la structure de I’ensemble des solutions de ’équation (2)
sur I =|0,4o00[? Et sur J =] — 00,0[?

Q14. Montrer que si y est une solution de (2) sur I, alors g = yoexp est une solution sur R de I’équation
différentielle linéaire a coefficients constants :

v + (a—1)u' + bu = 0. (3)

Q15. Réciproquement, soit ¢ — ¢(t) une solution de (3) sur R. Montrer que la fonction g o In est
solution de (2) sur I.

Q16. Donner les solutions & valeurs réelles de ’équation (3) dans le cas ot a = 3 et b =1 et dans le cas
o a =1 et b=4. En déduire, dans chacun des cas, les solutions a valeurs réelles de 1’équation (2)
sur l'intervalle I.

On suppose dans les deur questions suivantes uniquement que a = 1 et b = —4.

Q17. Montrer que si y est solution de (2) sur J, alors h = y o (—exp) est solution de (3) sur R.

Q18. Déduire de ce qui précede l'ensemble des solutions de (2) de classe C? sur R.

Partie III - Une équation de Bessel
On se propose dans cette partie d’étudier I’équation différentielle :
2.1 / 2.
Yy +zxy +27y =0. (4)

Q19. Rappeler la définition du rayon de convergence d’une série entiere.



Série entiere dont la somme est solution de (4).

On suppose qu’il existe une série entiere Z ckwk, avec ¢g = 1, de rayon de convergence R non nul et
k>0
dont la fonction somme Jy est solution de (4) sur | — R, R[.

Q20. Montrer que pour tout k € N, on a :

cokr1 = 0

Cop; = W
Q21. Déterminer le rayon de convergence de la série entiere Z cpzk.

k>0

Q22. Soient r > 0 et f une autre solution de (4) sur |0,r]. Montrer que si (Jp, f) est liée dans l’espace
vectoriel des fonctions de classe C? sur ]0,7[, alors f est bornée au voisinage de 0.

Inverse d’une série entiére non nulle en 0

Soit Zakxk une série entiere de rayon de convergence R, > 0 telle que ap = 1. L’objectif de ce
k>0
paragraphe est de montrer l'existence et 'unicité d’une série entiére Z Brz® de rayon de convergence

k>0
Rg > 0 telle que pour tout z appartenant aux domaines de convergence des deux séries :

(&) (&)

Q23. Montrer que si Z Brz” est solution , alors la suite (Br)pen satisfait aux relations suivantes :
k>0

Bo = 1
YneN*, > apfpi = 0. (5)
k=0

Soit r un réel tel que 0 < r < R,.

M

Q24. Montrer qu'’il existe un réel M > tel que pour tout k¥ € N : |ag| < -
r

Q25. Montrer que (5) admet une unique solution (8),cn €t que, pour tout k € N* :

M(M + 1)+1

On pourra raisonner par récurrence.

Q26. Que peut-on dire du rayon de convergence g > 0 de la série entiere Z Bk ?
k>0

Ensemble des solutions de (4)

Q27. Soient 7 > 0 et A une fonction de classe C? sur ]0, r|.
Montrer que la fonction y: x — A(z)Jy(x) est solution de (4) sur |0, 7| si et seulement si la fonc-
tion z: — xJZ(z)N () est de dérivée nulle sur |0, r].



Q28. Montrer que Jg est somme d’une série entiere dont on donnera le rayon de convergence. Que vaut
J2(0)?

Q29. En déduire I'existence d'une fonction  somme d’une série entiere de rayon de convergence R, > 0
telle que :
2 (@) + Jo(x) In(z)

soit solution de (4) sur un intervalle |0, R,[.

Q30. En déduire I’ensemble des solutions de (4) sur |0, R,)|.



