Exercice 1

Etude en % de la série :

Corrigé

un+1

) -1

n? -1

Posons Z = Z u,.pour x nonnul, u, ne s’annule pas, et

n>2n n>2 u

n

admet pour limite 2 x

D’aprés la régle de d’Alembert, D u, converge lorsque 2 x° < 1, soit | x| < et diverge quand | x| >

1
n>2 " ’ ﬁ,

2" 1
Alors, Z x*" apour rayon de convergence —— .

n22nz_1 »\/?

Comme - > 2 x*" diverge pour x = %

\/7 ,,>2n -1

1
ﬁ.

S’il restait du temps pour cela, il était naturel que I’examinateur demande de calculer la somme de la série entiére

étudiée, allons —y.

Pour tout x tel que |x| < —:

Il
™ |
I

+
™ |
1N

= n+1

le découpage est autorisé, car, a nouveau d’apres la regle de d’Alembert, les deux nouvelles séries entiéres ont encore

1
pour rayon de convergence ——— .

7z

+ o© 2 n
Pour x = 0, Z _ x*" vaut évidemment 0 .Pour x non nul, en changeant d’indices, en arrangeant un peu,

puis en utilisant le développement en série entiere de x > In ( 1 —x ) , on obtient :
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Jaen s (200)
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4x* = n 2
4
= —Mln(l+2x2)—l—x2
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Exercice 2

Etude de la série

Zn: cosh(n).x”

Corrigé

L . 1 T
La série entiere Z e" . x" apour rayon de convergence —, et pour tout x € ] —e e [ ,
e

n=0

+ o0

n n 1 A —n n
Z e .x = . De méme, Z e " .x" apourrayon de convergence e, etpour tout x € ]—e,e[,
n=0 l —ex nx0
+ ©

- 1
D S Bt
Py 1l—-e x

On sait que lorsque z a,x" et z b, x" sont de séries enticres de rayons de convergences différents R et

R ’, le rayon de convergence de Z (an +b, ) x" estégal a min ( R, R ’). Ici, le rayon de convergence de
D> cosh(n).x" = %Z (e" +e’” ).x” est donc égal a l

Pour tout x € ]—e",e’l[ :

+ oo 1 + + 0
Z coshn.x" 5 e”.x" + Z e ".x"

n=20
1 1 1
— +
211 —-ex l—-e'x

1 — xcoshl
l—2xcoshl + x?

Exercice 3
n 1

Pour tout » € N, onpose a, = —.
k!
k=0 K:



+ o

a. Rayon de convergence et calcul de Z a,x”
n=20

X

€

b. Développement en série entiére de x > ﬁ .
1 -x

Corrigé
a. On sait que la suite (an ) converge, et que lima, = Z T e. Donc :
k=0 .
e La suite (a . ) est bornée, ce qui entraine que pour x tel que |x| <1, z a, x" converge. Ceci revient a dire

que le rayon de convergence de la série entiere z a, x" estsupérieur ou égala 1.

e o [asuite z a , diverge grossi¢rement ; le rayon de convergence de z a, x" estalors inférieur ou égala 1.

Par suite, a x" aunrayon de convergence égala 1|.
n

: s 1 : 1o s
e e ¢ Notons (bn ) la suite de terme général b, = — et (c ) ) la suite constante égale a 1 .
n!

Pourtout n € N, a T z b, a,_,,lasérie enticre Z a, x" estdonc le produit de Cauchy des
=0 k=

n

séries enticres Z b, x" = Z x—n' et Z c,x" = Z x"
n!

On a alors pour tout x € |-1,1] :

a5 5

n=0

+ oo e
d’ou Z a,x" =
n=20 1

b. On pourrait raisonner a nouveau en termes de produits de Cauchy, mais il y a plus simple. En notant f la fonction

L . n e .
somme de la série entiére Z a,x" ,onapourtout x € ]—1,1[, f(x) = " , puis
- X

f’(x)zl_x+(1_x)2,d’01‘1(1_x)2 =f(x)-f(x).

X B est alors développable en série entiére sur ] -1, 1[ comme somme de deux fonctions 1’étant, et

(1-x)

2

pour tout x € |-1,1] :

L=Z:(n+l) a,. ,x" Zax

(1-x)2 n=0 n=0

soit :
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Exercice 4

Equivalent et limite de

Corrigé
Comme quoi il est bon de connaitre (comme le programme 1’exige) la formule de Stirling :

n!~n"e " Jy2nn.

) e

27 (2n—1) 22" (22 - 1)(n!)’
) (2n)" e Jann 2
27" (20 =1)(n"e " J2mn )

Celle — ci donne :

2

et en simplifiant :

B

22"(2n-1) (2n-1)2=n

) | 1

27 (2n-1) (2n-1)Jmn ) T

que | lim " =0

noee 22" (20— 1)

b

. On en déduit immédiatement

d’ou finalement

Remarque

V)
2" (2n -1)

De fait, on vérifie que le développement en série entiere de x +— /1 — x (de rayon de convergence 1) est:

Un coefficient de la forme peut (doit ?) faire penser a un développement en série entiére usuel.



mzl_im

=20 (2n-1)

)

22" (2n 1)

(i:j N
22" (2n -1) 2JFn%

série entiére converge en I’'une des bornes de son intervalle de convergence, elle y est continue. On peut donc écrire

Le fait que assure que Z converge. Or I’on sait que, lorsqu’une

(271) (an .
X
que 1 -1 =1- Z "/ d’ou I’égalité Z ) =1

2 (2n - 1) =27 (20 - 1)
Exercice 5
On définit la suite (un) . par:
* 2
u, =u, =l,etpourtout n e N ,u,_  , =u, + w o
n+1
u, + 3
a. Montrer que pour tout n, ——-1 < ” .
u n+1

n

2
n

u
b. Montrer que ( — J est décroissante.
c. En déduire le rayon de convergence de la série entiére de terme général u, x " .

On note f sa somme.

d. Déterminer une équation différentielle satisfaite par f, et calculer f.

Corrigé
a. Il est immédiat que la suite ( u, ) est bien définie, et a valeurs positives.

La relation :

5 2
VneN ’un+1_un: un—l
n+1
assure que (un) est croissante a partir du rang 1 (comme u, = u ,, elle est en fait croissante a partir du rang 0 ).
u, 3
Ona — =1< —,etpourtout n =21 :
u, 1
2 n+3
un+l—un+ un: un
n+1 n+1




_Maer 1 n+3
(n+l)2 < (n+1)2n+1

b. D’aprés le résultat précédent, pour tout n € N :

soit :

Ona(n+1)3 =n’+3n° +3n+12n’+3n" =n2(n+3),d’of1

u .. , . . u , .
Comme ( — j est a valeurs positives, on en déduit que [la suite [ — J est décroissante|.
n>1

S

n

c. Lasuite ( u, ) étant strictement positive et croissante, la série z u, est grossicrement divergente. Par

conséquent, le rayon de convergence de la série enticre z u, x" estinférieur ou égalal .

2

u

Le fait que la suite (—”j soit décroissante assure que u, = O ( n’ ) =0 ( n ( n—1 ) ) . Le rayon de

n
nx1

convergence est donc supérieur ou égal a celui de la série géométrique dérivée seconde z n ( n—1 ) x", qui

vaut 1.

Finalement, [le rayon de convergnce de Z u, x" estégala 1|

d. Onapourtoutn e N', (n+1)u,,, =nu, +u, + 2u,_,,et’on sait que la série
entiére Z nu, x" améme rayon de convergence que z u, x".

On peut donc écrire que pour tout x € |1, 1],
+

Z(n+1)u x”—iﬁnu x"++iu x”+2+zwu x"
n+1 - n n n—1 s

n=1 n=1 n=1 n=1

soit:{i (n+1)u,, x" —lszi nu, x""! +(+zw u,x" —1j+2x§ wu, x"".

n=20 n=1 n=0

Onendéduitque /°(x) —1=xf"(x)+ f(x) -1+ 2x f(x),, lafonction f estdonc solution

sur |1, 1[ de I’équation différentielle : (1-x)y’ (x)=(1+2x)y(x)




Les solutions de cette équation différentielle (linéaire d’ordre 1, homogéne) sur ]—1, 1 [ sont les fonctions

fiixe kexp[j 11+_2ttdtj=kexp[j[_fjt2t +1itjdt]

=hexp(-2x-3In(l-¢))=——,2eR

En particulier, f est de cette forme, et, comme f ( 0) =1, c’estla fonction | f: x

Exercice 6

a. Convergence de la série de terme général :

. :m[M}

n+1

b. Rayon de convergence de la série enticre de coefficient a .

Corrigé
a. Ona

:m 1+<—J%>”J_%m(l+%j

(-1)" 1 1 [ 1 j (-1)" 1
= -— | -—+40 = - = +b
n s oo ﬁ 2n 2n+ n’'? ﬁ n+

ou bn = O(%j

n

v (=D

La série Z b, converge absolument par comparaison avec la série de Riemann z —75 Z converge
n NE/

d’apres le théoréme spécial des séries alternées, et la série harmonique Z — diverge.
n

Par conséquent, | la série z a, diverge |

b. Ladivergence de Z a , assure que le rayon de convergence de la série enticre Z a, x" estinférieur ou

égala 1. De plus, la suite ( a, ) converge vers 0, le rayon de convergence de Z a, x" estaussi supérieur ou

égala 1. Ainsi, | le rayon de convergence de 2 a,x” vaut 1.




Exercice 7

Soit [ € C(R“R),boméesur R ,.Pour n € N*, on pose :

a. Existence de /. Limite lorsque » tend vers + 0.
On suppose désormais que f ( 0 ) # 0.
b. Déterminer la nature de la série de terme général [, (on posera u = \/n t).

c. Soit g la fonction somme de la série entiere de coefficients / ,. Montrer que g ( -1 ) existe, et que :

2

g(-1)=- fo —f(t)e_: dr .
0 1 +e

d. Donner le domaine de définition de g .

e. On ne suppose plus que / (0) # 0. Trouver / bornée telle que g (1) existe.

Corrigé
a. La fonction intégrée est continue sur R _ , ’intégrale n’est donc généralisée qu’en + oo .

f(t)) <M.

La fonction f étant par hypotheése bornée, notons M un réel tel que pour tout ¢ > 0,

+ o0

2 2 , .
< Me " .Comme J e "' dr converge, on en déduit, par
0

2

Alors pour tout ¢ > 0, ‘f(t)e””

+ o
. . —nt? C —nt?
majoration, que |/, = j f (t) e """ dr convergel, et plus précisément que ¢ > f (t)e " est

0

intégrable sur R | .

. -n 2 . .
b. les fonctions f,: ¢+ f(z)e™"" sontcontinues par morceaux, et ( £, ) .- converge simplement
neN

sur R | vers la fonction nulle. Pour tout n € N ", pour tout 7 € R,

fn(t)| <Me " etla

t2

fonction 7 > M e ' estintégrable sur R | : I’hypothése de domination est donc vérifiée. D’apres le

théoréme d’interversion limite / intégrale, onaalors | lim I, =0

n— +©

Remarque

. r by . r r . . *
On pouvait se passer du théoréme de convergence dominée, en écrivant plus simplement que pour tout 7 € N |

+ 0 g2 + o0 g2 ~ E
L)< Jlr(e)er de<m | e ’dt—M\/:.

0 0

. . t e
La fonction f, estintégrable sur R , ; ¢@: u — —— estdeclasse C ', et bijective de R , sur R .

I

Le changement de variable proposé est donc correct (encore heureux) :



uHfn((p(u))|(p’(u)|estintégrablesurIR+,et I fn((p(u))|(p’(u)|du= j S, (t)dr.

R

+ +

. : : 1 L
En explicitant ceci, on obtient /, = ——= j f e du.
noY Jn

Jn

. . ,. e, . . o u a2 .
Appliquons alors le théoréme d’interversion limite / intégrale a la suite I f ( —J e du : la suite de
0 n =1

7142

. . u _u? .
fonctions continues par morceaux | u > f [ —J e " converge simplement vers u = f ( 0) e ",
n>1

I

continue par morceaux. Cette suite est encore dominée par la fonction ¢ > M e’

° qui n’a pas perdu son
intégrabilité sur R , depuis le début de cette question . Donc,
+ ©

lim Iof(%]e’“zdu =/(0) [ e du=rs(0)Jr.

n— +o 0
Comme f (0) # 0,onendéduitque 7, ~ M

PR \/7
S(0)Jn

Z ——=—+— diverge et son terme général est de signe constant, on en déduit que z I, diverge

I

" eof(t)e "
11 s’agit de prouver que z ( -1 ) I, converge, et que sa somme vaut — I L dr .
1 +e”
0

Dire que Z ( -1 ) "I, converge parce que son terme général est équivalent a celui de la série alternée

peut éventuellement &tre tentant, mais attention, cet argument est faux : la régle des

équivalents ne s’applique qu’a des séries dont le terme général est de signe constant a partir d’un certain rang ; de
toute facon, ¢ca ne donnerait pas la valeur de la somme, oublions donc cette idée, et penchons — nous une troisiéme

fois sur le théoréme de convergence dominée, version série de fonctions cette fois :

e  Lasérie de fonctions 7 = > f(1)(-1)"e 7" converge simplement sur R *, et

+ o0 " 5 t)e” 0 .
VieR!, Y f(t)(-1)"e " = —% (pour ¢ fixé, la somme est géométrique...).
n=1 1+ e
. f(t)e ™ . .
ee Lafonction somme ¢ > — — est continue par morceaux sur R ;.
1+e”
+oo t®
e o o ]l est hors de question de prouver que Z I ‘ f ( t ) ( -1 ) "e """ | dt converge, puisque 'on a
n=1 o

montré en b. que tel n’est pas le cas ; on doit donc utiliser ce que I’on a appelé en cours la version 1

du théoréme de convergence dominée pour les séries de fonctions :



Pourtout € R} fixé, > f(t)(-1)"¢e 71" est une série alternée, on sait alors que pour

N

S () (1) e

n=1

tout N e N*, <|r(e)(=1) e | don

<Me .

> r()(=1)" e

n=1

tZ

La fonction t — M e~ estintégrable, et pour tout N € N *,pour toutz € R},

Y r()(-1)" e

n=1

> (-1)"1, converge,et| Y (-1)"1, = —T Mdt

n=1 0 1+eit

d. Pour simplifier un peu, je confonds la série entiere et sa somme g (ce qui n’est pas bien correct) : par abus de
langage, on parlera donc du rayon de convergence de g .
D’aprés b., g n’est pas définie en 1, son rayon de convergence est donc inférieur ou égal a 1 ;

d’apres e., g est définie en — 1, et le rayon de convergence est supérieur ou égal a 1. Bon, ben alors on a tout

ce qu’il faut : |le rayon de convergence de g est 1, et son domaine de convergence est [— 1,1 [ :

e. On peut toujours dire que choisir f identiquement nulle a des chances de convenir... certes ¢a ne risque pas de
rapporter beaucoup de points, mais cet exercice est bien long et technique.

0sit<1

Enfin, pour donner une réponse (un peu) plus constructive, choisissons f: ¢t { | s =
si t >

+

+
2
Alors pourtout n, I, = J. e " dt = J. e ") dr = e J. e dt, d’ou
0 0

+

1

+

0<] <e™" I e‘””zdtzﬁe'”.

n
0

La série > I, converge, ce qui revient a dire que g (1) existe|

< M e~ : on tient notre hypothése de domination, et alors on peut conclure :

Exercice 8
On pose :

1
t)= ———.

/(1) l+¢+1¢°

a. Prouver I’intégrabilité de /" sur R (n € N7). Onnote a , son intégrale sur R .

b. En minorant a ,, prouver la divergence de Z a, .

¢. Trouver un axe de symétrie au graphe de f. Exprimer a , a I’aide de :

n

10



+ oo
du

an —}'I'
0 (1 +u2)

d. Relier w, ,, et w, . En déduire le rayon de convergence de la série entiere de terme général a, x " .

Corrigé
1) 3
[t + —j + =, qui ne s’annule pas. Alors f (etdonc f", n € N")est

a. pourtoutf € R, 1+ ¢+ ¢’

+ o0

définie est continue sur R . Par conséquent, I’intégrale I f ( t ) dr n’est généralisée qu’en — o et + .

—©

Or f"(t) ~ %,ettl—) %estintégrablesur[1,+oo[et]—oo,—l].

too f

f " estintégrable sur R

Par suite,

a4 L
0(1+t+t2) o(1+2t+l‘2)
1 T: 1

= Ilim | - .
X%W{ 2n -1 2n —1

b. Ona

n

+ oo dt

e

0 0

(la convergence de I’intégrale minorante est assurée par la minoration point par point, et par la positivité de

tout le monde).
diverge et elle est a termes positifs, donc z a, diverge

LasérieZ:2 ! "
n_

2
. Onadéjéditque1+t+t2=[t+%j +%,onadoncf(z)— -
[3)
+

C.

Alors pour tout ¢, f (t -3

Ceci prouve que la droite d’équation x = 5 est axe de symétrie de la courbe représentative de f .

11 est alors naturel de poser, dans I’intégrale

4 :+J‘w dt nz[
S 3

11



2t +1 . . . T -
= . Certes ce changement de variable est effectué dans une intégrale généralisée, mais il est affine,

e

justifier est a priori superflu (se préparer tout de méme au cas d’un examinateur porté a la chipote).

ok

. . . d . .,

On fait donc ce changement de variable, et I’on obtient a, = u , puis, par parité de la
2 n

u”- +1

nouvelle fonction intégrée : | a, = (%J \/? f d—un = (%j \/? w,
0 + 1

(u* 1)

A
o . d .
d. e On intégre par parties par exemple dans 7, , = J. —un’ A > 0. Les fonctions u — u ,
0 (u ‘41
1 r . r .
U > ———  — sont de classe C', et ont pour dérivées respectives u > letu > —2n %
( u’ +1 ) ( u’ +1 )

L’intégration par parties donne

1 2
1 — " 2 u—d
S PR "!(uul)"” )
=#n+2nfuz—+1n”du—2nfd—um,
(47 +1) 0 (u +1) 0 (u? +1)
dou(2n—-1)1,,=2nl,,,, Lﬂ En faisant tendre 4 vers + oo, on en déduit
’ (47 +)

(2n-1)w, =2nw,

Remarque 1

Cette relation est proche de celle que vérifient les intégrales de Wallis W, = | cos” ¢ dt ; ce n’est pas un

S o [N

_y s d
hasard, et les intégrales I “
2

— ont sans doute ét€ notées w, en référence a ceci.
0 ( u® +1 )

Sil’on pose u = tan ¢ dans w,, on obtienten effet w, = W,, ,.

e ¢ Passons maintenant au rayon de convergence de la série entiére Z a,x".

La suite ( a, ) ne s’annule pas, et, d’aprés les résultats précédents, on a pour tout 7 € N,

12



_ ne1 _ 4 2n -1
a " w 3 2n
n o 3 n
i a
7 . an+l 4
Il en résulte que lim = 3 et que z a, x" apour rayon de convergence a0
n — +o an

Remarque 2

b

R ,,_HO = X ! _HO X 1
Zanx _I[,lzl(1+t+t2J]dt__-[1+t+t21_ x dr

33 . e 1 . i
Pour x € |- ik on a apres avoir justifié I’interversion somme / intégrale,

n=1 —w 0
1+¢t+¢°
+ 0 X + oo x
= dr = dt
;[ot2+t+1—x -[O( ljz (3 j
t+ = | +|>-x
2 4
T t
= lim .[ arctan dr ,
Y320 3, 3_,
4 4 Y
-~ TX 2mx 1
d’ou Z a,x" = =
el ,’é—x \/? /l—ix
4 3
En utilisant ceci et le développement en série entiére de ;c—x , on en déduit une expression explicite des a , :
- =X
4
2 3(2n-2
VneN':ia, = n\/> .
3" n—1

n

On peut d’ailleurs retrouver cela en utilisant les relations a, = (%j \/? wyet(2n—-1)w, =2nw,,,.

Exercice 9

On définit la suite (u ) ) L paru, = 0, u, =1, etpar la relation

u

n

pour n > 0.
n+1

a. FEtudier la suite (u . ) o

b. Existence et valeur de la somme de terme général u , x".

Corrigé

13



a. et b., solution 1

On remarque que pour tout n > 0,
(n + l)un+2 - un+l
la suite (n u,,, — un) . est donc constante. Comme 0.u, — u, = 0, on en déduit que pour tout n € N,

nu,,, =u,,et puisque u, = 1, on en tire facilement :

VneN ,u, =—".
(n - 1) !
Il en résulte immédiatement que la suite ( u, ) converge vers 0, que la série enticre Z u, x" estderayon de

convergence infini, et, en notant f sa fonction somme, on a pour tout x :

n—1

+ o . + X B
f(x)=nzounx _X,Z‘]—(n Y =| xe

a. et b., solution 2.
est bien définie. Supposons la série entiere Z u, x" derayon de

La suite (un )”N

+ 0 + 00
convergence R # 0 ;notons f: x > Zun x" = Zun x" sa fonction somme. Alors on a pour
n=0 n=1
toutxe]—R,R[,
+ oo + o0 + oo u
n+1 _ n+1 n n+1
Zun+2x - Zun+1x - Z lx
n=20 n=0 n=0 n +
u
" x"*' améme

Z u, , ,x", z u, ., x""" convergent parce que z u, x",etl’on sait que Z I
n

rayon de convergence, ceci est donc bien licite.

Pour x non nul dans ]— R, R [, on a donc

1 < u” n +
}(f(x)_l” _u]x):‘f(x)__u°_ﬂ2%rz+1x E
soit, puisque u, = O et u, =1,
1 - un n+1
| - 1=-
(-)re-i=- g S

En dérivant cette expression (dériver terme a terme une série entiére dans son intervalle ouvert de convergence

est autorisé), il vient
1 - 1 - .
%%ﬂ—yfﬁh—zuﬂ,

X

d’ou :

14



Notons o = min ( 1, R) et [ = ]0, oc[ ; f est solution sur / de I’équation différentielle (linéaire du premier
ordre, homogeéne) :

(E): x(l—x)y’+(x2 —1)y=0.
Les solutions de ( E) sur / sont les fonctions f, : x > Axe™, f est’une d’entre elles. Ona u, = 0 et

u, =1,donc lim f = 0 et lim /'’ = 1. Par suite, f estla fonction f: x > x e, aumoins sur /.
! 0 0

Réciproquement, f: x > x e est développable en série entiére de rayon de convergence infini, avec

VxeR, f(x +Zm (n—1) +Zoov”x",
n= - n=0
1

\ r *
oul’onaposé¢ v, = O etpourtout n e N , v =

"o (n-1)1

A%
Onav, =0, v, =1, etil n’est pas difficile de vérifier que pourtout n e N, v, , =v,  , — — 0 : les
n+
suites (u . ) et (vn ) sont donc égales.
. 1 L 5 n
On en conclut que pourtout n e N, u, = W , que la série enticre Z u, x" estderayon de
n—1)!

convergence infini, et de somme x > xe”

Exercice 10
On pose pour tout n entier
51
a, = —.
k=0 k!

a. Domaine de convergence de la série entiére de terme général a , x "

b. Calculer sa somme.

c. Développer en série enticre la fonction

Corrigé
a. On sait que la suite (a . ) converge,etque lim a, = e. Alors:

n — +w

e Lasuite ( a, ) ne tend pas vers 0, donc Z a, diverge ; ceci implique que le rayon de convergence R
de la série entiére z a,x" estinférieur ou égala 1.

e e Lasuite (an ) est bornée, d’ou R 2> 1.

Par conséquent, | le rayon de convergence de z a,x” estégala 1
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b. Notons f la fonction somme de la série entiere Z a,x".

n=0

Soient (bn ) la suite de terme général b, = —»et ( c, ) la suite constante égale a 1.
n!

n 1 n
Pourtout n e N, a = — =

) Py b, a,_,,lasérie entiére Z a, x" estdonc le produit de Cauchy des
k=0 . k=0

séries enticres Z b, x" = Z );—n' et Z c,x" = Z x".
On a alors pour tout x € |-1,1] :

S (555 0)

n=0

X

, . + 0 ., e
d’ou Z a,x" =

n=20 l_x

¢. On pourrait raisonner a nouveau en termes de produits de Cauchy, mais il y a plus simple. En notant f la fonction

X

L . n e .
somme de la série entiére Z a,x" ,onapourtout x € ]—1,1[, f(x) =7 , puis
— X

f’()c):l_xJr(l_x)z,d’ofl(l_x)2 =f(x)-f(x).

X B est alors développable en série entiere sur ] -1,1 [ comme somme de deux fonctions 1’étant, et

(1-x)

2

pour tout x € |-1,1] :

soit :

Exercice 11

Soit % un réel non nul et soit un couple de réels (o, ) # (0,0 ). On définit la suite ( u, ) par :

u, = o, u, =p,etpourtoutentier naturel n, u,,, =u,,, +Au,.

1. On suppose que ( u, ) converge.
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a. Quelle est sa limite ?

b. Montrer que la série de terme général u , converge. Calculer sa somme.

g

. 1
On suppose que A appartient a } T 0 {

a. Montrer que X > — X — A admet deux racines réelles dans |0, 1[.

b. Montrer que (u ; ) converge.

W

. 1
. Que se passe —t —il lorsque A € }—1,—2[ ?

=

Montrer que, lorsque A > 2, la suite (u . ) diverge.
. 1
5. Apartirducas A = — k calculer

i “
n °
—o 2

n

Corrigé
l.a. La suite ( u, ) est récurrente linéaire d’ordre 2. Le polyndme caractéristique associé est

P=X>-X—-M\,et:

: 1 . i 1+ 1+ 4% 1—J1+4r
o SiA> - 7 P admet deux racines distinctes », = S T— etr, = — 5 Alors,
il existe deux réels a et b telsquepourtout n € N, u, =ar” + br,".

SiA>2,1< |r2| < |r1|,etalors (un) ne converge que si @ = b = 0, ce qui est interdit par

I’énoncé (hypothese (oc,B) # (0,0)), SiA=2,u,=a2" + b(—l)" et ’on a le méme
probléme.

Onalr,| <1,donc limb r,” = 0. Ensuite :
2 2
SiA >0, limr" = + o ;laconvergence de (u ., ) entraine alors que nécessairement a = 0, et
. B 0 4 s 1 _
ainsi V. n,u, =br,,doulimu, =0.

Si ke }—1,0[,
4

Le cas A = 0 est exclu par I’énoncé

r2| <l,etlimu, =0.

. | , a+bn .
oo SiA=- 7’ il existe a et b réels tels que pourtout n € N, u, = e et, par croissances

comparées, limu, = 0.

. 1 . . -
eee Enfin,si A < — rE P posseéde deux racines complexes non réelles conjuguées, v = \/— A e’ 0
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ety=+—-21e % avec® £ 0 [n],etilexiste (a,b) € R? tel que pour tout n € N,
u, =+ —-Ar ! (a cosn B + bsinn 9).Dans ces conditions, la convergence de (un ) implique, que,

soit |l| < 1,soit a = b = 0, mais cela I’énoncé I’interdit (hypothése (oc, B) #* ( 0,0 ) ). Donc,

|A| < 1 etla limite de (u ., ) est nulle.

Finalement, | lim ( u, ) =0

1.b. On a de plus montré que dans tous les cas, ( u, ) est combinaison linéaire de séries géométriques ou

géométriques dérivées, de raisons respectives strictement inférieures a 1 en valeur absolue. Donc, Z u,

n>0
converge. Notons S sa somme. En sommant les égalités v, ,, =u,,, + Au,, n 2 0, on obtient
N1 4 : ul B
S—-—u, —u,=8—-u, +2S5,doul’ondéduitque | S :_7 :—x
2. 3. 4. Bon ben ¢a c’est fait...
. 1 ., . B . L
5. Ietu, =a=0,u, = =5etk = —Z,dou S = by = 2 |, ce que notre connaissance des séries

géométriques dérivées permettrait de retrouver.

Exercice 12
Soitpour n e N : [ = J‘ In" (x)dx
1
a. Montrer que la suite ( I, ) converge. Quelle est sa limite ?

b. Nature des séries » 7 et Y (-1)"1,.

¢. Rayon de convergence et somme de Z I, x".

Corrigé
a. Convergence

La suite ( I, ) = [ j In" ( X ) dx J est a valeurs positives, et elle est facilement décroissante (pour tout
1

xe[l,e],0<In(x)<1,doncpourtout n e N, 0 <

Y S

ln”+1(x)dx£iln”(x)dx).
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Par conséquent, la suite (I ., ) ., converge.
n e

Limite
Pourtout n e N, f : x> In" (x) est continue par morceaux, intégrable sur [0, e [ , et la suite de fonctions
( !, ) converge simplement sur [ 0,e [ vers la fonction nulle, qui est évidemment continue par morceaux. De

plus, pour

tout n € N et pour tout ¢ € [O,e[,

f. (t)| < 1, et la fonction constante égale @ 1 est intégrable sur [0, e[.

Alors, d’apres le théoreme de convergence dominée, lim /7, =0

n — +©

_ decroit et converge vers 0. En vertu du critére spécial des séries

neN

D’aprés ce qui précéde, la suite (I ) )

alternées, | lasérie Y (—1)" I, est donc convergente

En intégrant par parties /, = [ 1.In" (x)dx, on obtient pourtout n > 1,7, =e —nl, _,.

—— 0

Par décroissance de ( I, ) > onen déduit 7, < ,d’oupourtout n > 1,

n+1 n +

(¢}

e e . " :
</, 6 < . Il en résulte que /, ~ —, ce qui assure que [la série z I, diverge|.
n+2 n+1 n

Notons R le rayon de convergence de la série entic¢re z I, x".0OnaR <1 car z I, diverge, et,

comme Z (—1)" I, converge, R > 1,d’ou .

Reste a calculer la somme S de cette série entiére. On va en fait en donner une expression intégrale, mais on ne

pourra pas obtenir quelque chose de plus explicite.

Essai 1, via une équation différentielle

Notons § la somme de la série enticre Z I, x".

Onavuquepourtout n > 1,7, =e — nl, ,.Onen déduit que pourtout x € |-1,1[,
+ 0 + © +
Zlnx” =er" - ann_lx"
n=1 n=1 n=1

(toutes les séries mises en jeu convergent).

On a donc
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+ oo + o

S(x)-1,= °X —xz I, ,x" ' =x? Z(n -1)7,_ ,x"?

I -x n=1 n=2

= 1e_xx - xS(x) — sz’(x),

wwxzy(ﬂ+(khﬂ50ﬂ=1i2+e—1=15x

-1.

En résolvant cette I’équation différentielle, on trouve qu’il existe deux constantes telles que sur

1

x 1 x

I=]-1,0[ ou 7=1]0,1[,onait §(x) = {J‘ (1 © - ljte_f dr + cste}e , ce qui est plutot affreux.
- X

Meéthode 2, via une interversion somme/intégrale
Sans doute plus naturel...

Pour ne pas se mélanger les pinceaux, il est nécessaire de ne pas prendre x pour variable d’intégration, on note

doncjln”(t)dt.Ona i I,x" = i Ix” In" (¢)dr ;les fonctions g, : ¢ x"In" (¢) sont
1

n=20 n=0 1

continues par morceaux sur [1, e |, vérifient V ¢ € [1,¢],

7, (t)| < |x|", et la série géométrique |x| " :
la série de fonctions Z g, converge donc normalement sur [ l,e ] . Intervertir somme et intégrale est alors

autorisé, et donne

+ . e 1
"(Int) dt = | ——— dt
n:ox ( ) '!.I—Xhlt

S(x)= +ZO‘(:OInx”z

—e—0

Remarque
On pourrait tenter de dériver sous le signe intégral, et de voir si on obtient quelque chose d’agréable. Inutile de

déranger la formule de Leibniz pour cela :

+ o0

S(x) = Z nl, x" :j i nx""'(lnt)" dr =j.ln—tdt

n=1 1 n=1 l(l—xlnt)2

s’obtient par des arguments analogues a ceux qui précedent.

On peut toujours essayer d’arranger un peu, par exemple

0 xInt
xS’ (x) = dr
() !(l—xlnt)z
:J- xInt 12dt+ 1 dr
1 (1 - xInr) 1 (1= xInv)
=—S(x)+ bof.

Exercice 13

Onpose v, = 0 etpour n > 0, v, | =§(1 - (n+ l)vn).
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1 .
a. Montrerque: V x > 1, 5(1 + x) < x.Endéduireque: V n e N,

vn|Sn!.

v . r \
b. Montrer que le rayon de convergence de Z —"' x" estsupérieur ou égal a 1.
n!

+ 0

¢. Onpose pour tout x € |—1,1[, f(x) = D v—”‘x”.Prouverque:

n=20 n.
Vxe]—l,l[,(x+3)f(x)=ex—1.
* z (_3)k . .
d. Pour n e N ,onpose w, = Z x . Exprimer v , en fonctionde w, .
k=1 .

e. Trouver I’ensemble des séries z u , telles que pourtout n € N, 3u +(n+1)u, =1.

n+1

Corrigé

1
a. e Pourtoutle,g(lntx)s x < x.

W | o

e ¢  Montrons par récurrence que pour tout n € N,ona H ( n ) : |v <n!

Initialisation
vo|=0<1.
Heérédité

Soit n € N, supposons H ( n )

. 1 1 1
Siv,20,v,,, =§‘(1—(n+1)v”)‘ngax(l,(n+1)vn)S§rnax(l,(n+1)!).
. 1 1 2
Slvne}—nJrl,O[,‘v”+1 =§(1—(n+1)vn)sg.
Siv, <- 11,—(n+1)vn21,donc,d’aprésl’inégalitéVle,%(ler)Sx,
n +

|vn+1 <—(n+1)v, <(n+1)L

Dans les trois cas, on a bien H ( n+1 ), on a donc établi par récurrence que : | Vn € N,

v v
b. D’aprés ce qui précede, la suite (—”'J est bornée, donc [le rayon de convergence de la série entic¢re Z —"' b
n! n

n

|est supérieur ou égal a 1| .

c. f estbien définie sur ]—1,1[,etp0urtout x € ]—1,1[,

21



ro )
=(x+3)) n"|x" car v, = 0
n=1 .
+ +
= S Ve x"+3 y —~x"
- (n—l)' = n
n=2 n=1
+ o v oy
-1 \
=Y —"——x"+3> —x" car v, =0 anouveau
,,,l(n—l)! ,,Zln!
“onv, | +3v, .
=2 x
= n!
. 1
Orlarelation V n > 0, v =—(1-(n+1)v JdonmmeVwr=>13v +nv , =1.
n+1 3 n n n 1
+ oo xn

Onen déduitque (x + 3) f(x) = )] , et ’on a bien :

= (n —1)!

Vxe]—l,l[,(x+3)f(x)=e"—l

- Vv 1 1 1
d. D’aprés c., pourtout x € |-1,1], L x" = et —1)=— e* —1).
P P ] [ ,,Zl n! 3+ x ( ) 3 1+ ( )
+ J—
3
X B et x > e” sont développables en séries entiéres de rayons de convergence respectifs 3 et + oo,
1+ 2
3

T +o + 0 k
on peut donc écrire que Z v—"'x” = %( Z (—3)7]‘ xkj(z %j
n! !

n=1 k=0

. . . V, . 1 - X
Ainsi, la série entiére ) —x" est produit de Cauchy de 3 > (-3) “x* etde oy
nx1 M k>0 k>1 K:

On en déduit que pour tout n > 1,

v n _

I 1
n! 34 k!

(—3)7("7k),soitvn=— : > P -—w,

Remarque

v . .
En tant que produit de Cauchy, on sait que le rayon de convergence de E —"' x" est supérieure ou égal
n 21 n:

amin(3,+o) = 3.

e. On manie ici les séries en tant qu’objets formels, ¢’est — a — dire sans se préoccuper de leur nature.

La série Z v, vérifiant V.n >0, 3v +(n+1)v, =1, z u , est telle que

n+1

Vn=20,3u + (n + 1)u, =1 sietseulement la série Z a, = z (un - vo)vériﬁe

n+1

Vnz0, 3a +(n+1)a, =0 (1).

n+1
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Comme v, = 0, a, estégala u, et I’on déduit facilement de (1) que pourtout n € N,

n!
a =——u
ey

Comme pour tout V. n > 0, u =v, + a,,ilrésulte de ceci que les séries z u , solutions du probléme

n+1 n

L n!
sont les séries Z v, +to—— |, ae R

la seule d’entre elles qui soit convergente, ou aussi bien qui soit telle que z u, x" aitunrayon de convergence

non nul, est la série Z v, elle — méme.

Exercice 14

Soit la suite (u ) ) ., définie par u,, = | cos” (¢)dt.On donne :

n e

oct— 3

On considére 1’équation différentielle :

(E) :(x2 —1)y”(x)+3xy’(x)+y(x)=0

a. Déterminer lim cos” (¢ ). En utilisant le théoréeme de convergence dominée, montrer que lim u, = 0.

n—+® n — + 0o

+ oo

b. Soient r > 0 et S: x = Z a, x" sur |- r, r[. Montrer que S estsolutionde (E) sur |—r,r|[
n=0

si et seulement si :

n+1
VneN,a,,,= a,.
n+ 2

+ o

Calculer le rayon de convergence de u, x2", etmontrerque f: x > u, x?*"
2n s 2n
n=20

est solution

e

de (E) sur |-1,1].

+ oo

d. Méme questionpour g: x > > u,,,, x> "1
n=0
Corrigé
1 sit=0
a. On suppose ¢ € 0,E .Ona lim cos" (1) = _ .
2 "o+ 0 sinon

La suite de fonctions ( f,:t = cos” ( t ) ) converge simplement sur }O, g} vers la fonction nulle ; les [,

. o T
sont évidemment intégrables sur }0, }, et, pour tout n € N et pour tout ¢ € }0, ) } A (t)| <1.La

o
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fonction constante égale a 1 est intégrable sur } 0, 5 } , on peut utiliser le théoréme de convergence dominée,

et ’onobtient | lim u, = 0 |, ce qui n’est pas trés étonnant pour des intégrales de Wallis.

n — 4o

On a pour tout x € ]—r,r[, S’(x) = Z na”x”_1

et $7(x) = i n(n-1)a,x" = i (n+2)(n+1)a,,,x",donc S estsolutionde (E)

n=2 n=0

sur |- r, [ siet seulement si pour tout x € |—r, r[,
+ o0 +

Z n(n-1)a,x" - z (n+2)(n+1)a,, ,x" +3§ na,x" + i a,x" =0,

n=2 n=20 n=1 n=0

soit si et seulement si pour tout x € |—r, [,
+ o0 +o0 + o0 o
Z n(n-1)a,x" - Z (n+2)(n+1)a,, ,x" +3 Z na,x" + Z a,x" =0
n=20 n=20 n=0 n=20
(les termes ajoutés sont nuls).
Aprés regroupement et par unicité du développement en série entiére de la fonction nulle, ceci est réalisé si et
seulement si pourtout n e N, (n + 2)(n +1)a,,, =a, [n(n -1)+3n+ 1:| =a,(n+1)".

+

o . . . \ n+1
Ainsi, | S estsolutionde ( E) sur ]— r, r[ si et seulement si pourtout n e N, a,,, = > a,
n +
u 2 1
. , 2 1 n +
La suite (u 2n ) ne s’annule pas, et pour tout n € N, L .
u,, 2n + 2
. Uo(nsny , A1 ,
Onadonc lim |———| =1, et]’on en conclut grace a la régle de d’Alembert que
n — + 0w u 2
le rayon de convergence de la série enticre Z u,, x*" est R =
+ o© + o
Notons z u,, x*" = Z a,x",aveca,, =u,,eta,,,, =0.Onapourtout n € N,
n=0 n=0
n+1 . e, o , . ,
a = a, :pour n impair c’est évident, et, pour n pair, c’est assuré par la relation rappelée par

2
" n+ 2

. . \ n+1
I’énoncé : VneN, u,, b = u,
n+ 2

Donc d’aprés b.,|f: x > > u,, x*"estsolutiondede (E) sur |-1,1] |

n=0
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d. Alors, méme réponse...

Remarque

(/. g) estun systéme fondamental de solutions de ( £ ) sur |- 1,1].

dt

Aprés justification de I’interversion somme / intégrale, on a pour tout x € |- 1,1[, f(x) = T
—x*cos’t

oct—

H
x cos t dt ., . \
et g ( X ) = I ————— . Ces deux intégrales ne sont pas bien dures a calculer (poser ¥ = tan ¢ dans la
o 1 —x?cos’¢
N . . N 7T
premiére, u = sin ¢ dans la deuxiéme). Aprés ce calcul, on trouve f (x) = —— et
241 —-x
g(x)z%arctan >
1 - x 1 - x
. . 1
Les solutions de ( £) sur |1, 1] sont donc les fonctions x - ———=—| A + p arctan
1-x? 1-x?°
avec A,u € R.
Exercice 15
a.Onnote,pour n € N : ¢ = Card { (i,j) e N? / i’ + 5 < n} . Déterminer un équivalent de a , lorsque

n — + oo,

b. Soit G: t — Z t"" . En considérant G * (¢), déterminer un équivalent de G lorsque ¢ — 1.

n=1

Sol.

a. On considére le quart de disque dans R ,* de centre O et de rayon +/ n , et il contient entiérement

a, — 2 LJ n J + 1 carrés disjoints d’aire égale a 1 (faire un dessin et compter les coins supérieurs droits)

en rajoutant 2 L Jn J carrés (en haut et a droite de chacun des carrés précédents), on obtient a , + 1 carrés disjoints
dont la réunion contient ce méme quart de cercle.

D’oﬁ:an—2tﬁj+1£%£a + 1,etdonc a, ~ rn.

n n—+o 4

b. Pour ¢ tel que |t| <1, t" > 0et pour t > 1, t" % 0.Donc la série enticre définissant G a pour rayon

n—>+® n — + o0

1sidkeN,n=k"

de convergence R = 1. On note cette série ( z b, z" ) oub, =
n=z0 0 sinon
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Le théoréme sur le produit de Cauchy des séries entiéres montre alors que pour tout ¢ € ] 1, 1[ G* Z c, t"
n =20

olc, = > b,b,.Orpour (k,0) e N°telque k + £ <n,b, b, estégalal si k et { sontdes carrés,

+ oo

eta 0 sinon. On en déduit: ¢, =a, . On a donc : G* a,t".

) =

=

-~ TN T t
Onnote H (t) = —t" == (calcul facile).
Soit € > 0, comme a, ~ %,il existe unrang N a partir duquel |a, — Thl < %%
On fixe un tel rang N , et on a alors pour tout n > N et pour tout ¢ € [0,1[:
G () -m ()| <X o, - S0+ S e o3 Lo, 0y S (r)
_n:() ! 4 2 =N 4 n=0 5 4 2
T t < nn|, ., .
Comme H(t) ==~——— — +oo,ctque Z a, ———|t" — C ouC e R, estune constante, on en
4(1—t) t—>1" = t—>1"
N
Z a, — TZTn t"
déduit que == 0 - 0, il existe donc m > 0 tel que pour tout ¢ € [1 — n, 1],
t—>1"
N
Z a, —% t"
n=0 1) Sg,etonaalorspourtoutte[l—n,l[:|G2(t)—H(t)|S8H(t).
. t i
Cequimontre G (t) ~ H(t)=—T"1" — ~ — T
! (), 5 H(1) 4(1—t) o 4(1-1¢)°

On en déduit, puisqu’il est clair que G est positive sur [0, 1[ 1 G (t) ~ 2(1 (\1/? t) :
t—>1- —

Exercice 16

) _ . N sin(an)
a. Déterminer le rayon de convergence de la série entiére Z — g )
n
n=>1

b. Calculer la somme de cette série entiere sur son intervalle ouvert de convergence.

Sol.
: . sin(an)
a.SOItIER,S1|{E|S1’a10rS ( ).’En 5 0.
n n — + o©
1 1 s Sin(a?’l,) " )
Si |a:| > 1. Raisonnons par I’absurde en supposant ————= — 0, alors sin (oc n) — 0, done
n n—>+o n — +o

sin(a(n + 1)) =sin(an)cos(a)+cos(an)sin(o) — 0,douon déduit (puisque sin (o) = 0):

n — +w
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cos(an) — O,puiscos’(an)+sin’(an) — 0,cedquiestabsurde puisque

n—+o n—+m
cos’(an)+sin®(an)=1.

sin(an) 5 0
—x .

n n — + o

Donc

De ce raisonnement on déduit que le rayon de convergenceest: R = 1.
b. Notons f la somme de cette série entiére sur |- 1,1].

On aalors pour tout z € |-1,1[ : f(=z) = i Sm(na)x”.
n

n=1

! _ i~ . n—-1 __ i - ino n-1 _ —ino n—1 — i eia _ e—iOL
f(z)=> sin(na)z —2i2(e T € T ) 22’(1—3:6”‘ 1—xe”‘)’

n=1 n=1

7 () i(( “o) (et oa) __ sim(a)

24 l—xe“‘)(l—ze”") z? —2xcos(a)+1'

sin (o) dtzj; sin (o) a4

Comme f(0) =0 onendéduit: f(z) = I(t - cos(oc))Q +sin® (o)

. sin (Atx)
Le changement de variable u = t.Ls(a) montre alors : f () = f Qdu ,
sin (o) ey U+
Sin ( a)
f(x) = arctan m + arctan c?s—(a) .
sin (o) sin (o)
Exercice 17
a. Déterminer I’ensemble de définition D de f: z € R — Zw e ity
n =20

b. f est-elle continue sur D ? f est-elle de classe C” sur D ?

c. [ est-elle développable en série entiére en 0 ?

Sol.

. —_ 3 2 1 —_ O r r . - r .
a.Soit z e R.De: Vn e N,[e """ "| =e ", etdela convergence de la séric géométrique ( Z e ") _,-on déduit
n z

. ;. — in? ; , .
la convergence absolue de la série numérique ( Z e "t ) : f est définie sur R.
0

n =

R—>C ,
, et on a alors les résultats suivants :

-n+in’z

b. On pose pourtout n € N : u :
T e

(k)

. JOR 4 . . ¢ -n in?ag
i)Pourtout n € N, u_estdeclasse C* sur R de dérivées successives : u cx o ifptteTnrin e
> n n

(if) La série de fonctions ( z u, ) _, converge simplement sur R et a pour somme f .
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(iii) Soit k € N ™. Alors pour tout n € N et pourtout z € R,ona: ‘u"(k) (x)‘ =n*" e ", et,comme

_ 1 L . . ok - . L
n**fe ™ = o (— , on en déduit que la série numérique ( Z n*te " ) _, converge. Ceci montre que la série de
/rL n =z

n — + o 2

. k . r
fonctions ( Z un( ) ) converge normalement donc uniformément sur R .

n >0

De ces résultats on déduit que f est de classe C ” sur R (et donc continue) de dérivées successives :

+ o0 .
f(k):m*—)’l;k zn2kefn+inzm.
n=20

f(k) 0 + o0 2k -k
c. En particulier, M L n*te " > ke
k! k! =0 k!
9 1. . . - [ k
ket ke % , (0] .
Oor —— ~ = , par conséquent pourtout > 0 : ———— ¢ —  +o00,cequi
k! k= +o kke_k\/2nk \/27'Ck k! k= +o

montre que la série de Taylor de f aun rayon de convergence nul, et donc que f n’est pas développable en série entiére.

Exercice 18

Soit (d, ) lasuite définiepar:d, =1,d, =0,etVneN",d ,, =n(d, +d, ).

neN n+1

a. Calculer d, et d,.

|
b. Montrer: V n > 2,&

IN

d <nl.

n

d

c¢. Déterminer le rayon de convergence R de la série entiére ( E "‘ z" .
n!

n =0

d. Onnote S la somme de cette série entiére sur |- R, R[. Montrer que S est solution sur |- R, R[ de I’équation
différentielle: (1 — z)y — 2y = 0.

e. En déduire une expression de S a 1’aide des fonctions usuelles.

f. Donner pour tout 7 € N une expression de d , en fonction de 7.

g. On admet que d, est le cardinal de I’ensemble des permutations de 1, n sans point fixe.

©(n
Montrer par un argument de dénombrement que 7 ! z ( ] d, .

Solution

a)d, =1.(0+1)=1,etd, =2.(1+0) = 2.

b. Montrons cette relation par récurrence sur n. De

3 : .
<1< 2et 3 < 2 £ 3 on déduit qu’elle est vraie pour n = 2 et n=3.

Soit n = 3, si elle est vraie pour n et n — 1 on a alors : <n(d, + d,,hl)S n(n! +(n - 1)!).

n(n!+(n—1)!)
; (
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(n+1)!

Orn(n!+(n—1)!)=n(n—1)!(1+n)=(n+1)!,d’0fl: <d <(n+1)!.

n+1 —

La récurrence est établie.

¢. On sait que le rayon de convergence de la série ( Z x" ) . est égal a 1, il en est donc de méme pour celui de la série
n e

d,

n! 1’

<

n d
(Zx j .De Vn e N,— < 1,ondéduitalorsque R > 1 etde Vn € N, ,on déduitde méme que 1 > R,
nelN

3 n!

w |+~

dou R =1.

d. On calcule pour tout = € ] -1,1 [ , d’apres les théorémes généraux sur les séries enticres :

- d’ﬂ n _ <~ d < n—l _ - ndn—l n
S(x)_ngon! ’xS({L‘)_n:On' 712 _721 n' !
' _ < d - dn+1 n o _ - d'rz+l n o _ < dn+1
S(l’)—nzlnn z ’I’L+1 mﬂ? —72)71' —ngl . T (pulsqued )
\C nd” n
mS(a:)=nzl 7 ",
=d -nd, —nd
Dou S (z)-z8(z)-2S5(z)= Z et — 1 "' AT WY
n=1 n:
e) Sur |—1,1[ cette équation différentielle est équivalente a y' = % 4. Or on calcule sur |-1,1] :
J N T dr = I(l L _ 1) dr = -In (1 - x) — x + cste. La solution générale de cette équation différentielle est donc
- _
e’ d, . . . e’
y=0C .DeS(O)z—=1,0ndedu1tC=1,d0uS(x)= .
1-z 0! 1-z
f.Onapourtout z e R : e " = Z " et pour tout z € ] 1, 1 Z " . D’aprés le théoréme sur le
n=0
produit de Cauchy de deux séries numériques on en déduit : pour tout z e] 1 1[ S Z c,z" ou

n =0

n _ p
VneN,c,6 = Z &

p=0 p!

De "unicité du développement en série entiére de la fonction S sur ] -1, 1[ on déduit alors pour tout n € N : — = ¢ et

o (=1)"n!
donc: Vn e N,d, = Zu
p=0 p!

g. Onnote S, I’ensemble des permutations de 1, n . On sait que Card ( S, ) =nl.

On note, pour k€ 0,n , S, (k) I’ensemble des permutations de 1, n ayant exactement k£ points fixes, de sorte que

n! = Card ( ) Z Card ( ) ) Pour dénombrer S, (&), on localise d’abord les & points fixes : il y a ( ZJ

k=0
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possibilités de choix pour ces points fixes. Pour chacun de ces [ " J choix, il y a clairement d, _, permutationsde 1,7

laissant fixe ces k entiers, et dérangeant les n — £ entiers restant. On en déduit : Card ( S, (k) ) = ( ) j d, .On obtient

bien la relation demandée : n ! = Z [ZJ d, .
k=0

Exercice 19

a. Rayon de convergence de la série enticre ( Z AR )

n =1

b. Somme de cette série enticre sur I’intervalle ouvert de convergence.

Sol.

2n + 1
y . LY y . Y 2,
a. Cette série entiére est la somme des deux séries entiéres (Z 2nzx " ) - et (Z ﬁj .
n 2 n +
>0

On vérifie facilement (avec la régle de d’ Alembert par exemple) que ces deux séries ont méme rayon de convergence égal a 1

, le rayon de convergence de leur somme est donc supérieur ou égal a 1.

Soit z € R tel que |w| > 1, alors la suite (2 nr’" ) _, e tend pas vers 0, or cette suite est extraite de la suite

n =

_1)" . —1)" . 7o J R
( n g ) , donc cette suite ( n g ) ne tend pas non plus vers 0, ce qui montre que la série numérique
n 1

n 1

—1)" . ‘s
( Z nH g ) diverge grossiérement.
n=>1

De ces résultats, on déduit que le rayon de convergence de la série entic¢re ( Z nH g ) est égal a 1, et que cette série
n>1

diverge aux deux bornes de I’intervalle ouvert de convergence.

+

b. On a pour tout z e] 1 1[ Z ", d’ou en dérivant : ﬁ Z 2n 22" ' etdonc
1—3}‘ n =1

2%2 + )
28 S ona
n=1

(1)

+ o T + 0 2n+1
De ;2 = Y ", on déduit aussi en intégrant terme a terme, pour tout z € |- 1,1] :I dt Z v On
1- = )1 - 2+ 1
1 1 2
calcule : + = R
1-¢t 1+t 1-1
r z 1 1+ x
d’ou ———1 1—t +In(1+1¢ =—In )
- (14 0] = 3w 122]

Ce qui donne avec le raisonnement de la question précédente :
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Pour tout z € |-1,1], z ntY g =

e ALt
n=1 (1_332)2 2 1-=2

Exercice 20

R—>R
Soit f: %J

L
J' 2
0
a. Déterminer le développement en série enticre de f par la méthode de I’équation différentielle, et donner le rayon de

convergence de cette série enticre.

1 k
b. Calculer, pour tout n € N, Z u "
02k + 10k

Sol.
R—>R z

a. Notons ¢: »* . Lafonction @ : z — I e 2 dt estla primitive de ¢ sur R qui s’annule en 0 , ce qui suffit pour
T — e’ 0

monter que f (0) = 0 etque f estdeclasse C” sur R de dérivée : Pour tout = € R,

f(z)=1 %j ?dt=1—xf(x).

y +zy=1

On en déduit que f est la solution sur R au probléme de Cauchy : { ( 0 ) 0
y =

Analyse : On suppose que f est développable en série enticre sur ] -R,R [ avec R > 0 . Ce développement en série enticre

séerit: Vo e |[-R,R[, f(z) = +Zw a,z".Onaalorspourtout = € |- R, R :

n=20

+oo + oo + 0
= Z na,z" ' = Z (n+1)a,,,z" =a, + Z (n+1)a,, z", et
n =0 n=0

= +Zw a, 2" = +Zw a,_,z",etdonc f'(z)+zf(z)=a, + +Zw ((n +1)a,,, - an_l):z:”.
n =0 n=1 n =1

On en déduit, d’apres 1'unicité du développement en série entiére de la fonction z — 1 sur ]— R, R[ les résultats suivants :

@Ha, =1

(ii) Pourtout n € N, (n +1)a,,, —a,_, =0.

Enfin,de f(0) = 0, on déduit :

(iii) a, = 0.

De (ii) et (iif) on déduit : Pour tout p € N, a, = 0.
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. .o , . 1 1 1 2pp!
De (i) et (i), on déduit : Pour tout p e N, ¢, ., =1.——-- - ‘
! 35 2p+1 (2p+1)!
|
Synthése : On considére la série enticre Z 27 p! p2r !
(2p+1
27’*1(1)4_1)! 2p+3
x
2p + 3)! 2 +1)z? 2
Soit >0, alors ( pp ) = (p ) a — 0 ce qui montre avec la régle de
p' I21/+1 (2p+2)(2p+3) 2p+3 p = +0

(2p +1)!

d’Alembert que cette série enticre est de rayon de convergence infini.

. : y+zy=1
Enfin les calculs faits lors de 1’analyse montrent que sa somme est solution sur R au probléme de Cauchy : ( 0 ) 0
y =

Comme on sait que cette solution est unique, on en déduit que cette somme est égale a f .

. . < 27 p!
En résumé, f est développable en série entiére sur R, et, pour tout z € R, f(:c) = Z (2—1)1)' z?rrh,
p+1)!
a’ L | .712 n + o0 1 ) oz’ + o (_ n
b. On sait que pourtout x € R ona e 2 = Z— — = Z " et e 2 = Z
n:On! 2 7L:()2nn! n =20 2

Le théoréme d’intégration terme a terme pour une série entiére montre alors, pour tout z € R :

T t,2 . n
t + (_1) $2n+l
2 dt = .
J.e Z 2"n! 2n + 1

0 n =20

Enfin le théoréme sur le produit de Cauchy de deux séries entiéres montre que, pour tout z € R :

A’ 2k +1 - k
T x?n 2k + o0 2n+1 n (_1)

qOED) Z 2k+1 25k12" F(n - -2z ; kzo(2k+1)k!(n—k)’

nf()k*(] n

+ o0 1‘2n+1 n (_1)k n
) 2"n!kz 2k+1(l<:j

n =20 0 =0

L’unicité du développement en série entiére de f montre alors que, pour tout n € N,

n _ k 2n | 2
1 Z( 1) (n)__2"n! etdoncz =M.
2" n = 2k + 1k (2n+1) = k:+1 k (2n +1)!

Remarque : constater (sans calculer) que f est développable en série entiére sur R et est une fonction impaire aurait pu

alléger les calculs et les raisonnements du (a).

Exercice 21

(_1)“[2nj
On pose, pourtout n € N : a = .

2 1\ n
a.Montrerque: Vn e N,(n +1)a,,, =-2(2n-1)a

b. Déterminer le rayon de convergence de la série enticre ( Z a,z" ) N
n e
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¢. Onnote f la somme de cette série entiére sur son intervalle ouvert de convergence. Trouver une équation
différentielle linéaire du premier ordre vérifiée par f .

d. En déduire f.

to g
e. Calculer Z 4—’:

n =0

Sol.

-1)" (2n)! a -1 (2n+1)(2n +2 2(2n -1

a.Pourtout n e N, a, = (=) ( )Q;t()et "H:—2n1( " ) Z )=— (27 ),

(2n —1)(n!) a, 2n +1 (n+1) n+1
d’ou le résultat.

e a, . z"" 2(2n-1)z ‘
b. On en déduit aussi pour tout z > 0 : - = N — 4 x.Laregle de d’Alembert assure alors que
a,z"” n + no o

le rayon de convergence de la série enti¢re (Za”x” ) . est égala 4.

c. Pour tout z € }—i,i[onad’unepart: f(z)=Y na,z" "= i (n+1)a,, z".
n =0

Doautrepart: —dz f'(z) +2f(z)= Y —4na,z" + Y 2a,z" = D (-4n+2)a, z",
n=1 n =20 n =20
d’ou, avec la relation montrée au (a) : f'(z) = -4z f'(2)+ 2 f(z).Comme f(0) =a, = —1, on en déduit que f
2

11
est la solution sur } e Z[ au probléme de Cauchy : ( C ) :

d. On calcule : J. dz = % In ( l1+4z ) + cste , donc la solution générale de ( E ) sur } - i, i{ est

4z +1
y'IHL etonapOurtouth}—l l[ f(x)_ —
A wre val’ Jre it
1
* |:0’_:|_>R 1 )
e.Onposepourtout n € N™ : u : 4 » de sorte que pour tout & & O’Z ,f(:v)=—1+ Zun(m)'
n=1

r —a,z"

1 , | (-1)" (2n
On fixe d’abord z € | O, 1 et on a les résultats suivants, avec u, () = z".

(i) La série ( Z u, ( T ) ) .- estune série alternée.

n e
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(if) Avec la formule de Stirling, on a : | u, (z)

2n
[2”) Tnn
e n n cste . .
=(42) , ce qui montre, puisque
2

0<4z<1,que un(m) - 0.

n — + o
a2t 2(2n-1)2 , .
(iif) - = < 4z <1, donc la suite (‘u () ‘ ) est décroissante.
a,z” n+1
On en déduit avec le théoréme sur les séries alternées d’une part que la série numérique ( z u, ( z ) ) .. estconvergente,
n e

- . 1 .
doncque f: 2 +— —1+ Z u, ( x ) est définie sur [ 0, Z} , d’autre part que le reste d’ordre n vérifie :

n=1

|Rn(3:)| < |un+1(x)|

On a alors les résultats suivants :
(i) Pourtout n € N7, u

|

(if) Pourtout n € N°, |R"(x)| < |un+1($)| <

=~ | =

est continue sur [O,

n

1 .
uwl(—j‘.Oronamontreque
’ 4

1 .
U,,H(—j‘ — 0, ce qui montre
) 4 n — +x©
(. . . , 1
que la série de fonctions ( Z u, ) .- converge uniformément sur | 0, 1l

: . . . 1 . . 1
On en déduit que la somme de cette série de fonctions est continue sur [ 0, 1 } , et par suite que f est continue sur { 0, 1 } .

+ o0 a
Ceci permet de calculer : Z = f [lj = lim f ( x) = lim

-1 -1
4" 4) ., 1,1 pol. L Tvdn 2
4 4 4 4

n =20

Exercice 22

a. Déterminer o et b telsque Vn € N*, J(at + bt2)cos(nt)dt L

2
0 n

o0 1
b. Calculer 2—2 .
n=1 n

Sol.

a.Soit (a,b) € R?, onaavec deux intégrations par parties (tout le monde est bien C ') :
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f at +bt? cos(nt)dtz{(at+bt2)M}n —]E(a+2bt)Mdt

1 . .
Onpose a = —1leth = o et on obtient bien :
T

o t—y
—_
IS
~
+
(=
~+

no
~—
(@}
]
[72]
—_
3
~
~
[oR
~~
Il

b.Pour ¢t € |0, n[ et n € N, on calcule :

n n . ei(71+1)t _e;jL
Zcos(kt) Re Ze = Re — T
e J—

k=1

I
=
o

1
i 71+‘1t LE Sln((n‘f‘)tj
d’oﬁicos(kt)zlm e( 2]_62 = 2 -

1
k=1 2 sin tj 25in(t 2
2 2

On en déduit (Ia convergence de I’intégrale apparaissant dans cette écriture étant une conséquence de 1’existence de celles
. 1
. sin| | n + 2 t 1
= | [ J . -5 |at.
0 2sin| —
2
Ce qui s’écrit aussi (I’existence de la premicre intégrale justifiant la convergence de la seconde intégrale) :

n n T 2_
%:Lj(mw —t’)dt +th—msm({n+ljtjdt.
=k 4nm 4n? sin(tj 2
2

7
composant la somme) : Z
k=1

0

On sait que sinc: ¢ +— est de classe C” sur R, car développable en série enti¢re sur R , et ne s’annule pas sur

1n(t)
t

2 —
]-n, n[,donc ¢: ¢ — _27'”:2(.75 2m)
sin(tj sinc (¢)

est définie et de classe C* sur [0, 7 ].

Tt -2 , 1 r , 1 . : :
Ona: J to2nt sin| | n + 3 t|dt = j 0} ( t ) sin| | n + B t |dt, et I’on peut effectuer une intégration par parties
0

qui donne : I
0
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On en déduit en posant M, = sup (|(p|) et M, = sup (|(p' |) (qui existent bien car ¢ et ¢’ sont continues, donc bornées sur
[0.7] [0.7]

K 2M M
le segment [0, ]): I(p(t)sin((nJrljtJdt s#,
0 2 n+§

—_

. i 2 —2 . . n T
Onendédult:jusm[(n+—jtjdt — 0, ce qui montre que : % - L.|.(2thf—7f2)dt.
0 Sln(;) 2 n —> +o k—lk n — +o 47-[0

) T 3 T 2 3 . + 0 1
On calcule pour terminer : J.(Qnt - tQ)dt = {TEtQ —t—} = g , ce qui donne : Z — %
0 n=1T

Exercice 23

Montrer que cos (1) est irrationnel.

Sol.

p + oo (_1)71

Supposons cos (1) = = ou p € Z et ¢ € N". On sait que cos (1) = Y

. Cette série vérifiant clairement le
q = (2 n ) !

théoréme sur les séries alternées, cos ( 1 ) est strictement compris entre deux termes consécutifs de cette somme. En

N o < (-1)" o (=1)"
particulier il est compris strictement entre a = eta = + .
kZ:“O(Zn)! kgo(Qn)! (2q)!

Donc (2q)!cos(1) est strictement compris entre (2q)!a et(2q)!a + (—1)

Or il est immédiat que les trois nombres (2 ¢ )!cos (1), (2¢)!a et (2¢)'a + (—1)" sontdes entiers, et qu’il n’y a pas

d’entier entre les deux derniers. D’ou la contradiction.

Exercice 24
In ( 1-=z )

- X

Soit g: z +—

a. Montrer que ¢ est développable en série entiére au voisinage de 0. On donnera une expression de ce développement

T 1

faisant intervenir H = Pk
k=1

b. Déterminer le rayon de convergence R de cette série enticre.

+

. (-1)" 4,
. Dét —_—

C cterminer nzzll R

Sol.
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a. On sait que x +— est développable en série entiére sur ]—1, 1[ et que ce développement en série enti¢re s’écrit :

Vxe]—

Zax ua, =1.

n =0

On sait aussi que z — In ( 1 -2 ) est développable en série entiére sur ] -1, 1[ et que ce développement en série enticre

séerit: Vo e |-1,1[,In(1 - z) Zb " oub,

n=1

. . . In(1-2z , . .
Donc d’aprés le théoréme sur le produit de Cauchy des séries enticres, ¢: = +— % est développable en série entiere

sur |1, 1] et ce développement en série entiére s*écrit: Vo e |-1,1[,g(z) = D ¢, 2", on

n—1 n—1 n

=2 ab, ;=2b, ;=>0b=-H,

j=0 j=0 j=1

b. D’apreés ce qui précéde ona R > 1. Supposons R > 1, alors cette série entiére convergeraiten =z = 1, et donc

=—-H, 6 — 0,cequiest contradictoire puisqu’on saitque 4/, — +oo.Donc R =1.

n n
n —» + o n — +ow

¢.Onapourtout z € [0, 1] (intégration terme & terme de cette série entiére sur [0, -z ]):

[ [ < (_l)an 1
- —t)dt = dt— H |t"dt = —.T”+ .
'([g( ) .([g nz—:l J. n—l n+1
[0,1] > R
On pose alors u, : (_1)"”[{” o
T o= —r"

n+1
Tout d’abord on fixe z € [O, 1] et on a les résultats suivants :

(7) La série numérique ( Z u, (z) ) __ . estune serie alternée.

(ii) On connait le résultat classique : H, = In(n)+y + o(1),ou y estlaconstante d’Euler.

n — +x©

Onendéduit u, (z) — 0.

n — + o

(7ii) Pour monter que la suite de terme général | U, ( x ) | est décroissante, il suffit de montrer pour tout n > 2

Hn Hn—l . , .
< . On raisonne par équivalence :
n+ 1 n
Hn Hn—l
< enH, <(n+1)H, ,on(H, -H, | )<H ,<1<H .
n+ 1 n

Comme il est évidentque 1 < H  _,, on en déduit bien que la suite de terme général | u, ( x )| est décroissante.

D’apres le théoreme sur les séries alternées, on en déduit que la série numérique ( Z u, ( T ) ) ., est convergente et que son
n e

H H

n+1xn+1< n+1

reste d’ordre n vérifie : |Rn(x)| < |u"+] (z)| = <
n n
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De sorte qu’on a les résultats suivants concernant la série de fonctions ( z u, ) .
n e

(i) Pour tout n € N*, u est continue sur [0, 1].

(if) La série de fonctions ( Z u, ) .- converge simplement sur [O, 1] et son reste d’ordre n vérifie :
n e

H n +1 H n+1 Jon . . ,
R, ( z )| < ——,avec —— —> 0. Donc la série de fonctions ( Z u, ) .+ converge uniformément
n e

Vme[
n + 2 n+ 2 n->+e

sur [0,1].

On en déduit que la somme S de cette série de fonctions est continue sur [ 0,1 ] .

e (), o O m(1e)
Etenpartlcuher.nz::l — _S(l)_mﬁhlr’gdS(x)_xﬁhlr"?d—}[g(—t)dt——mﬁhﬂld}[—lth dt.
+oo _1 nH 1
C’est-a-dire : z()—":—jwdt.
= n+1 y 1+
On calcule alors avec une intégration par parties (v = 1n(1 + t), u' = . ! e v = N ! . v = ln(l + t)):
+ +

1 1 1 2
IMdt =[ln2 (1 + t)]1 - JMdt,cequidonne jMdt = ln—(2).Endéﬁnitive, ona
0 0 y 1 2

1+t 1+t +t
+ o -1 n 1 2
montré:z( ) Il 1+t :—M.
n =1 n+1 0 1+t 2
Exercice 25
= 1

Calculer en utilisant une série entiére : Z (

n =20 2TL
n

Sol.

Remarquons tout d’abord que :

[:nj Ei?)); (n+1)° n o+ 1

1
= = = -> —.
( n+1 ] (2n+2)!  (2n+2)(2n+1) 2(2n+1)rn-+=4
2n+2)  ((n+1)1)
Ceci assure, d’aprés la régle de d’ Alembert, que la série étudiée est bien convergente.
2n + o ’
Onnote ¢, = ——,et,pourtout z € |—1,1[, f(z) = a "
= et 110,/ (a) = X o,
n
5 \ . ;A an+1m2n+2 27’L+2 2 2 . , N
D’apres ce qui préceéde, pour tout x = 0, o =3 1 — z° etlerayon de convergence est bien égal a
anl‘ n + n — +w
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+ o0 1 1
Le réel cherché est alors — = = |.
nZ::O 2 n f ( j
n
Onapourtoutn e N: (2n +1)a

7.

=(2n + 2)a,, ce qui devrait conduire a une équation différentielle vérifiée par

n+ 1

Onapourtout # € |- 11[ =2 f (x) = 3 a, x¥ " puis 20 £ (2) + 2” f(x) = ¥ (20 + 2)a, 2> ou
n =0

= n =20

encore 2z° f (z) + z° f'(z) = i (2n +2)a,z*""".

n =20

+ o + o
Doautrepart, f(z) —1= Y a,z*" = D a, 2> et f(z)=> (2n+2)a,,, z*""", donc
n=0

n=1

+ 0

zf(z)-f(z)+1= )Y (2n+1)a,,, z*""* Ilenrésulte que

xf'(x)—f(x)+1=2x2f(x)+x3f'(m).

Ainsi, f est donc solution sur ]0, 1[ de I’équation différentielle résolue en 3’ :

1+2z°? 1
E): y - . = - .
(B)oy = ———5y=-——m7
2
Résolvons I’équation homogeéne ( H ): y' — L+ 2333 =0.
T —x
2
On trouve que 1+ ng = 1 + 3_1 .3 , on en déduit que :
T -z x 21-z2z 21+2
1+22° 3 3
=In(z)-=In(l-2z)—-=In(1+ x) + cste.
JL2 () - 2w a) - (14 o)
Les solutions de ( H ) sont donc les fonctions z +— Lm, CeR.
(1-27)
Résolvons maintenant ( E ) par la méthode de variation de la constante. On pose : y ( x ) = LM , et la fonction y
(1-27)
) ) ) 2T 1 o ., 1-2z°
est solution de ( E') si et seulement si 75 = — ———, soitsi et seulement si ¢’ = - ~———
(1 _$2) ac(l - ) x

Le changement de variable ¢ = cos () donne :

T , arccos (z)
J.— Lot dt = J. tan2(u)du[tan(u)—u]amcos(z)=—1_$2

7 - - arccos(a:) + cste.

On en déduit que y est solution de ( E ) si et seulement si z estdelaforme: z: z — C — arccos ( x ) + ~——, ainsi

les solutions de ( E ) sur |0, 1[ sont les fonctions
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:C(C' - arccos(:c)) + 41 -2z

T — f , C eR.
(1—31:2)3/2
La fonction f est donc elle aussi de cette forme, avec, puisque lirIl(] f (:17) =1:C = g
_ x arcsin (z) 1 o
Finalement: V2 € |-1,1[, f(z) = 7+ —, et en particulier :
(1_12) 1-=2
1 (1

o — arcsin | —

Z : _f(l]—2 £2J+é— 2n +é

71,—0[2’”‘) 2 3 9»\/3 3

Exercice 26

Soient les suites (un)n oyt (V”)n . définies par :
ug =1 u,
- et VneN,v, =—.
VneN,u,,, =(n+1)u, +(-1)
1. Calculer vy, v ,v,,Vv;.

2. Exprimer v, , ; en fonctionde v, etde n.

3. Montrer que la suite ( v, ) y converge, et indiquer sa limite.
n e

+

8

4. Onpose S(x) =

n

v, x " . Déterminer le rayon de convergence de cette série entiére, et donner une

0

HM

équation vérifiée par S .

- X

(&

5. Onpose f ( X ) = . Déterminer le développement en série entiére de f, son rayon de convergence ainsi

1 —x
que son expression en fonction de v, .

6. Sur quel domaine le développement en série enti¢re de f est-il valable ?

Corrigé
1. Onauozl,ul:0,u2:1,u3:2puisv0:1,vl=O,v2=%etv3=%.
1 n+1 _1 n+1
2. Onavn+1:u:u_” +¢=Vn +L_
(n+1)! n! (n+1)! (n+1)!
n n n k
3. D’apré i préced tout N" - :ﬂ ; _ _ (-1)
. pres ce qui précéde, pour tout n € L ; ,pulsZ(vk vk_l) Z P
n! P P !
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k 0
n — 1 _ 1
ce qui donne par télescopage : v, — v, = Z % .Ennotantque v, =1 = % , on a alors
k=1 :
s (=) . - - (-D° o
v, = z T On sait que la série exponentielle Z — est convergente, de somme égalea e ~ . Cela
k=0 : k>0 :

revient a dire que la suite ( v, ) converge,etque lim v, =e" I
neN n — + o

4. Pour déterminer le rayon de convergence, on peut par exemple utiliser la régle de d’Alembert : puisque ( v, )

neN
.. . . , N .1 . ps . Vo +1
admet une limite finie non nulle, cette suite ne s’annule pas a partir d’un certain rang, et vérifie lim =1;
n—>+o VA
la régle d’Alembert assure donc que le rayon de convergence de la série entiére Z v, x" estégalal.
(_1) n+1
Onapourtout n e N, v ., =v, + W,doncpourtout xe|-11],
n + !

+ oo + o + oo 1 ) n+1

Dv, xSy v x + Z x" "1, ce qui donne :
n=20 n=20 — l’l + 1)

+ + + o0 (_1)”

Z =x Y v, x" + ",ouencore: S(x)—1=xS(x) +e " -1,

= n=20 n=1 n!
On en tire immédiatement :

e—x
Vxel|-1LI1I,S(x)= .
=11, s (x) = S
5. Cf. la question précédente.
6. Pourtout V x e ]—1 1[ S Z " . Le rayon de convergence étant égala 1, Z v, x" diverge

lorsque |x| > 1. Comme (v " ) admet une limite finie non nulle, Z v, x" diverge pour x = £ 1. Le domaine de

convergence du développement en série entiére de f est donc égal a ] -1,1 [ .

Exercice 27

1. On considére une suite (an) = (e "e) .
neN n e N

a. Déterminer le rayon de convergence de Z a,z

+ oo

b. Calculer Z a,z".
n=20

n
2. On considére maintenant la suite ( b, ) N Z
n e

a. Déterminer le rayon de convergence de Z b,z"
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+
b. Calculer » b, z".
n=0

Corrigé

1. lasérie Z a,z" estgéométrique. Elle a pour rayon de convergence e ~ O et pour tout z tel

+ oo
que|z|<efe, Z a,z" :;e'
n=20 l1—-e z

2a. Si0=0,b, =n+1,et Z b, z" apour rayon de convergence 1 .

(n+1)9_1

e
, donc :

Sio=0,b,

e? -1

Sie<0,b, ~1,et z b, z" apourrayon de convergence 1 .

e(n+1)6

Si0>0,b, , et, par la régle de d’ Alembert, Z b, z" apourrayon de convergence e 0

!

e® —1

En résumé, le rayon de convergence de z b, z" est min { e Y, 1} .

n
2.b. Onab, = Z a,c,_;,ou (c " ) y st la suite constante égale & 1. On reconnait un produit de Cauchy ;
n e
k=0

on retrouve le fait que le rayon de convergence R de Z b, z" estsupérieur ou égal a min { e 91 } . I lui est égal

d’apres la question précédente, et I’on a pour tout z vérifiant |z| < R :

+ o 0 + Lo + o0 | 1 |
ngobnz [ngo ’ J[ngo J (l—z)(l—eez)

Exercice 28

:I;TI,
a) Déterminer le rayon de convergence de la série enticre — |
n!

b) On note f la somme de cette série entiére. Montrer f(z) = o(e‘” )
T—>+00

Solution

n+l

_r
. " (n+1)!2 €T . .
a) Soit x>0, on a alors pour tout ne N, —#0 et - = > — 0. Ce qui, avec la regle de
n! L (n+1) n—>+0
n!?

d’Alembert des séries numériques, permet d’affirme que le rayon de convergence de cette série entiere est +oo.

. o . 1 ¢
b) Soit £ >0, il existe alorsun n € N tel que - < 5 On fixe un tel n . On a alors pour tout z >0 :
n.
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n—1 /c

n—1 l’k +00 x/c n—1 xk £ I I'
792 2 2 Z z 2 *Z 2
k! —= 1k' +£

2
k=1 k' + 2 = < k=1 .
T ez e.t 630 6x )

E=—— — 0, il existe donc X R, tel que, pour tout z> X,

Msg.

(&

Or par croissance comparée,
En résumé, pour tout ¢ >0, il existe X € R, tel que, pour tout z> X, 0 <

On a bien : f(ac)m;wo (e”’ ) .

n—

=~
II

,_.

.fI/'
2
=k
61

<

£
5
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