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Exercice 1 

Etude en 
9

10
 de la série : 

2

2

2

1

n
n

n

x
n −

 . 

 

Corrigé 

 

Posons 2

2
2 2

2

1

n
n

n

n n

x u
n 

=
−

  . pour  x  non nul, nu  ne s’annule pas, et 
( )

2

1 2

2

1 1
2

1

n

n

u n
x

u n

+ + −
=

−
  

admet pour limite 
22 x . 

D’après la règle de d’Alembert, 
2

n

n

u


  converge lorsque 
22 1x  , soit 

1

2
x  , et diverge quand 

1

2
x  . 

Alors, 2

2
2

2

1

n
n

n

x
n −

  a pour rayon de convergence 
1

2
. 

Comme 
9 1

10 2
 , 2

2
2

2

1

n
n

n

x
n −

  diverge pour 
9

10
x = . 

 

S’il restait du temps pour cela, il était naturel que l’examinateur demande de calculer la somme de la série entière 

étudiée, allons – y. 

Pour tout  x  tel que 
1

2
x   : 

( )

( ) ( )

( ) ( )

2

2

2 2
2 2

2 2

2

2 2

2 2

22

1 1

2 21 1

2 1 2 1

2 21 1
:

2 1 2 1

n
n

n

n n

n n

n

n n

n n

x
x

n n

x x

n n

x x

n n

+  + 

= =

+ 

=

+  + 

= =

=
− −

 
 = +
 − +
 

= +
− +

 



 

 

le découpage est autorisé, car, à nouveau d’après la règle de d’Alembert, les deux nouvelles séries entières ont encore 

pour rayon de convergence 
1

2
. 

Pour 0x = , 2

2
2

2

1

n
n

n

x
n

+ 

= −
  vaut évidemment  0 . Pour  x  non nul, en changeant d’indices, en arrangeant un peu, 

puis en utilisant le développement en série entière de ( )ln 1x x− , on obtient : 
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( ) ( )

( ) ( )

( ) ( )

( )

( )

1 1
2 2

2 2

2 2
2 2 2

2 2

2

2
1 3

2 2

2 2 4

2
1 1

24
2

2
1

4
2 2

2

2 22 1

1 1 4 1

2 21

4

2 21
2 4

4

24 1 1

4 2

4 1 1
ln 1 2 .

4 2

n n
n

n

n n n

n n

n n

n n

n n

n

n

x x
x x

n n x n

x x
x

n x n

x x
x x x

n x n

xx
x

x n

x
x x

x

− +
+  +  + 

= = =

+  + 

= =

+  + 

= =

+ 

=

= +
− − +

 
 = +
 
 

 
 = + − −
 
 

+
= − −

+
= − + − −

  

 

 



 

 

Exercice 2 

Etude de la série 

( )cosh . n

n

n x  

Corrigé 

 

La série entière 
0

e .n n

n

x


  a pour rayon de convergence 
1

e
, et pour tout 1 1e , ex − −  −  ,  

0

1
e .

1 e

n n

n

x
x

+ 

=

=
−

 . De même, 
0

e .n n

n

x−



  a pour rayon de convergence  e ,  et pour tout  e, ex  − , 

1
0

1
e .

1 e

n n

n

x
x

+ 
−

−
=

=
−

 . 

On sait que lorsque n

na x  et n

nb x  sont de séries entières de rayons de convergences différents  R  et  

R ’, le rayon de convergence de ( ) n

n na b x+  est égal à ( )min , ’R R . Ici, le rayon de convergence de  

( ) ( )
1

cosh . e e .
2

n n n n

n n

n x x−= +   est donc égal à 
1

e
. 

Pour tout 1 1e , ex − −  −   : 

0 0 0

1

2

1
cosh . e . e .

2

1 1 1

2 1 e 1 e

1 cosh 1
.

1 2 cosh 1

n n n n n

n n n

n x x x

x x

x

x x

+  +  + 
−

= = =

−

 
= + 

 

 
= + 

− − 

−
=

− +

  

 

 

Exercice 3 

Pour tout n   , on pose 
0

1

!

n

n

k

a
k=

=  . 
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a.   Rayon de convergence et calcul de 
0

n

n

n

a x
+ 

=

 . 

b.   Développement en série entière de 
( )

2

e

1

x

x
x−

 . 

 

Corrigé 

a.   On sait que la suite ( )na  converge, et que 
0

1
lim e

!
n

k

a
k

+ 

=

= = . Donc : 

•    La suite ( )na  est bornée, ce qui entraîne que pour  x  tel que 1x  , n

na x  converge. Ceci revient à dire  

que le rayon de convergence de la série entière n

na x  est supérieur ou égal à  1 . 

• •  La suite na  diverge grossièrement ; le rayon de convergence de n

na x  est alors inférieur ou égal à  1 . 

Par suite,  n

na x  a un rayon de convergence égal à  1  . 

• • •    Notons ( )nb  la suite de terme général 
1

!
nb

n
= , et ( )nc  la suite constante égale à  1 . 

Pour tout n   ,  
0 0

1

!

n n

n k n k

k k

a b a
k

−

= =

= =  , la série entière n

na x  est donc le produit de Cauchy des 

séries entières 
!

n
n

n

x
b x

n
=   et n n

nc x x=  . 

On a alors pour tout  1, 1x  −  : 

0 0 0!

n
n n

n

n n n

x
a x x

n

+  +  + 

= = =

   
=    
   

   , 

d’où 
0

e

1

x
n

n

n

a x
x

+ 

=

=
−

 . 

 

b.   On pourrait raisonner à nouveau en termes de produits de Cauchy, mais il y a plus simple. En notant  f  la fonction  

somme de la série entière n

na x , on a pour tout  1, 1x  − , ( )
e

1

x

f x
x

=
−

, puis 

( )
( )

2

e e
’

1 1

x x

f x
x x

= +
− −

, d’où 
( )

( ) ( )2

e
’

1

x

f x f x
x

= −
−

. 

( )
2

e

1

x

x
x−

  est alors développable en série entière sur  1, 1−  comme somme de deux fonctions l’étant, et 

pour tout  1, 1x  −  : 

( )
( ) 12

0 0

e
1

1

x
n n

n n

n n

n a x a x
x

+  + 

+

= =

= + −
−

  ,  

soit : 
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( )
( )

1

2
0 0 0 0

0 0

e 1 1
1

! !1

1 1
.

! !

x n n
n n

n k n k

n
n

n k

n x x
k kx

n x
k n

+  + + 

= = = =

+ 

= =

   
= + −   

−    

  
= +  

   

   

 

 

 

Exercice 4 

Equivalent et limite de 

( )2

2

2 2 1n

n

n

n

 
 
 

−
. 

 

Corrigé 
Comme quoi il est bon de connaître (comme le programme l’exige) la formule de Stirling : 

! e 2n nn n n−  . 

Celle – ci donne :  

( )

( )

( ) ( )

( )

( ) ( )

22 2

2 2

2
2

2

2 !

2 2 1 2 2 1 !

2 e 4
,

2 2 1 e 2

n n

n n

n n n

n

nn

n n n

n n

n n n

−

−

 
 
 

=
− −



− 



 

et en simplifiant :  

( ) ( )2

2

4
,

2 2 1 2 1 2n

n

n n

n n n

 
 

 

− − 
  

d’où finalement 
( ) ( )

32

2

2

1 1

2 2 1 2 1
2

n

n

n

n n n
n

 
 
 

− − 


 . On en déduit immédiatement  

que 
( )2

2

lim 0
2 2 1nn

n

n

n→ + 

 
 
 

=
−

 . 

 

 

Remarque 

Un coefficient de la forme 
( )2

2

2 2 1n

n

n

n

 
 
 

−
 peut (doit ?) faire penser à un développement en série entière usuel.  

De fait, on vérifie que le développement en série entière de 1x x−  (de rayon de convergence  1 ) est : 
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( )2
1

2

1 1
2 2 1

n

n
n

n
x

n
x

n

+ 

=

 
 
 

− = −
−

   . 

Le fait que 
( ) 32

2

2

1

2 2 1
2

n

n

n

n
n

 
 
 

−


  assure que 
( )2

2

2 2 1n

n

n

n

 
 
 

−
  converge. Or l’on sait que, lorsqu’une 

série entière converge en l’une des bornes de son intervalle de convergence, elle y est continue. On peut donc écrire 

que 
( )2

1

2

1 1 1
2 2 1n

n

n

n

n

+ 

=

 
 
 

− = −
−

 , d’où l’égalité 
( )2

1

2

1
2 2 1

n

n
n

n
x

n

n

+ 

=

 
 
 

=
−

   . 

 

Exercice 5 

On définit la suite  ( )n n
u

 
 par :  

0 1 1u u= = , et pour tout 
*n   , 1 1

2

1
n n nu u u

n
+ −= +

+
  . 

a.   Montrer que pour tout  n , 
1 3

1

n

n

u n

u n

+ +


+
. 

b.   Montrer que 
2

nu

n

 
 
 

 est décroissante. 

c.   En déduire le rayon de convergence de la série entière de terme général n

nu x .  

On note  f  sa somme. 

d.   Déterminer une équation différentielle satisfaite par  f ,  et calculer  f . 

 
Corrigé 

a.   Il est immédiat que la suite ( )nu  est bien définie, et à valeurs positives. 

La relation : 

1 1

2
,

1
n n nn u u u

n



+ −  − =
+

  

assure que ( )nu  est croissante à partir du rang  1 (comme 1 0u u= , elle est en fait croissante à partir du rang  0 ). 

On a 
1

0

3
1

1

u

u
=  , et pour tout 1n   : 

1

2 3

1 1
n n n n

n
u u u u

n n
+

+
 + =

+ +
. 
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b.   D’après le résultat précédent, pour tout n    :  
( ) ( )

1

2 2

2

2

1 3

11 1

n

n

u n

nn n

u n

n

+
   +
   
   ++ +   


 
 
 

, 

soit : 

( ) ( )

( )

1

2 2

3

2

1 3

1

n

n

u

n n n

u n

n

+
 
 
 + + 


  +
 
 

. 

On a ( ) ( )
3 3 2 3 2 21 3 3 1 3 3n n n n n n n n+ = + + +  + = + , d’où 

( )
1

2

2

1
1

n

n

u

n

u

n

+
 
 
 + 


 
 
 

.  

Comme 
2

nu

n

 
 
 

 est à valeurs positives, on en déduit que la suite 
2

1

n

n

u

n


 
 
 

 est décroissante. 

 

c.   La suite ( )nu  étant strictement positive et croissante, la série nu  est grossièrement divergente. Par  

conséquent, le rayon de convergence de la série entière n

nu x  est inférieur ou égal à 1 . 

Le fait que la suite 
2

1

n

n

u

n


 
 
 

 soit décroissante assure que ( ) ( )( )2 1nu O n O n n= = − . Le rayon de 

convergence est donc supérieur ou égal à celui de la série géométrique dérivée seconde ( )1 nn n x− , qui 

vaut  1 . 

Finalement, le rayon de convergnce de n

nu x  est égal à  1 . 

 

d.   On a pour tout 
*n   , ( ) 1 11 2n n n nn u n u u u+ −+ = + + , et l’on sait que la série  

entière n

nn u x  a même rayon de convergence que n

nu x . 

On peut donc écrire que pour tout  1, 1x  − , 

( ) 1 1

1 1 1 1

1 2n n n n

n n n n

n n n n

n u x n u x u x u x
+  +  +  + 

+ −

= = = =

+ = + +    , 

soit : ( ) 1 1

1 1

0 1 0 1

1 1 1 2n n n n

n n n n

n n n n

n u x x n u x u x x u x
+  +  +  + 

− −

+ −

= = = =

   
+ − = + − +   

   
    . 

On en déduit que ( ) ( ) ( ) ( )’ 1 ’ 1 2f x x f x f x x f x− = + − + ,, la fonction  f  est donc solution  

sur  1, 1−  de l’équation différentielle :      ( ) ( ) ( ) ( )1 ’ 1 2x y x x y x− = + . 
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Les solutions de cette équation différentielle (linéaire d’ordre  1 ,  homogène) sur  1, 1−  sont les fonctions 

( )( )
( )

2

3

1 2 2 2 3
: exp d exp d

1 1 1

e
exp 2 3 ln 1 ,

1

x x

x

t t
f x t t

t t t

x t
x



−

    + − +
 =  +    

− − −    


=  − − − =  

−

 



 

En particulier,  f  est de cette forme, et, comme ( )0 1f = , c’est la fonction 
( )

2

3

e
:

1

x

f x
x

−

−
 . 

 

Exercice 6 

a.   Convergence de la série de terme général :  

( )1
ln

1

n

n

n
a

n

 − +
 =
 + 

 

b.   Rayon de convergence de la série entière de coefficient na . 

 
Corrigé 

a.   On a  

( )

( )

( ) ( )
3 / 2

1
1

ln
1

1

1 1 1
ln 1 ln 1

2

1 11 1 1 1
,

2 2

n

n

n

n n

n
n

n
n

a

n
n

nn

O b
n n n nn n→ + 

  −
 + 

   
=  

 +
  
 

 −  
 = + − +     

 − − 
 = − − + = − +     

 

où 
3 / 2

1
nb O

n

 
=  

 
. 

La série nb  converge absolument par comparaison avec la série de Riemann 
3 / 2

1

n
  ; 

( )1
n

n

−
  converge 

d’après le théorème spécial des séries alternées, et la série harmonique 
1

n
  diverge. 

Par conséquent,   la série na  diverge  . 

 

b.   La divergence de na  assure que le rayon de convergence de la série entière n

na x  est inférieur ou  

égal à  1 .  De plus, la suite ( )na  converge vers  0 ,  le rayon de convergence de n

na x  est aussi supérieur ou 

égal à  1 .  Ainsi,    le rayon de convergence de n

na x  vaut  1  . 
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Exercice 7 

Soit ( ),f + C , bornée sur + . Pour n   , on pose :  

( )
2

0

e dn t
nI f t t

+ 
−=  . 

a.   Existence de nI . Limite lorsque  n  tend vers +  . 

On suppose désormais que ( )0 0f  . 

b.   Déterminer la nature de la série de terme général nI  (on posera u n t= ). 

c.   Soit  g  la fonction somme de la série entière de coefficients nI . Montrer que ( )1g −  existe, et que : 

( )
( )

2

2

0

e
1 d

1 e

t

t

f t
g t

+  −

−
− = −

+
 . 

d.   Donner le domaine de définition de  g . 

e.   On ne suppose plus que ( )0 0f  . Trouver  f  bornée telle que ( )1g  existe. 

 
Corrigé 

a.   La fonction intégrée est continue sur + , l’intégrale n’est donc généralisée qu’en +  . 

La fonction  f  étant par hypothèse bornée, notons  M  un réel tel que pour tout 0t  , ( )f t M . 

Alors pour tout 0t  ,  ( )
2 2

e en t n tf t M− − . Comme 
2

0

e dn t t

+ 

−

  converge, on en déduit, par 

majoration, que ( )
2

0

e dn t
nI f t t

+ 
−=   converge, et plus précisément que ( )

2

e n tt f t −  est  

intégrable sur + . 

 

b.   les fonctions ( )
2

: e n t

nf t f t −   sont continues par morceaux, et ( ) *n n
f

 
 converge simplement  

sur 

+  vers la fonction nulle. Pour tout 
*n   , pour tout ( )

2

, e t

nt f t M −

+  , et la  

fonction 
2

e tt M −  est intégrable sur 

+  : l’hypothèse de domination est donc vérifiée. D’après le 

théorème d’interversion limite / intégrale, on a alors lim 0n
n

I
→ + 

= . 

Remarque 

On pouvait se passer du théorème de convergence dominée, en écrivant plus simplement que pour tout 
*n   , 

( )
2 2

0 0

e d e dn t n t

nI f t t M t M
n

+  + 

− − 
  =  . 

 

La fonction nf  est intégrable sur +  ; :
t

u
n

   est de classe 1C , et bijective de +  sur + . 

Le changement de variable proposé est donc correct (encore heureux) : 
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( )( ) ( )’nu f u u   est intégrable sur + , et ( )( ) ( ) ( )’ d dn nf u u u f t t

+ +

  = 


. 

En explicitant ceci, on obtient 
2

0

1
e du

n

u
I f u

n n

+ 

−
 

=  
 
 

 . 

Appliquons alors le théorème d’interversion limite / intégrale à la suite 
2

0
1

e du

n

u
f u

n

+ 

−



  
  

  
  

  : la suite de 

fonctions continues par morceaux  
2

1

e u

n

u
u f

n

−



  
  

  
  

  converge simplement vers ( )
2

0 e uu f − , 

continue par morceaux. Cette suite est encore dominée par la fonction 
2

e tt M − , qui n’a pas perdu son 

intégrabilité sur +  depuis le début de cette question . Donc,  

( ) ( )
2 2

0 0

lim e d 0 e d 0u u

n

u
f u f u f

n

+  + 

− −

→ + 

 
= =  

 
 

  . 

Comme ( )0 0f  , on en déduit que 
( )0

n
n

f
I

n→ + 


 . 

( )0f

n


  diverge et son terme général est de signe constant, on en déduit que    nI  diverge   . 

 

c.   Il s’agit de prouver que ( )1
n

nI−  converge, et que sa somme vaut 
( )

2

2

0

e
d

1 e

t

t

f t
t

+  −

−
−

+
 . 

Dire que ( )1
n

nI−  converge parce que son terme général est équivalent à celui de la série alternée 

( )
( )0

1
n f

n


−  peut éventuellement être tentant, mais attention, cet argument est faux : la règle des 

équivalents ne s’applique qu’à des séries dont le terme général est de signe constant à partir d’un certain rang ; de 

toute façon, ça ne donnerait pas la valeur de la somme, oublions donc cette idée, et penchons – nous une troisième 

fois sur le théorème de convergence dominée, version série de fonctions cette fois : 

 

•  La série de fonctions ( ) ( )
2

1 e
n n tt f t −−  converge simplement sur 

+ , et  

 ( ) ( )
( )

2

2

2

1

e
, 1 e

1 e

t
n n t

t
n

f t
t f t

−+ 
 −

+ −
=

  − = −
+

  (pour  t  fixé, la somme est géométrique…). 

• •  La fonction somme 
( )

2

2

e

1 e

t

t

f t
t

−

−
−

+
  est continue par morceaux sur 

+ . 

• • •  Il est hors de question de prouver que ( ) ( )
2

1 0

1 e d
n n t

n

f t t

+ + 
−

=

−   converge, puisque l’on a  

montré en  b.  que tel n’est pas le cas ; on doit donc utiliser ce que l’on a appelé en cours la version  1  

du théorème de convergence dominée pour les séries de fonctions : 
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Pour tout t 

+    fixé, ( ) ( )
2

1 e
n n tf t −−  est une série alternée, on sait alors que pour  

tout ( ) ( ) ( ) ( )
2 21*

1

, 1 e 1 e
N

n n t t

n

N f t f t− −

=

 −  − , d’où  

( ) ( )
2 2

1

1 e e
N

n n t t

n

f t M− −

=

−  . 

La fonction 
2

e tt M −  est intégrable, et pour tout 
*N   , pour tout t 

+  , 

( ) ( )
2 2

1

1 e e
N

n n t t

n

f t M− −

=

−   : on tient notre hypothèse de domination, et alors on peut conclure :  

( )1
n

nI−  converge, et ( )
( )

2

2

1 0

e
1 d

1 e

t
n

n t
n

f t
I t

+  −+ 

−
=

− = −
+

  . 

 

d.   Pour simplifier un peu, je confonds la série entière et sa somme  g  (ce qui n’est pas bien correct) : par abus de  

langage, on parlera donc du rayon de convergence de  g . 

D’après  b. ,  g  n’est pas définie en  1 ,  son rayon de convergence est donc inférieur ou égal à  1 ; 

d’après  c. ,  g  est définie en 1− , et le rayon de convergence est supérieur ou égal à  1 . Bon, ben alors on a tout 

ce qu’il faut : le rayon de convergence de  g  est  1 ,  et son domaine de convergence est  1, 1− . 

 

e.   On peut toujours dire que choisir  f  identiquement nulle a des chances de convenir… certes ça ne risque pas de  

rapporter beaucoup de points, mais cet exercice est bien long et technique. 

Enfin, pour donner une réponse (un peu) plus constructive, choisissons 
0  si  1

:
1  si  1

t
f t

t





  . 

Alors pour tout  n , 
( )

22 21 2

1 0 0

e d e d e e d
n un t n n u n

nI t t t

+  +  + 

− +− − − −= = =   , d’où  

2

0

0 e e d en n u n

nI t

+ 

− − −  =  . 

La série nI  converge, ce qui revient à dire que ( )1g  existe. 

 

Exercice 8 

On pose : 

( )
2

1

1
f t

t t
=

+ +
. 

 a.   Prouver l’intégrabilité de 
nf  sur   (

*n   ). On note na  son intégrale sur  . 

 b.   En minorant na , prouver la divergence de na . 

 c.   Trouver un axe de symétrie au graphe de  f .  Exprimer na  à l’aide de : 
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( )2
0

d

1
n n

u
w

u

+ 

=
+

 . 

 d.   Relier 1nw +  et nw . En déduire le rayon de convergence de la série entière de terme général n

na x . 

 

 
Corrigé   

a.   pour tout t   , 

2

2 1 3
1

2 4
t t t

 
+ + = + + 

 
, qui ne s’annule pas. Alors  f  (et donc 

nf , 
*n   ) est  

définie est continue sur  .  Par conséquent, l’intégrale ( ) dnf t t

+ 

− 

  n’est généralisée qu’en −   et +  . 

Or ( )
2

1n

n
f t

t 
 , et 

2

1
n

t
t

  est intégrable sur  1, +   et  , 1−  − . 

Par suite,    
nf  est intégrable sur     . 

 

 b.   On a 

( ) ( )

( )

2 2
0 0

2

0 0

dt dt

1 1 2

dt 1 1
lim .

2 1 2 11

n n n

X

n X

a
t t t t

n nt

+  + 

+ 

→ + 

 
+ + + +

 
= = − = 

− −+  

 



 

(la convergence de l’intégrale minorante est assurée par la minoration point par point, et par la positivité de 

tout le monde). 

La série 
1

2 1n −
  diverge et elle est à termes positifs, donc    na  diverge   . 

 

 c.   •    On a déjà dit que 

2

2 1 3
1

2 4
t t t

 
+ + = + + 

 
, on a donc ( ) 2

1

1 3

2 4

f t

t

=
 

+ + 
 

. 

Alors pour tout  t , 
2

1 1 1

32 2

4

f t f t

t

   
− = = −   

   +

. 

Ceci prouve que la droite d’équation 
1

2
x =  est axe de symétrie de la courbe représentative de  f  . 

 

• •    Il est alors naturel de poser, dans l’intégrale  

2 2

d 4 d

31 3 2 1
1

2 4 3

n

n n n

t t
a

tt

+  + 

−  − 

 
= =  

       ++ +     +           

      , 



 12 

2 1

3

t
u

+
= . Certes ce changement de variable est effectué dans une intégrale généralisée, mais il est affine, 

justifier est a priori superflu (se préparer tout de même au cas d’un examinateur porté à la chipote). 

On fait donc ce changement de variable, et l’on obtient 

( )2

3 d

2 1
n n

u
a

u

+ 

− 

=
+

 , puis, par parité de la 

nouvelle fonction intégrée : 

( )2
0

4 d 4
3 3

3 31

n n

n nn

u
a w

u

+ 
   

= =   
   +

 . 

 

d.  •    On intègre par parties par exemple dans 

( )
,

2
0

d

1

A

n A n

u
I

u
=

+
 , 0A  . Les fonctions u u ,  

( )2

1

1
n

u
u +

  sont de classe 1C , et ont pour dérivées respectives 1u   et 

( )
1

2
2

1
n

u
u n

u
+

−
+

 . 

L’intégration par parties donne  

( ) ( )

( ) ( ) ( )

2

, 1
2 2

0
0

2

1 1
2 2 2

0 0

2 d
1 1

1 d
2 d 2 ,

1 1 1

A

A

n A n n

A A

n n n

u u
I n u

u u

A u u
n u n

A u u

+

+ +

 
 = +
 + +
 

+
= + −

+ + +



 

 

d’où ( )
( )

, 1,
2

2 1 2
1

n A n A n

A
n I n I

A
+− = −

+
.  En faisant tendre A  vers +  , on en déduit  

( ) 12 1 2n nn w n w +− = . 

 

 

 

Remarque 1 

Cette relation est proche de celle que vérifient les intégrales de Wallis 
2

0

cos dn

nW t t= 



 ; ce n’est pas un 

hasard, et les intégrales 

( )2
0

d

1
n

u

u

+ 

+
  ont sans doute été notées  nw  en référence à ceci. 

Si l’on pose tanu t=  dans nw , on obtient en effet 2 2n nw W −= . 

  

• •    Passons maintenant au rayon de convergence de la série entière n

na x . 

La suite ( )na  ne s’annule pas, et, d’après les résultats précédents, on a pour tout 
*n   , 
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1

1 1

4
3

4 2 13
.

3 24
3

3

n

n n

n

n n

a w n

a w n

+

+ +

 
 

− 
= =

 
 
 

. 

Il en résulte que 
1 4

lim
3

n

n
n

a

a

+

→ + 
= , et que n

na x  a pour rayon de convergence 
3

4
. 

 

Remarque 2 

Pour 
3 3

,
4 4

x
 

 − 
 

, on a après avoir justifié l’interversion somme / intégrale,  

2 2
1 1

2

22

0

1
d d

1 1
1

1

d d
1 1 3

2 4

lim arctan d ,
3 3

4 4

n

n

n

n n

X
Y

x x
a x t t

xt t t t

t t

x x
t t

t t x
t x

x t
t

x x

+  + +  + 

= =−  − 

+  + 

−  − 

+ 

+ 

→ + 
→ − 

− 

  
 = =  + + + +  − 

+ +

= =
+ + −    

+ + −   
   

  
  
  =
  

− −  
  

  

 



 

d’où 
1

2 1

3 3 4
1

4 3

n

n

n

x x
a x

x x

+ 

=

 
= =

− −

 . 

En utilisant ceci et le développement en série entière de 
3

4

x

x



−

, on en déduit une expression explicite des na  : 

2 22 3
:

13
n n

n
n a

n


−  

  =  
− 

 . 

On peut d’ailleurs retrouver cela en utilisant les relations 
4

3
3

n

n na w
 

=  
 

 et ( ) 12 1 2n nn w n w +− = . 

Exercice 9 

On définit la suite ( )n n
u

 
 par 0 0u = , 1 1u = , et par la relation 

2 1
1

n

n n

u
u u

n
+ += −

+
 pour 0n  . 

a.   Etudier la suite ( )n n
u

 
. 

b.   Existence et valeur de la somme de terme général n

nu x . 

 

 
Corrigé   
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a.   et   b. ,  solution  1 

On remarque que pour tout 0n  , 

( ) 2 1 11 n n n nn u u n u u+ + ++ − = − , 

la suite ( )1n n n
n u u+ 

−


 est donc constante. Comme 1 00 . 0u u− = , on en déduit que pour tout n   ,  

1n nn u u+ = , et, puisque 1 1u = , on en tire facilement : 

( )
* 1

,
1 !

nn u
n

  =
−

 . 

Il en résulte immédiatement que la suite ( )nu  converge vers  0 ,  que la série entière n

nu x  est de rayon de 

convergence infini, et, en notant  f  sa fonction somme, on a pour tout  x : 

( )
( )

1

0 1

e .
1 !

n
n x

n

n n

x
f x u x x x

n

−+  + 

= =

= = =
−

   

 

a.  et  b. , solution  2 . 

  La suite ( )n n
u

 
 est bien définie. Supposons la série entière n

nu x  de rayon de  

convergence 0R   ; notons 
0 1

: n n

n n

n n

f x u x u x
+  + 

= =

=   sa fonction somme. Alors on a pour 

tout  ,x R R − ,  

1 1 1

2 1

0 0 0 1

nn n n

n n

n n n

u
u x u x x

n

+  +  + 
+ + +

+ +

= = =

= −
+

    : 

1

2

n

nu x +

+ , 1

1

n

nu x +

+  convergent parce que n

nu x , et l’on sait que 1

1

n n
u

x
n

+

+
  a même 

rayon de convergence, ceci est donc bien licite. 

Pour  x  non nul dans  ,R R− , on a donc  

( )( ) ( ) 1

0 1 0

0

1

1

n n

n

u
f x u u x f x u x

x n

+ 
+

=

− − = − −
+

 , 

soit, puisque 0 0u =  et 1 1u = , 

( ) 1

0

1
1 1

1

n n

n

u
f x x

x n

+ 
+

=

 
− − = − 

+ 
 . 

En dérivant cette expression (dériver terme à terme une série entière dans son intervalle ouvert de convergence 

est autorisé), il vient  

( ) ( )
2

1

1 1
’ n

n

n

x
f x f x u x

x x

+ 

=

−
− = −  , 

d’où : 

( ) ( ) ( ) ( )21 ’ 1 0x x f x x f x− + − = . 
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Notons ( )min 1, R =  et  0,I =   ;  f  est solution sur  I  de l’équation différentielle (linéaire du premier 

ordre, homogène) : 

( ) ( ) ( )2: 1 ’ 1 0E x x y x y− + − = . 

Les solutions de ( )E  sur  I  sont les fonctions : e xf x x  ,  f  est l’une d’entre elles. On a 0 0u =  et 

1 1u = , donc 
0

lim 0f =  et 
0

lim ’ 1f = . Par suite,  f  est la fonction : e xf x x , au moins sur  I . 

 

Réciproquement, : e xf x x  est développable en série entière de rayon de convergence infini, avec  

( )
( )1 0

,
1 !

n
n

n

n n

x
x f x v x

n

+  + 

= =

  = =
−

  , 

où l’on a posé 0 0v =  et pour tout 
*n   , 

( )

1

1 !
nv

n
=

−
.  

On a 0 0v = , 1 1v = , et il n’est pas difficile de vérifier que pour tout n   , 
2 1

1

n

n n

v
v v

n
+ += −

+
 : les 

suites ( )nu  et ( )nv  sont donc égales.  

On en conclut que pour tout 
*n   , 

( )

1

1 !
nu

n
=

−
, que la série entière n

nu x  est de rayon de 

convergence infini, et de somme e xx x . 

 

Exercice 10 

On pose pour tout  n  entier 

0

1

!

n

n

k

a
k=

=  . 

 a.   Domaine de convergence de la série entière de terme général n

na x . 

 b.   Calculer sa somme. 

 c.   Développer en série entière la fonction 

( )
2

e

1

x

x
x−

 . 

 
Corrigé   

a.   On sait que la suite ( )na  converge, et que lim en
n

a
→ + 

= . Alors :  

•  La suite ( )na  ne tend pas vers  0 , donc na  diverge ; ceci implique que le rayon de convergence  R   

de la série entière n

na x  est inférieur ou égal à  1 . 

• •  La suite ( )na  est bornée, d’où 1R  . 

 

Par conséquent,    le rayon de convergence de n

na x  est égal à  1    . 
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b.   Notons  f  la fonction somme de la série entière 
0

n

n

n

a x


 . 

Soient ( )nb  la suite de terme général 
1

!
nb

n
= , et ( )nc  la suite constante égale à  1 . 

Pour tout n   ,  
0 0

1

!

n n

n k n k

k k

a b a
k

−

= =

= =  , la série entière n

na x  est donc le produit de Cauchy des 

séries entières 
!

n
n

n

x
b x

n
=   et n n

nc x x=  . 

On a alors pour tout  1, 1x  −  : 

0 0 0!

n
n n

n

n n n

x
a x x

n

+  +  + 

= = =

   
=    
   

   , 

d’où 
0

e

1

x
n

n

n

a x
x

+ 

=

=
−

 . 

 

c.   On pourrait raisonner à nouveau en termes de produits de Cauchy, mais il y a plus simple. En notant  f  la fonction  

somme de la série entière n

na x , on a pour tout  1, 1x  − , ( )
e

1

x

f x
x

=
−

, puis 

( )
( )

2

e e
’

1 1

x x

f x
x x

= +
− −

, d’où 
( )

( ) ( )2

e
’

1

x

f x f x
x

= −
−

. 

( )
2

e

1

x

x
x−

  est alors développable en série entière sur  1, 1−  comme somme de deux fonctions l’étant, et 

pour tout  1, 1x  −  : 

( )
( ) 12

0 0

e
1

1

x
n n

n n

n n

n a x a x
x

+  + 

+

= =

= + −
−

  ,  

soit : 

( )
( )

1

2
0 0 0 0

0 0

e 1 1
1

! !1

1 1
.

! !

x n n
n n

n k n k

n
n

n k

n x x
k kx

n x
k n

+  + + 

= = = =

+ 

= =

   
= + −   

−    

  
= +  

   

   

 

 

 

 

Exercice 11 

Soit   un réel non nul et soit un couple de réels ( ) ( ), 0, 0   . On définit la suite ( )nu  par : 

0u =  , 1u =  , et pour tout entier naturel  n ,  2 1n n nu u u+ += +  . 

 1.   On suppose que ( )nu  converge. 
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 a.   Quelle est sa limite ? 

 b.   Montrer que la série de terme général nu  converge. Calculer sa somme. 

 2.   On suppose que   appartient à 
1

, 0
4

 
− 

 
. 

 a.   Montrer que 
2X X− −   admet deux racines réelles dans  0, 1 . 

 b.   Montrer que ( )nu  converge. 

 3.   Que se passe – t – il lorsque 
1

1,
4

 
  − − 

 
 ? 

 4.   Montrer que, lorsque 2  , la suite ( )nu  diverge. 

 5.   A partir du cas 
1

4
 = − , calculer  

0 2 n
n

n+ 

=

  . 

 

 

Corrigé   

1.a.   La suite ( )nu  est récurrente linéaire d’ordre  2 .  Le polynôme caractéristique associé est  

2P X X= − −  , et : 

•  Si 
1

4
  − ,  P  admet deux racines distinctes  1

1 1 4

2
r

+ + 
=  et 2

1 1 4

2
r

− + 
= . Alors,  

il existe deux réels a  et b  tels que pour tout n   , 1 2

n n

nu a r b r= + . 

Si 2  , 2 11 r r  , et alors ( )nu  ne converge que si 0a b= = , ce qui est interdit par 

l’énoncé (hypothèse ( ) ( ), 0, 0   ). Si 2 = , ( )2 1
nn

nu a b= + −  et l’on a le même 

problème. 

On a 2 1r  , donc 2lim 0nb r = . Ensuite : 

Si 0  , 1lim nr = +   ; la convergence de ( )nu  entraîne alors que nécessairement 0a = , et 

ainsi 2, n

nn u b r = , d’où lim 0nu = . 

Si 
1

, 0
4

 
  − 

 
, 2 1r  , et lim 0nu = . 

Le cas 0 =  est exclu par l’énoncé  

• •  Si 
1

4
 = − , il existe  a  et  b  réels tels que pour tout n   , 

2
n n

a b n
u

+
= , et, par croissances  

 comparées, lim 0nu = . 

• • •  Enfin, si 
1

4
  − ,  P  possède deux racines complexes non réelles conjuguées, e i  = −    
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et e i−  = −  , avec    0  , et il existe ( ) 2,a b    tel que pour tout n   , 

( )cos sin
n

nu a n b n= −   +  . Dans ces conditions, la convergence de ( )nu  implique, que, 

soit 1  , soit 0a b= = , mais cela l’énoncé l’interdit (hypothèse ( ) ( ), 0, 0   ). Donc, 

1   et la limite de ( )nu  est nulle. 

 

Finalement, ( )lim 0nu = . 

 

1.b.   On a de plus montré que dans tous les cas, ( )nu  est combinaison linéaire de séries géométriques ou  

géométriques dérivées, de raisons respectives strictement inférieures à  1  en valeur absolue. Donc, 
0

n

n

u


  

converge. Notons  S  sa somme. En sommant les égalités 2 1n n nu u u+ += +  , 0n  , on obtient  

1 0 0S u u S u S− − = − +  , d’où l’on déduit que 
1u

S


= − = −
 

. 

 

2.   3.   4.   Bon ben ça c’est fait… 

 

5.   Ici 0 0u =  = , 1

1

2
u =  =  et 

1

4
 = − , d’où 2S


= − =


, ce que notre connaissance des séries  

géométriques dérivées permettrait de retrouver. 

 

Exercice 12 

Soit pour n    : ( )
e

1

ln dn

nI x x=   

 a.   Montrer que la suite ( )nI  converge. Quelle est sa limite ? 

 b.   Nature des séries nI   et ( )1
n

nI− . 

 c.   Rayon de convergence et somme de n

nI x . 

 

 

 

Corrigé   

a.   Convergence 

La suite ( ) ( )
e

1

ln dn

nI x x
 

=  
 
  est à valeurs positives, et elle est facilement décroissante (pour tout 

 1, ex  , ( )0 ln 1x   , donc pour tout n   , ( ) ( )
e e

1

1 1

0 ln d ln dn nx x x x+   ). 
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Par conséquent, la suite ( )n n
I

 
 converge. 

 

Limite 

Pour tout n   , ( ): ln n

nf x x  est continue par morceaux, intégrable sur  0, e , et la suite de fonctions 

( )nf  converge simplement sur  0, e  vers la fonction nulle, qui est évidemment continue par morceaux. De 

plus, pour  

tout n    et pour tout  0, et  , ( ) 1nf t  , et la fonction constante égale à  1  est intégrable sur  0, e . 

Alors, d’après le théorème de convergence dominée, lim 0n
n

I
→ + 

= . 

 

b.   D’après ce qui précède, la suite ( )n n
I

 
 décroît et converge vers  0 .  En vertu du critère spécial des séries  

alternées,    la série ( )1
n

nI−  est donc convergente    . 

 

En intégrant par parties ( )
e

1

1 . ln dn

nI x x=  , on obtient pour tout 1n  , 1en nI n I −= − .  

Par décroissance de ( )n n
I

 
, on en déduit 

e

1
nI

n


+
 et 1

e

1
nI

n
− 

+
, d’où pour tout 1n  , 

e e

2 1
nI

n n
 

+ +
. Il en résulte que 

e
nI

n
 , ce qui assure que la série nI  diverge. 

 

c.   Notons  R  le rayon de convergence de la série entière n

nI x . On a 1R   car nI  diverge, et,  

comme ( )1
n

nI−  converge, 1R  , d’où 1R = . 

 

Reste à calculer la somme  S  de cette série entière. On va en fait en donner une expression intégrale, mais on ne 

pourra pas obtenir quelque chose de plus explicite. 

 

Essai 1, via une équation différentielle 

Notons  S  la somme de la série entière n

nI x . 

On a vu que pour tout 1n  , 1en nI n I −= − . On en déduit que pour tout  1, 1x  − , 

1

1 1 1

en n n

n n

n n n

I x x n I x
+  +  + 

−

= = =

= −    

(toutes les séries mises en jeu convergent). 

On a donc  
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( ) ( )

( ) ( )

1 2 2

0 1 1

1 2

2

e
1

1

e
’ ,

1

n n

n n

n n

x
S x I x I x x n I x

x

x
x S x x S x

x

+  + 
− −

− −

= =

− = − − −
−

= − −
−

 
 

d’où ( ) ( ) ( )2 e e
’ 1 e 1 1

1 1

x
x S x x S x

x x
+ + = + − = −

− −
. 

En résolvant cette l’équation différentielle, on trouve qu’il existe deux constantes telles que sur 

   1, 0   ou 0, 1I I= − = , on ait ( )

1
1

e e
1 e d cste

1

x x
tS x t t

t x

−  
= − +  

−  
 , ce qui est plutôt affreux. 

 

Méthode 2, via une interversion somme/intégrale 

Sans doute plus naturel… 

Pour ne pas se mélanger les pinceaux, il est nécessaire de ne pas prendre  x  pour variable d’intégration, on note 

donc ( )
e

1

ln dn t t . On a ( )
e

0 0 1

ln dn n n

n

n n

I x x t t
+  + 

= =

=    ; les fonctions ( ): lnn n

ng t x t  sont 

continues par morceaux sur  1, e , vérifient   ( )1, e ,
n

nt f t x   , et la série géométrique 
n

x  : 

la série de fonctions ng  converge donc normalement sur  1, e . Intervertir somme et intégrale est alors 

autorisé, et donne 

( ) ( )
e e

0 01 1

1
ln d d

1 ln

nn n

n

n n

S x I x x t t t
x t

+  + 

= =

= = =
−

   . 

 

Remarque 

On pourrait tenter de dériver sous le signe intégral, et de voir si on obtient quelque chose d’agréable. Inutile de 

déranger la formule de Leibniz pour cela : 

( ) ( )
( )

e e

1

2
1 11 1

ln
’ ln d d

1 ln

nn n

n

n n

t
S x n I x n x t t t

x t

+  + 
−

= =

= = =
−

    

s’obtient par des arguments analogues à ceux qui précèdent.  

On peut toujours essayer d’arranger un peu, par exemple 

( )
( )

( ) ( )

( )

e

2

1

e e

2 2

1 1

ln
’ d

1 ln

ln 1 1
d d

1 ln 1 ln

...  bof.

x t
x S x t

x t

x t
t t

x t x t

S x

=
−

−
= +

− −

= − +



   

 

Exercice 13 

On pose 0 0v =  et pour 0n  , ( )( )1

1
1 1

3
n nv n v+ = − +  . 
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 a.   Montrer que : 1x  , ( )
1

1
3

x x+  . En déduire que : n   , !nv n .  

 b.   Montrer que le rayon de convergence de 
!

n n
v

x
n

  est supérieur ou égal à  1. 

 c.   On pose pour tout  1, 1x  − , ( )
0 !

n n

n

v
f x x

n

+ 

=

=  . Prouver que : 

  ( ) ( )1, 1 , 3 e 1xx x f x  − + = − . 

 d.   Pour 
*n   , on pose 

( )

1

3

!

k
n

n

k

w
k=

−
=  . Exprimer nv  en fonction de nw .  

 e.   Trouver l’ensemble des séries nu  telles que pour tout n   , ( )13 1 1n nu n u+ + + = . 

 

Corrigé   

a.   •  Pour tout 1x  , ( )
1 2

1
3 3

x x x+   . 

 

• •  Montrons par récurrence que pour tout n   , on a ( ) : !nn v nH  

Initialisation 

0 0 1v =  . 

Hérédité 

Soit n   , supposons ( )nH . 

Si 0nv  , ( )( ) ( )( ) ( )( )1

1 1 1
1 1 max 1, 1 max 1, 1 !

3 3 3
n n nv n v n v n+ = − +  +  + . 

Si 
1

, 0
1

nv
n

 
 − 

+ 
, ( )( )1

1 2
1 1

3 3
n nv n v+ = − +  . 

Si 
1

1
nv

n
 −

+
, ( )1 1nn v− +  , donc, d’après l’inégalité 1x  , ( )

1
1

3
x x+  , 

( ) ( )1 1 1 !n nv n v n+  − +  + . 

 

Dans les trois cas, on a bien ( )1n +H , on a donc établi par récurrence que : , !nn v n   .  

 

b.   D’après ce qui précède, la suite 
!

nv

n

 
 
 

 est bornée, donc le rayon de convergence de la série entière 
!

n n
v

x
n

   

est supérieur ou égal à  1 . 

 

c.   f  est bien définie sur  1, 1− , et pour tout  1, 1x  − , 
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( ) ( ) ( )

( )

( )

( )

0

0

1

1

2 1

1

0

1 1

1

1

3 3
!

3      car  0
!

+ 3
1 ! !

+ 3      car  0  à nouveau
1 ! !

3
.

!

n n

n

n n

n

n nn n

n n

n nn n

n n

n n n

n

v
x f x x x

n

v
x x v

n

v v
x x

n n

v v
x x v

n n

n v v
x

n

+ 

=

+ 

=

+  + 
−

= =

+  + 
−

= =

+ 
−

=

+ = +

= + =

=
−

= =
−

+
=





 

 



 

Or la relation ( )( )1

1
0, 1 1

3
n nn v n v+  = − +  donne 11, 3 1n nn v n v −  + = . 

On en déduit que ( ) ( )
( )1

3
1 !

n

n

x
x f x

n

+ 

=

+ =
−

 , et l’on a bien :  

  ( ) ( )1, 1 , 3 e 1xx x f x  − + = − . 

 

d.   D’après  c. ,  pour tout  1, 1x  − , ( ) ( )
1

1 1 1
e 1 e 1

! 3 3
1

3

n n x x

n

v
x

xn x

+ 

=

= − = −
+

+
 . 

1

1
3

x
x

+

  et e xx   sont développables en séries entières de rayons de convergence respectifs 3  et +  , 

on peut donc écrire que ( )
1 0 1

1
3 .

! 3 !

k
kn n k

n k k

v x
x x

n k

+  +  + 
−

= = =

   
= −   

   
    

Ainsi, la série entière 
1 !

n n

n

v
x

n

  est produit de Cauchy de ( )
0

1
3

3

k k

k

x
−



−  et de 
1 !

k

k

x

k

 . 

On en déduit que pour tout 1n  ,  

( )
( )

1

1 1
3

! 3 !

n
n kn

k

v

n k

− −

=

= − , soit 
( )

( )

( )
1 1

1

3! !

!3 3

k
n

n nn n
k

n n
v w

k
+ +

=

−
= − = −

− −
 . 

Remarque 

En tant que produit de Cauchy, on sait que le rayon de convergence de 
1 !

n n

n

v
x

n

  est supérieure ou égal  

à ( )min 3, 3+  = . 

 

e.   On manie ici les séries en tant qu’objets formels, c’est – à – dire sans se préoccuper de leur nature. 

La série nv  vérifiant ( )10 , 3 1 1n nn v n v+  + + = , nu est telle que 

( )10 , 3 1 1n nn u n u+  + + =  si et seulement la série ( )0n na u v= −   vérifie  

( ) ( )10 , 3 1 0 1n nn a n a+  + + = . 
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Comme 0 0v = , 0a  est égal à 0u , et l’on déduit facilement de ( )1  que pour tout n   ,  

( )
0

!

3
n n

n
a u=

−
 

Comme pour tout 10 , n n nn u v a+  = + , il résulte de ceci que les séries nu  solutions du problème 

sont les séries 
( )

!
,

3
n n

n
v

 
 +   
 − 

  . 

la seule d’entre elles qui soit convergente, ou aussi bien qui soit telle que n

nu x  ait un rayon de convergence 

non nul, est la série nv  elle – même. 

 

Exercice 14 

Soit la suite ( )n n
u

 
 définie par ( )

2

0

cos dn

nu t t



=  . On donne : 

2

1
,

2
n n

n
n u u

n
+

+
  =

+
  . 

 On considère l’équation différentielle : 

( ) ( ) ( ) ( ) ( )2: 1 ’’ 3 ’ 0E x y x x y x y x− + + =  

 

 a.   Déterminer ( )lim cos n

n
t

→ + 
. En utilisant le théorème de convergence dominée, montrer que lim 0n

n
u

→ + 
= . 

 b.   Soient 0r   et 
0

: n

n

n

S x a x
+ 

=

  sur  ,r r− . Montrer que  S  est solution de ( )E  sur  ,r r−   

 si et seulement si : 

2

1
,

2
n n

n
n a a

n
+

+
  =

+
 . 

 c.   Calculer le rayon de convergence de 2

2

n

nu x , et montrer que 2

2

0

: n

n

n

f x u x
+ 

=

  est solution  

 de ( )E  sur  1, 1− . 

 d.   Même question pour 2 1

2 1

0

: n

n

n

g x u x
+ 

+

+

=

 . 

 

Corrigé   

a.   On suppose 0,
2

t
 

  
 

. On a ( )
1  si  0

lim cos
0  sinon

n

n

t
t

→ + 

=
= 


.  

La suite de fonctions ( )( ): cos n

nf t t  converge simplement sur 0,
2

 
 
 

 vers la fonction nulle ; les nf  

sont évidemment intégrables sur 0,
2

 
 
 

, et, pour tout n    et pour tout 0,
2

t
 

  
 

, ( ) 1nf t  . La 
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fonction constante égale à  1  est intégrable sur 0,
2

 
 
 

, on peut utiliser le théorème de convergence dominée, 

et l’on obtient lim 0n
n

u
→ + 

= , ce qui n’est pas très étonnant pour des intégrales de Wallis. 

 

b.   On a pour tout  ,x r r − , ( ) 1

1

’ n

n

n

S x n a x
+ 

−

=

=    

et ( ) ( ) ( ) ( )2

2

2 0

’’ 1 2 1n n

n n

n n

S x n n a x n n a x
+  + 

−

+

= =

= − = + +  , donc  S  est solution de ( )E  

sur  ,r r−  si et seulement si pour tout  ,x r r − , 

( ) ( ) ( ) 2

2 0 1 0

1 2 1 3 0n n n n

n n n n

n n n n

n n a x n n a x n a x a x
+  +  +  + 

+

= = = =

− − + + + + =    , 

soit si et seulement si pour tout  ,x r r − ,  

( ) ( ) ( ) 2

0 0 0 0

1 2 1 3 0n n n n

n n n n

n n n n

n n a x n n a x n a x a x
+  +  +  + 

+

= = = =

− − + + + + =     

(les termes ajoutés sont nuls). 

Après regroupement et par unicité du développement en série entière de la fonction nulle, ceci est réalisé si et 

seulement si pour tout n   , ( ) ( ) ( ) ( )
2

22 1 1 3 1 1n n nn n a a n n n a n++ + =  − + +  = +  . 

Ainsi,    S  est solution de ( )E  sur  ,r r−  si et seulement si pour tout n   , 2

1

2
n n

n
a a

n
+

+
=

+
    . 

 

c.   La suite ( )2 nu  ne s’annule pas, et pour tout n   , 
( )2 1

2

2 1

2 2

n

n

u n

u n

+ +
=

+
.  

On a donc 
( )2 1

2

lim 1
n

n
n

u

u

+

→ + 
= , et l’on en conclut grâce à la règle de d’Alembert que  

    le rayon de convergence de la série entière 2

2

n

nu x  est 
( )2 1

2

1
1

lim
n

n

R
u

u

+

= =     . 

 

Notons  2

2

0 0

n n

n n

n n

u x a x
+  + 

= =

=  , avec 2 2n na u=  et 2 1 0na + = . On a pour tout n   , 

2

1

2
n n

n
a a

n
+

+
=

+
 : pour  n  impair c’est évident, et, pour  n  pair, c’est assuré par la relation rappelée par 

l’énoncé :              2

1
,

2
n n

n
n u u

n
+

+
  =

+
  

Donc d’après  b. , 2

2

0

: n

n

n

f x u x
+ 

=

 est solution de de ( )E  sur  1, 1−  . 



 25 

 

d.   Alors, même réponse… 

 

Remarque 

( ),f g  est un système fondamental de solutions de ( )E  sur  1, 1− . 

Après justification de l’interversion somme / intégrale, on a pour tout  1, 1x  − , ( )
2

2 2

0

d

1 cos

t
f x

x t



=
−  

et ( )
2

2 2

0

cos d

1 cos

x t t
g x

x t



=
− . Ces deux intégrales ne sont pas bien dures à calculer (poser tanu t=  dans la 

première, sinu t=  dans la deuxième). Après ce calcul, on trouve ( )
22 1

f x
x


=

−
 et 

( )
2 2

1
arctan

1 1

x
g x

x x

 
 =
 − − 

 . 

Les solutions de ( )E  sur  1, 1−  sont donc les fonctions 
2 2

1
arctan

1 1

x
x

x x

  
   + 

  − −  

   

avec ,    . 

 

Exercice 15 

a. On note, pour n   : ( ) Card ,=  + na i j i j n2 2 2 . Déterminer un équivalent de na  lorsque 

→ + n . 

b. Soit :
+ 

=

 n

n

G t t
2

1

 . En considérant ( )G t2
, déterminer un équivalent de G  lorsque 

−→t 1 . 

 

Sol. 

 

a. On considère le quart de disque dans +

2  de centre O  et de rayon n , et il contient entièrement 

 − +
 na n2 1  carrés disjoints d’aire égale à 1 (faire un dessin et compter les coins supérieurs droits) 

en rajoutant  
 
n2  carrés (en haut et à droite de chacun des carrés précédents), on obtient +na 1  carrés disjoints 

dont la réunion contient ce même quart de cercle. 

D’où : 


 − +   +
 n n

n
a n a2 1 1

4
, et donc 

→ + 


n
n

n
a

4
 . 

b. Pour  t  tel que t 1 , 
→ + 
→n

n
t

2

0  et pour t 1 , 
→ + 

→n

n
t

2

0 . Donc la série entière définissant G  a pour rayon 

de convergence =R 1 . On note cette série ( )


 n
n n
b x

0
  où 

si  

sinon

,

  

   =
= 


n

k n k
b

21

0


. 
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Le théorème sur le produit de Cauchy des séries entières montre alors que pour tout  , −t 1 1 , ( )
+ 

=

=  n
n

n

G t c t2

0

 

où 
( ), , + =

= n k
k k n

c b b
2





. Or pour ( ), k 2  tel que + k n , kb b   est égal à 1  si k  et   sont des carrés, 

et à 0  sinon. On en déduit : n nc a= . On a donc : ( )
+ 

=

=  n
n

n

G t a t2

0

. 

On note ( )
( )

+ 

=

 
= =

−
 n

n

n t
H t t

t
2

0 4 4 1
 (calcul facile). 

Soit   0 , comme 
→ + 


n
n

n
a

4
 , il existe un rang N  à partir duquel 

→ + 

  
− n

n

n n
a

4 2 4
. 

On fixe un tel rang N , et on a alors pour tout n N  et pour tout  ,t 0 1  : 

( ) ( ) ( )
+ 

= = =

    
−  − +  − +  

N N
n n n

n n
n k N n

n n n
G t H t a t t a t H t2

0 04 2 4 4 2
. 

Comme ( )
( ) −→


= → + 

− t

t
H t

t
2

14 1
, et que 

−→
=


− →

N
n

n
tn

n
a t C

10 4
 où +C   est une constante, on en 

déduit que 
( ) −

=

→


−

→


N

n
n

n

t

n
a t

H t
0

1

4
0 , il existe donc   0  tel que pour tout  , − t 1 1 , 

( )
=


−





N

n
n

n

n
a t

H t
0 4

2
, et on a alors pour tout  , − t 1 1  : ( ) ( ) ( )−  G t H t H t2 . 

Ce qui montre ( ) ( )
( ) ( )

− −→ →

 
=

− −t t

t
G t H t

t t

2
2 2

1 14 1 4 1
 . 

On en déduit, puisqu’il est clair que G  est positive sur  ,0 1  : ( )
( )−→



−t
G t

t1 2 1
 . 

 

Exercice 16 

a. Déterminer le rayon de convergence de la série entière 
( )sin



  
 
 


n

n

n
x

n
1

. 

b. Calculer la somme de cette série entière sur son intervalle ouvert de convergence. 

 

Sol. 

 

a. Soit x  , si x 1 , alors 
( )sin

→ + 


→n

n

n
x

n
0 . 

Si x 1 . Raisonnons par l’absurde en supposant 
( )sin

→ + 


→n

n

n
x

n
0 , alors ( )sin

→ + 
 →

n
n 0 , donc 

( )( ) ( ) ( ) ( ) ( )sin sin cos cos sin
→ + 

 + =   +   →
n

n n n1 0 , d’où on déduit (puisque ( )sin   0 ) : 
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( )cos
→ + 

 →
n

n 0 , puis ( ) ( )cos sin
→ + 

 +  →
n

n n2 2 0 , ce qui est absurde puisque 

( ) ( )cos sin +  =n n2 2 1 . 

Donc 
( )sin

→ + 


→n

n

n
x

n
0 . 

De ce raisonnement on déduit que le rayon de convergence est : =R 1 . 

b. Notons f  la somme de cette série entière sur  ,− 1 1 .  

On a alors pour tout  , −x 1 1  : ( )
( )sin+ 

=


=  n

n

n
f x x

n1

. 

( ) ( ) ( )
e e

sin e e
e e

 − +  + 
−  − −  −

 − 
= =

 
 =  = − = − 

− − 
 

i i
n i n n i n n

i i
n n

f x n x x x
i i x x

1 1 1

1 1

1 1

2 2 1 1
, 

( )
( ) ( )
( ) ( )

( )

( )

e e sin

cose e

 − 

 − 

− − − 
 = =

−  +− −

i i

i i

x x
f x

i x xx x 2

1

2 2 11 1
. 

Comme ( ) =f 0 0  on en déduit : ( )
( )

( )( ) ( )

( )

( )( ) ( )

sin sin
d d

cos sin cos sin

 
= =

−  +  −  + 
 
x x

f x t t
t t

2 22 2
0 0

. 

Le changement de variable 
( )

( )

cos

sin

− 
=



t
u  montre alors :  ( )

( )

( )

( )

( )

cos

sin

cos

sin

d

− 



− 



=
+

x

u
f x

u 2 1
, 

( )
( )

( )

( )

( )

cos cos
arctan arctan

sin sin

x
f x

   −  
= +          

. 

 

Exercice 17 

a. Déterminer l’ensemble de définition D  de : e
+ 

− +

=

  n i n x

n

f x
2

0

 . 

b. f  est-elle continue sur D  ? f  est-elle de classe C  sur D  ? 

c. f  est-elle développable en série entière en 0  ? 

 

Sol. 

 

a. Soit x  . De : , e e− + −  =n i n x nn
2

 , et de la convergence de la série géométrique ( )e −


 n

n 0
, on déduit 

la convergence absolue de la série numérique ( )e − +




n i n x

n

2

0
 : f  est définie sur  . 

b. On pose pour tout n   : :
e − +

→



n n i n x
u

x
2




,  et on a alors les résultats suivants : 

(i) Pour tout n  , nu  est de classe C  sur   de dérivées successives : 
( )

: e − +k k k n i n x
nu x i n

22 . 

(ii) La série de fonctions ( )


 n n
u

0
 converge simplement sur   et a pour somme f . 
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(iii) Soit 
k  . Alors pour tout n   et pour tout x  , on a : 

( ) ( ) e −=
k k n

nu x n 2 , et, comme 

e −

→ + 

 
=  

 

k n

n
n o

n
2

2

1
, on en déduit que la série numérique ( )e −


 k n

n
n 2

0
 converge. Ceci montre que la série de 

fonctions ( )( )



k

n
n

u
0
 converge normalement donc uniformément sur  . 

De ces résultats on déduit que f  est de classe C  sur   (et donc continue) de dérivées successives : 

( )
: e

+ 
− +

=


k k k n i n x

n

f x i n
22

0

 . 

c. En particulier, 

( ) ( ) e
e

! ! !

−+ 
−

=

= 
k

k k
k n

n

f k
n

k k k

2
2

0

0 1
. 

Or 
e e

! e

− −

−→ + 
=

 

k k k k k

k kk

k k k

k k k k

2 2

2 2
 , par conséquent pour tout x 0  : 

( ) ( )

! → + 
→ + 

k

k

k

f
x

k

0
, ce qui 

montre que la série de Taylor de f  a un rayon de convergence nul, et donc que f  n’est pas développable en série entière. 

 

Exercice 18 

Soit ( )n n
d

 
 la suite définie par : d =0 1 , d =1 0 , et ( ), n n nn d n d d

+ −  = +1 1 . 

a. Calculer d 2  et d 3 . 

b. Montrer : 
!

, !n

n
n d n   2

3
. 

c. Déterminer le rayon de convergence R  de la série entière 
!

n n

n

d
x

n


 
 
 


0

. 

d. On note S  la somme de cette série entière sur  ,R R− . Montrer que S  est solution sur  ,R R−  de l’équation 

différentielle : ( )x y x y− − =1 0 . 

e. En déduire une expression de S  à l’aide des fonctions usuelles. 

f. Donner pour tout n    une expression de nd  en fonction de n . 

g. On admet que nd  est le cardinal de l’ensemble des permutations de  , n1  sans point fixe. 

Montrer par un argument de dénombrement que !
n

k
k

n
n d

k=

 
=  

 

0

. 

 

Solution 

a) ( ).d = + =2 1 0 1 1 , et ( ).d = + =3 2 1 0 2 . 

b. Montrons cette relation par récurrence sur n . De  
2
1 2

3
 et  
3
2 3

3
 on déduit qu’elle est vraie pour n = 2  et n = 3 . 

Soit n  3 , si elle est vraie pour n  et n − 1  on a alors : 
( )( )

( ) ( )( )
! !

! !n n

n n n
n d d n n n−

+ −
 +  + −1

1
1

3
.  
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Or ( )( ) ( ) ( ) ( )! ! ! !n n n n n n n+ − = − + = +1 1 1 1 , d’où : 
( )

( )
!

!n

n
d n+

+
  +1

1
1

3
. 

La récurrence est établie. 

c. On sait que le rayon de convergence de la série ( )n
n

x


 
 est égal à 1 , il en est donc de même pour celui de la série 

n

n

x



 
 
 

3



. De ,
!

ndn
n

   1 , on déduit alors que R  1  et de ,
!

ndn
n

  
1

3
 , on déduit de même que R1 , 

d’où R = 1 . 

d. On calcule pour tout  ,x  − 1 1 , d’après les théorèmes généraux sur les séries entières : 

( )
!

n n

n

d
S x x

n

+ 

=

= 
0

, ( )
( )! ! !

n n nn n n

n n n

d d n d
x S x x x x

n n n

+  +  + 
− −+

= = =

= = =
−

  
1 11

0 1 11
,  

( ) ( )
( )! ! ! !

n n n nn n n n

n n n n

d d d d
S x n x n x x x

n n n n

+  +  +  + 
+ + +−

= = = =

 = = + = =
+

   
1 1 11

1 0 0 1

1
1

(puisque d =1 0 ), 

( )
!

n n

n

n d
x S x x

n

+ 

=

 = 
1

, 

D’où ( ) ( ) ( )
!

n n n n

n

d n d n d
S x x S x x S x x

n

+ 
+ −

=

− −
 − − = =

1 1

1

0 . 

e) Sur  ,− 1 1  cette équation différentielle est équivalente à 
x

y y
x

 =
−1

. Or on calcule sur  ,− 1 1  : 

( )d d ln
x

x x x x cste
x x

 
= − = − − − + 

− − 
 

1
1 1

1 1
. La solution générale de cette équation différentielle est donc 

e x

y C
x

−

=
−1

. De ( )
!

d
S = =

00 1
0

, on déduit C = 1 , d’où ( )
e x

S x
x

−

=
−1

. 

f. On a pour tout x    : 
( )

e
!

n

x n

n

x
n

+ 
−

=

−
= 

0

1
 et pour tout  ,x  − 1 1  : n

n

x
x

+ 

=

=
−


0

1

1
. D’après le théorème sur le 

produit de Cauchy de deux séries numériques on en déduit : pour tout  ,x  − 1 1 , ( ) n
n

n

S x c x
+ 

=

= 
0

où 

( )
,

!

pn

n
p

n c
p=

−
  = 

0

1
 . 

De l’unicité du développement en série entière de la fonction  S  sur  ,− 1 1  on déduit alors pour tout n    : 
!

n
n

d
c

n
=  et 

donc : 
( ) !

,
!

pn

n
p

n
n d

p=

−
  = 

0

1
 . 

g. On note n  l’ensemble des permutations de  , n1 . On sait que ( )Card !n n= .  

On note, pour  ,k n 0 , ( )n k  l’ensemble des permutations de  , n1  ayant exactement k  points fixes, de sorte que 

( ) ( )( )! Card Card
n

n n
k

n k
=

= = 
0

 . Pour dénombrer ( )n k , on localise d’abord les k  points fixes : il y a 
n

k

 
 
 
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possibilités de choix pour ces points fixes. Pour chacun de ces 
n

k

 
 
 

 choix, il y a clairement n kd −  permutations de  , n1  

laissant fixe ces k  entiers, et dérangeant les n k−  entiers restant. On en déduit : ( )( )Card n n k

n
k d

k −

 
=  
 

 . On obtient 

bien la relation demandée : !
n

k
k

n
n d

k=

 
=  

 

0

. 

 

Exercice 19 

a. Rayon de convergence de la série entière ( )( )
n

n

n
n x−




1

1
. 

b. Somme de cette série entière sur l’intervalle ouvert de convergence. 

 

Sol. 

 

a. Cette série entière est la somme des deux séries entières  ( )n
n

n x


 2

1
2  et 

n

n

x

n

+



 
 

+ 


2 1

0
2 1

. 

On vérifie facilement (avec la règle de d’Alembert par exemple) que ces deux séries ont même rayon de convergence égal à 1

, le rayon de convergence de leur somme est donc supérieur ou égal à  1 . 

Soit x    tel que x  1 , alors la suite ( )n
n

n x


2

1
2  ne tend pas vers 0 , or cette suite est extraite de la suite 

( )( )
n

n

n
n x−



1

1
, donc cette suite ( )( )

n
n

n
n x−



1

1
 ne tend pas non plus vers 0 , ce qui montre que la série numérique 

( )( )
n

n

n
n x−




1

1
 diverge grossièrement. 

De ces résultats, on déduit que le rayon de convergence de la série entière ( )( )
n

n

n
n x−




1

1
 est égal à 1 , et que cette série 

diverge aux deux bornes de l’intervalle ouvert de convergence. 

b. On a pour tout  ,x  − 1 1  : n

n

x
x

+ 

=

=
−

 2
2

0

1

1
, d’où en dérivant : 

( )
n

n

x
n x

x

+ 
−

=

=
−


2 1

22
1

2
2

1
 et donc 

( )
n

n

x
n x

x

+ 

=

=
−


2

2
22

1

2
2

1
. 

De n

n

x
x

+ 

=

=
−

 2
2

0

1

1
, on déduit aussi en intégrant terme à terme, pour tout  ,x  − 1 1  : 

d
x n

n

t x

t n

++ 

=

=
− +


2 1

2
00 1 2 1

. On 

calcule : 
t t t
+ =

− + − 2

1 1 2

1 1 1
,  

d’où ( ) ( )
d

ln ln ln

x
xt x

t t
t x

 +
=  − − + +  =   − − 

 2 0
0

1 1 1
1 1

1 2 2 1
. 

Ce qui donne avec le raisonnement de la question précédente : 
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Pour tout  ,x  − 1 1 , ( )

( )
ln

n
n

n

x x
n x

xx

+ 
−

=

 +
= +  

− −


2
1

22
1

2 1 1

2 11
. 

 

Exercice 20 

Soit :
e e d

xx tf
x t

−

→







2 2

2 2

0




. 

a. Déterminer le développement en série entière de f  par la méthode de l’équation différentielle, et donner le rayon de 

convergence de cette série entière. 

b. Calculer, pour tout n   , 
( )

kn

k

n

kk=

−  
 

+  

0

1

2 1
. 

 

Sol. 

 

a. Notons :

e
x

x

→




2

2




. La fonction : e d

x t

x t 

2

2

0

  est la primitive de   sur   qui s’annule en 0  , ce qui suffit pour 

monter que ( )f =0 0  et que f  est de classe C  sur   de dérivée : Pour tout x   , 

( ) ( )e e d

xx t

f x x t x f x
−

 = − = −

2 2

2 2

0

1 1 . 

On en déduit que f  est la solution sur   au problème de Cauchy : 
( )

y x y

y

 + =


=

1

0 0
. 

Analyse : On suppose que f  est développable en série entière sur  ,R R−  avec R  0  . Ce développement en série entière 

s’écrit :   ( ), , n
n

n

x R R f x a x
+ 

=

  − = 
0

. On a alors pour tout   ,x R R −  : 

( ) ( ) ( )n n n
n n n

n n n

f x n a x n a x a n a x
+  +  + 

−

+ +

= = =

 = = + = + +  1
1 1 1

1 0 0

1 1 , et  

( ) n n
n n

n n

x f x a x a x
+  + 

+

−

= =

= = 1
1

0 1

, et donc ( ) ( ) ( )( ) n
n n

n

f x x f x a n a a x
+ 

+ −

=

 + = + + −1 1 1
1

1 . 

On en déduit, d’après l’unicité du développement en série entière de la fonction x 1  sur  ,R R−  les résultats suivants : 

(i) a =1 1 . 

(ii) Pour tout n   , ( ) n nn a a+ −+ − =1 11 0 . 

Enfin, de ( )f =0 0 , on déduit : 

(iii) a =0 0 . 

De (ii) et (iii) on déduit : Pour tout p   , pa =2 0 . 
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De (i) et (ii), on déduit : Pour tout p   , 
( )

!

!

p

p

p
a

p p+ =   =
+ +

2 1

1 1 1 2
1
3 5 2 1 2 1

 . 

Synthèse : On considère la série entière 
( )

!

!

p
pp

x
p

+
 
  + 
 2 12

2 1
. 

Soit x  0 , alors 

( )
( )

( )

( )

( ) ( )

!

!

!

!

p
p

p p
p

p
x

p p x x

p p p p
x

p

+

+

→ + 
+

+

+ +
= = →

+ + +

+

1
2 3

2 2

2 1

2 1

2 3 2 1
0

2 2 2 2 3 2 3

2 1

 ce qui montre avec la règle de 

d’Alembert que cette série entière est de rayon de convergence infini. 

Enfin les calculs faits lors de l’analyse montrent que sa somme est solution sur   au problème de Cauchy :  
( )

y x y

y

 + =


=

1

0 0
. 

Comme on sait que cette solution est unique, on en déduit que cette somme est égale à f . 

En résumé, f  est développable en série entière sur  , et, pour tout x   , ( )
( )

!

!

p
p

p

p
f x x

p

+ 
+

=

=
+

 2 1

0

2

2 1
. 

b. On sait que pour tout x    on a e
! !

nx
n

n
n n

x
x

n n

+  + 

= =

 
= = 

 
 

2 2
22

0 0

1 1

2 2
 et  

( )
e

!

nx
n

n
n

x
n

+ 
−

=

−
= 

2

22

0

1

2
. 

Le théorème d’intégration terme à terme pour une série entière montre alors, pour tout x    : 

( )
e d

!

nx t n

n
n

x
t

n n

++ 

=

−
=

+


2 2 1
2

00

1

2 2 1
. 

Enfin le théorème sur le produit de Cauchy de deux séries entières montre que, pour tout x    : 

( )
( )

( ) ( )

( )

( ) ( )

( )

! ! ! !

!

k kk n k nn n

k n k n
n k n k

kn n

n
n k

x x x
f x

k k n k k k n k

nx

kn k

+ − ++  + 

−
= = = =

++ 

= =

− −
= =

+ − + −

−  
=  

+  

   

 

2 1 2 2 2 1

0 0 0 0

2 1

0 0

1 1

2 1 2 2 2 2 1

1

2 2 1

.  

L’unicité du développement en série entière de f  montre alors que, pour tout n   , 

( )

( )

!

! !

k nn

n
k

n n

kn k n=

−  
= 

+ + 

0

11 2

2 2 1 2 1
, et donc 

( ) ( )

( )

!

!

k nn

k

n n

kk n=

−  
= 

+ + 


22

0

1 2

2 1 2 1
. 

Remarque : constater (sans calculer) que f  est développable en série entière sur   et est une fonction impaire aurait pu 

alléger les calculs et les raisonnements du (a). 

 

Exercice 21 

On pose, pour tout n    : 
( )

n

n

n
a

nn

−  
=  

−  

21

2 1
. 

a. Montrer que : ( ) ( ), n nn n a n a+  + = − −11 2 2 1 . 

b. Déterminer le rayon de convergence de la série entière ( )nn n
a x


 

. 
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c. On note f  la somme de cette série entière sur son intervalle ouvert de convergence. Trouver une équation 

différentielle linéaire du premier ordre vérifiée par f . 

d. En déduire f . 

e. Calculer 
n

n
n

a+ 

=


0 4

. 

 

Sol. 

 

a. Pour tout n   , 
( ) ( )

( ) ( )

!

!

n

n

n
a

n n

−
= 

−
2

1 2
0

2 1
 et 

( ) ( )

( )

( )n

n

a n n nn

a n nn

+ + + −−
= − = −

+ ++

1

2

2 1 2 2 2 2 12 1

2 1 11
, 

d’où le résultat. 

b. On en déduit aussi pour tout x  0  : 
( )n

n

n n
n

a x n x
x

a x n

+

+

→ + 

−
= →

+

1
1 2 2 1

4
1

. La règle de d’Alembert assure alors que 

le rayon de convergence de la série entière ( )nn n
a x


 

 est égal à 4 . 

c. Pour tout ,x
 

 − 
 

1 1

4 4
 on a d’une part : ( ) ( )n n

n n
n n

f x n a x n a x
+  +

−

+

= =

 = = + 1
1

1 0

1 . 

D’autre part : ( ) ( ) ( )n n n
n n n

n n n

x f x f x n a x a x n a x
+  +  + 

= = =

− + = − + = − +  
1 0 0

4 2 4 2 4 2 , 

d’où, avec la relation montrée au (a) : ( ) ( ) ( )f x x f x f x = − +4 2 . Comme ( )f a= = −00 1 , on en déduit que f  

est la solution sur ,
 
− 

 

1 1

4 4
 au problème de Cauchy : ( )

( )

( )

:
:

y y
x

y


 − =

+
 = −

2
0

4 1

0 1

E
C  . 

d. On calcule : ( )d lnx x cste
x

= + +
+
2 1

1 4
4 1 2

, donc la solution générale de ( )E  sur ,
 
− 

 

1 1

4 4
 est 

:
C

y x
x+1 4

 , et on a pour tout ,x
 

 − 
 

1 1

4 4
, ( )f x

x

−
=

+

1

1 4
. 

e. On pose pour tout  n  : 
,

:n
n

n

u

x a x

  
→  

 



1
0
4





, de sorte que pour tout ,x
 

  
 

1
0
4

, ( ) ( )n
n

f x u x
+ 

=

= − + 
1

1 . 

On fixe d’abord ,x
 

  
 

1
0
4

 et on a les résultats suivants, avec ( )
( )

n

n
n

n
u x x

nn

−  
=  

−  

21

2 1
. 

(i) La série ( )( )n n
u x


 

 est une série alternée. 
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(ii) Avec la formule de Stirling, on a : ( ) ( )
e

e

n

nn
n nn

n
n

cste
u x x x

nn
n n

→ + 

 
 

 
=

 
 

 

2

2

2
4

4

2 2

 , ce qui montre, puisque 

x 0 4 1 , que ( )n
n

u x
→ + 
→ 0 . 

(iii) 
( )n

n

n
n

a x n x
x

a x n

+

+ −
=  

+

1
1 2 2 1

4 1
1

, donc la suite ( )( )nu x  est décroissante. 

On en déduit avec le théorème sur les séries alternées d’une part que la série numérique ( )( )n n
u x


 

 est convergente, 

donc que ( ): n
n

f x u x
+ 

=

− + 
1

1  est définie sur ,
 
 
 

1
0
4

, d’autre part que le reste d’ordre n  vérifie : 

( ) ( )n nR x u x+ 1 . 

On a alors les résultats suivants : 

(i) Pour tout n   , nu  est continue sur ,
 
 
 

1
0
4

. 

(ii) Pour tout n   , ( ) ( )n n nR x u x u+ +

 
   

 
1 1

1

4
. Or on a montré que n

n
u +

→ + 

 
→ 

 
1

1
0

4
, ce qui montre 

que la série de fonctions  ( )n n
u


 

 converge uniformément sur ,
 
 
 

1
0
4

. 

On en déduit que la somme de cette série de fonctions est continue sur ,
 
 
 

1
0
4

, et par suite que f  est continue sur ,
 
 
 

1
0
4

. 

Ceci permet de calculer : ( )
, ,

lim lim
+ 

→  → =

− − 
= = = = 

+ 


n

n
x x x xn

a
f f x

x1 1 1 1
0

4 4 4 4

1 1 1

44 1 4 2
. 

 

Exercice 22 

a. Déterminer a  et b  tels que ( ) ( ), cos dn a t b t n t t
n



  + =
2

2
0

1
 . 

b. Calculer 
n n

+

=

 2
1

1
. 

 

Sol. 

 

a. Soit ( ),a b  2 , on a avec deux intégrations par parties (tout le monde est bien 1C ) : 
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( ) ( ) ( )
( )

( )
( )

( )
( ) ( )

( ) ( )

sin sin
cos d d

cos cos
d

.

n

n t n t
a t b t n t t a t b t a b t t

n n

n t n t
a b t b t

n n

a b a

n

 

 

 
+ = + − + 

 

 
= + + − 

 

− +  −
=

 



2 2

0 00

2 2
00

2

2

0 2 2

1 2

, 

On pose a = − 1  et b =


1

2
 et on obtient bien : ( ) ( )cos da t b t n t t

n



+ =
2

2
0

1
. 

b. Pour  ,t  0  et n   , on calcule :  

( )
( )

e e
cos Re e Re

e

e e e e
Re Re

sine e

i n t i tn n
i k t

i t
k k

t ti n t i n ti i

t t
i i

k t

t
i

+

= =

   
+ +   

   

−

   −
= =     −   

 
   − − 

 = = 
   −       

 
1

1 1

1 1

2 22 2

2 2

1

2
2

, 

d’où ( )

sin
e e

cos Im

sin sin

ti n t i
n

k

n t

k t
t t

 
+ 

 

=

    
+   −    = = −

    
    
    



1

2 2

1

1

2 1

2
2 2

2 2

. 

On en déduit (la convergence de l’intégrale apparaissant dans cette écriture étant une conséquence de l’existence de celles 

composant la somme) : 

sin

d

sin

n

k

n t
t

t t
tk



=

   
+   

     = − + − 
    

  
  

 
2

2
1 0

1

21 1

2 2
2

2

. 

Ce qui s’écrit aussi (l’existence de  la première intégrale justifiant la convergence de la seconde intégrale) : 

( ) d sin d

sin

n

k

t t
t t t n t t

tk

 

=

 −   
=  − + +  

      
 
 

  
2

2
2

1 0 0

1 1 1 2 1
2

4 4 2
2

. 

 

On sait que 
( )sin

sinc :
t

t
t

  est de classe C  sur  , car développable en série entière sur  , et ne s’annule pas sur 

 ,−   , donc 
( )

( )
:

sinc
sin

tt t
t

t t

− − 
 =

 
 
 

2 2 22

2

  est définie et de classe C  sur  , 0 . 

On a : ( )sin d sin d

sin

t t
n t t t n t t

t

 
   −     

+ =  +      
        
 
 

 
2

0 0

2 1 1

2 2
2

, et l’on peut effectuer une intégration par parties 

qui donne : ( )
( ) ( )cos sin

sin d d

t n t t n t

t n t t t
n n



 

       
 +  +       

           + = − +  
    + + 
 

 
0 0

0

1 1

2 21
1 12
2 2

. 
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On en déduit en posant 
 

( )
,

supM


= 0
0

 et 
 

( )
,

supM


= 1
0

 (qui existent bien car   et   sont continues, donc bornées sur 

le segment  , 0 ) : ( ) sin d
M M

t n t t
n

 +   
 +   

   +


0 1

0

21
12
2

. 

On en déduit : sin d

sin
n

t t
n t t

t



→ + 

 −   
+ →  

    
 
 


2

0

2 1
0

2
2

, ce qui montre que : ( ) d
n

n
k

t t t
k



→ + 
=

→  −


 
2

2
1 0

1 1
2

4
. 

On calcule pour terminer : ( ) d
t

t t t t


  
 − =  − = 

 


3 3
2 2

0 0

2
2

3 3
, ce qui donne : 

n n

+ 

=


=

2

2
1

1

6
. 

 

Exercice 23 

Montrer que ( )cos 1  est irrationnel. 

 

Sol. 

 

Supposons ( )cos
p

q
=1  où p    et q   . On sait que ( )

( )

( )
cos

!

n

n n

+ 

=

−
= 

0

1
1

2
. Cette série vérifiant clairement le 

théorème sur les séries alternées, ( )cos 1  est strictement compris entre deux termes consécutifs de cette somme. En 

particulier il est compris strictement entre 
( )

( ) !

nq

k

a
n

−

=

−
= 

1

0

1

2
 et 

( )

( )

( )

( )! !

n qq

k

a
n q

−

=

− −
= +

1

0

1 1

2 2
. 

Donc ( ) ( )! cosq2 1  est strictement compris entre ( ) !q a2  et ( ) ( )!
q

q a + −2 1 . 

Or il est immédiat que les trois nombres ( ) ( )! cosq2 1 , ( ) !q a2  et ( ) ( )!
q

q a + −2 1  sont des entiers, et qu’il n’y a pas 

d’entier entre les deux derniers. D’où la contradiction. 

 

Exercice 24 

Soit 
( )ln

:
x

g x
x

−

−

1

1
 . 

a. Montrer que g  est développable en série entière au voisinage de 0 . On donnera une expression de ce développement 

faisant intervenir 
n

n
k

H
k=

= 
1

1
. 

b. Déterminer le rayon de convergence R  de cette série entière. 

c. Déterminer 
( )

n

n

n

H

n

+ 

=

−

+

1

1

1
. 

 

Sol. 
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a. On sait que x
x−

1

1
  est développable en série entière sur  ,−1 1  et que ce développement en série entière s’écrit : 

 , , n
n

n

x a x
x

+ 

=

  − =
−


0

1
1 1

1
 où na = 1 . 

On sait aussi que ( )lnx x−1  est développable en série entière sur  ,−1 1  et que ce développement en série entière 

s’écrit :   ( ), , ln n
n

n

x x b x
+ 

=

  − − = 
1

1 1 1  où nb n
= −
1

. 

Donc d’après le théorème sur le produit de Cauchy des séries entières, 
( )ln

:
x

g x
x

−

−

1

1
  est développable en série entière 

sur  ,−1 1  et ce développement en série entière s’écrit :   ( ), , n
n

n

x g x c x
+ 

=

  − = 
1

1 1 , où 

n n n

n j n j n j j n
j j j

c a b b b H
− −

− −

= = =

= = = = −  
1 1

0 0 1

. 

b. D’après ce qui précède on a R  1 . Supposons R  1 , alors cette série entière convergerait en x = 1 , et donc 

n n
n

c H
→ + 

= − → 0 , ce qui est contradictoire puisqu’on sait que n
n

H
→ + 
→ +  . Donc R = 1 . 

c. On a pour tout  ,x  0 1  (intégration terme à terme de cette série entière sur  , x−0 ) : 

( ) ( )
( )

d d d

nxx x
nn n

n
n n

H
g t t g t t H t t x

n

− + +
+

= =

−
− − = − = − =

+
   

1

1 10 0 0

1

1
. 

On pose alors 

 

( )

,

: n
n n n
u H

x x
n

+

+

 →


−


+

1

1

0 1

1

1




. 

Tout d’abord on fixe  ,x  0 1  et on a les résultats suivants : 

(i) La série numérique ( )( )n n
u x


 

 est une série alternée. 

(ii) On connaît le résultat classique : ( ) ( )lnn
n

H n o
→ + 
= +  + 1 , où   est la constante d’Euler.  

On en déduit ( )n
n

u x
→ + 
→ 0 . 

(iii) Pour monter que la suite de terme général ( )nu x  est décroissante, il suffit de montrer pour tout n  2   

n nH H

n n
−


+

1

1
. On raisonne par équivalence : 

( ) ( )n n
n n n n n n

H H
n H n H n H H H H

n n
−

− − − −   +  −   
+

1
1 1 1 11 1

1
. 

Comme il est évident que nH − 11 , on en déduit bien que la suite de terme général ( )nu x  est décroissante. 

D’après le théorème sur les séries alternées, on en déduit que la série numérique ( )( )n n
u x


 

 est convergente et que son 

reste d’ordre n  vérifie : ( ) ( ) n nn
n n

H H
R x u x x

n n
+ ++

+ = 
+ +

1 11
1 2 2

. 
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De sorte qu’on a les résultats suivants concernant la série de fonctions ( ) *n n
u


 

 : 

(i) Pour tout n   , nu  est continue sur  ,0 1 . 

(ii) La série de fonctions ( ) *n n
u


 

 converge simplement sur  ,0 1  et son reste d’ordre n  vérifie : 

  ( ), ,
n

n

H
x R x

n
+

  
+

10 1
2

, avec 
n

n

H

n
+

→ + 
→

+

1 0
2

. Donc la série de fonctions ( ) *n n
u


 

 converge uniformément 

sur  ,0 1 . 

On en déduit que la somme S  de cette série de fonctions est continue sur  ,0 1 . 

Et en particulier : 
( )

( ) ( ) ( )
( )

, , ,

ln
lim lim d lim d

n x x
n

x x x x x x
n

H t
S S x g t t t

n t

+ 

→  →  → 
=

− +
= = = − − = −

+ +
  1 1 1 1 1 1
1 0 0

1 1
1

1 1
. 

C’est-à-dire : 
( ) ( )ln

d

n

n

n

H t
t

n t

+ 

=

− +
= −

+ +
 

1

1 0

1 1

1 1
. 

On calcule alors avec une intégration par parties ( ( )lnu t= +1 , u
t

 =
+

1

1
, v

t
 =

+

1

1
, ( )lnv t= +1 ) : 

( )
( )

( )ln ln
d ln d

t t
t t t

t t

+ +
 = + − + + 

1 1
12

0
0 0

1 1
1

1 1
, ce qui donne 

( ) ( )ln ln
d

t
t

t

+
=

+
21

0

1 2

1 2
. En définitive, on a 

montré : 
( ) ( ) ( )ln ln

d

n

n

n

H t
t

n t

+ 

=

− +
= − = −

+ +
 

21

1 0

1 1 2

1 1 2
. 

 

Exercice 25 

Calculer en utilisant une série entière : 
n n

n

+ 

=  
 
 


0

1
2

. 

 

Sol. 

 

Remarquons tout d’abord que :  

( )

( )
( )

( )( )

( )

( ) ( ) ( )

!

!

!

!

n

nn

n nn n
nn n n n

n n

→ + 

 
 

+ + 
= = = →

++ + + + 
 

+ + 

2 2

2

2

12 1 1
2 21 2 2 2 1 2 2 1 4

2 2 1

. 

Ceci assure, d’après la règle de d’Alembert, que la série étudiée est bien convergente. 

On note 
n

na n

n

=
 
 
 

2
2

, et, pour tout  ,x  − 1 1 , ( ) n
n

n

f x a x
+ 

=

=  2

0

  

D’après ce qui précède, pour tout x  0 , 

n
n

n n
n

a x n
x x

a x n

+

+

→ + 

+
= →

+

2 2
1 2 2

2

2 2

2 1
 et le rayon de convergence est bien égal à  

1 .  
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Le réel cherché est alors 
n

f
n

n

+ 

=

 
=  

   
 
 


0

1 1
2 2

.  

On a pour tout n    : ( ) ( )n nn a n a++ = +12 1 2 2 , ce qui devrait conduire à une équation différentielle vérifiée par  

f . 

On a pour tout  ,x  − 1 1  : ( ) n
n

n

x f x a x
+ 

+

=

= 2 2 2

0

, puis ( ) ( ) ( ) n
n

n

x f x x f x n a x
+ 

+

=

+ = +2 2 1

0

2 2 2 , ou 

encore ( ) ( ) ( ) n
n

n

x f x x f x n a x
+ 

+

=

+ = +2 3 2 2

0

2 2 2 . 

D’autre part, ( ) n n
n n

n n

f x a x a x
+  + 

+

+

= =

− = = 2 2 2
1

1 0

1 et ( ) ( ) n
n

n

f x n a x
+ 

+

+

=

 = + 2 1
1

0

2 2 , donc 

( ) ( ) ( ) n
n

n

x f x f x n a x
+ 

+

+

=

 − + = + 2 2
1

0

1 2 1 . Il en résulte que  

( ) ( ) ( ) ( )x f x f x x f x x f x − + = +2 31 2 . 

Ainsi, f  est donc solution sur  ,0 1  de l’équation différentielle résolue en y   :  

( ) :
x

y y
x x x x

+
 − = −

− −

2

3 3

1 2 1
E . 

Résolvons l’équation homogène ( ) :
x

y y
x x

+
 − =

−

2

3

1 2
0H . 

On trouve que 
x

x x x x x

+
= + −

− − +

2

3

1 2 1 3 1 3 1

2 1 2 1
, on en déduit que : 

( ) ( ) ( )ln ln ln
x

x x x cste
x x

+
= − − − + +

−
2

3

1 2 3 3
1 1

2 2
. 

Les solutions de ( )H  sont donc les fonctions  

( )
,

C x
x C

x


−
3 221

 . 

Résolvons maintenant ( )E  par la méthode de variation de la constante. On pose : ( )
( )

z x
y x

x
=

−
3 221

, et la fonction  y  

est solution de  ( )E  si et seulement si 

( ) ( )
z x

x xx
= −

−−
3 2 22

1

11
, soit si et seulement si 

x
z

x

−
 = −

2

2

1
. 

Le changement de variable ( )cost u=  donne : 

( )
( )

( )
( )

( )
arccos

arccos

d tan d tan arccos

xx
xt x

t u u u u x cste
t x

− −
− =  −  = − +  

2 2
2

2

1 1
. 

On en déduit que  y  est solution de ( )E  si et seulement si  z  est de la forme : ( ): arccos
x

z x C x
x

−
− +

21
 , ainsi 

les solutions de ( )E  sur  ,0 1  sont les fonctions 
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( )( )

( )

arccos
,

x C x x
x C

x

− + −


−

2

3 22

1

1
 . 

La fonction  f  est donc elle aussi de cette forme, avec, puisque ( )lim
x

f x
→

=
0

1  : C


=
2

. 

Finalement :  ,x  − 1 1 , ( )
( )

( )

arcsinx x
f x

xx
= +

−−
3 2 22

1

11
, et en particulier : 

arcsin

n

f
n

n

+ 

=

 
 

   
= = + = + 

   
 
 


0

1 1
1 1 4 2 42 2
2 2 3 33 3 9 3

8

. 

 

Exercice 26 

Soient les suites ( )n
n

u
 

 et ( )n
n

v
 

 définies par : 

( ) ( )

0

1

1

1

, 1 1
n

n n

u

n u n u
+

+

=

  = + + − 

         et      ,
!

n

n

u
n v

n
  = . 

1.   Calculer 0 1 2 3, , ,v v v v . 

2.   Exprimer 1nv +  en fonction de nv  et de  n . 

3.   Montrer que la suite ( )n
n

v
 

 converge, et indiquer sa limite. 

4.   On pose ( )
0

n
n

n

S x v x
+ 

=

=  . Déterminer le rayon de convergence de cette série entière, et donner une  

 équation vérifiée par  S . 

5.   On pose ( )
e

1

x

f x
x

−

=
−

. Déterminer le développement en série entière de  f ,  son rayon de convergence ainsi  

que son expression en fonction de nv . 

6.   Sur quel domaine le développement en série entière de  f  est-il valable ? 

 

Corrigé 

1.   On a 0 1u = , 1 0u = , 2 1u = , 3 2u =  puis 0 1v = , 1 0v = , 2

1

2
v =  et 3

1

3
v = . 

2.   On a 
( )

( )

( )

( )

( )

1 1
1

1

1 1

1 ! ! 1 ! 1 !

n n
n n

n n

u u
v v

n n n n

+ +
+

+

− −
= = + = +

+ + +
. 

3.   D’après ce qui précède, pour tout 
*n   , 

( )
1

1

!

n

n nv v
n

−

−
− = , puis ( )

( )
1

1 1

1

!

kn n

k k

k k

v v
k

−

= =

−
− =  ,  
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ce qui donne par télescopage : 
( )

0

1

1

!

kn

n

k

v v
k=

−
− =  . En notant que 

( )
0

0

1
1

0 !
v

−
= = , on a alors 

( )

0

1

!

kn

n

k

v
k=

−
=  . On sait que la série exponentielle 

( )

0

1

!

k

k k

−
  est convergente, de somme égale à 1e − . Cela 

revient à dire que la suite ( )n
n

v
 

 converge, et que 1lim en
n

v −

→ + 
= . 

4.   Pour déterminer le rayon de convergence, on peut par exemple utiliser la règle de d’Alembert : puisque ( )n
n

v
 

  

admet une limite finie non nulle, cette suite ne s’annule pas à partir d’un certain rang, et vérifie 
1

lim 1
n

n
n

v

v

+

→ + 
=  ; 

la règle d’Alembert assure donc que le rayon de convergence de la série entière n
nv x  est égal à 1 . 

On a pour tout n   , 
( )

( )

1

1

1

1 !

n

n nv v
n

+

+

−
= +

+
, donc pour tout  1, 1x  − , 

( )

( )

1

1 1 1
1

0 0 0

1

1 !

n

n n n
n n

n n n

v x v x x
n

++  +  + 
+ + +

+

= = =

−
= +

+
   , ce qui donne : 

( )

1 0 1

1

!

n

n n n
n n

n n n

v x x v x x
n

+  +  + 

= = =

−
= +   , ou encore : ( ) ( )1 e 1xS x x S x −− = + − . 

On en tire immédiatement :  

  ( )
e

1, 1 ,
1

x

x S x
x

−

  − =
−

. 

5.   Cf. la question précédente. 

6.   Pour tout   ( )
0

1, 1 , n
n

n

x S x v x
+ 

=

  − =  . Le rayon de convergence étant égal à  1 ,  
n

nv x diverge  

lorsque 1x  . Comme ( )nv  admet une limite finie non nulle, 
n

nv x  diverge pour 1x =  . Le domaine de 

convergence du développement en série entière de  f  est donc égal à  1, 1− . 

 

Exercice 27 

1.   On considère une suite ( ) ( )e n
n

n n
a 

 
=

 
. 

 a.   Déterminer le rayon de convergence de 
n

na z . 

 b.   Calculer 
0

n
n

n

a z
+ 

=

 . 

2.   On considère maintenant la suite ( )
0

e
n

k
n

n
k n

b 


= 

 
=  
 
 





. 

 a.   Déterminer le rayon de convergence de 
n

nb z . 
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 b.   Calculer 
0

n
n

n

b z
+ 

=

 . 

 

Corrigé 

1.   la série n
na z  est géométrique. Elle a pour rayon de convergence e −  , et pour tout  z  tel  

que < ez −  , 
0

1

1 e

n
n

n

a z
z

+ 


=

=
−

  . 

2.a.   Si 0 = , 1nb n= + , et n
nb z  a pour rayon de convergence  1 . 

Si 0  , 
( )1

e 1

e 1

n

nb

+ 



−
=

−
, donc : 

Si 0  , 1nb  , et n
nb z  a pour rayon de convergence  1 . 

Si 0  , 
( )1

e

e 1

n

nb

+ 

 −
 , et, par la règle de d’Alembert, n

nb z  a pour rayon de convergence  e − 
. 

En résumé, le rayon de convergence de n
nb z  est  min e , 1−  . 

2.b.   On a 
0

n

n k n k

k

b a c −

=

=  , où ( )n
n

c
 

 est la suite constante égale à  1 .  On reconnaît un produit de Cauchy ;  

on retrouve le fait que le rayon de convergence  R  de 
n

nb z  est supérieur ou égal à  min e , 1− 
. Il lui est égal 

d’après la question précédente, et l’on a pour tout  z  vérifiant z R  : 

( ) ( )0 0 0

1

1 1 e

n n n
n n

n n n

b z a z z
z z

+  +  + 


= = =

   
= =   
    − −   

    . 

 

Exercice 28 

a) Déterminer le rayon de convergence de la série entière 
!

nx

n

 
 
 
 2

. 

b) On note f  la somme de cette série entière. Montrer ( ) ( )x
x

f x o e
→+
= . 

 

Solution 

 

a) Soit x  0 , on a alors pour tout n , 
!

nx

n


2
0  et 

( )

( )

!

!

n

n n

x

n x

x n
n

+

→+

+
= →

+

1

2

2

2

1
0

1
. Ce qui, avec la règle de 

d’Alembert des séries numériques, permet d’affirme que le rayon de convergence de cette série entière est + . 

b) Soit   0 , il existe alors un n   tel que 
!n



1

2
. On fixe un tel n . On a alors pour tout x  0  : 
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( ) ! ! ! ! ! ! !

k k k k k k kn n n n

k k n k k n k k k
x x x x x x x x

x x x x x x x
f x k k k k k k k
e e e e e e e e

 



− + − + − + −

= = = = = = = = +  +  + = +
      
1 1 1 1

2 2 2 2 2
1 1 1 0 12 2

0
2

. 

Or par croissance comparée, 
!

kn

k
x x

x

k
e

−

=

→+
→


1

2
1 0 , il existe donc X +  tel que, pour tout x X , 

!

kn

k
x

x

k
e



−

= 

1

2
1

2
. 

En résumé, pour tout   0 , il existe X +  tel que, pour tout x X , 
( )
x

f x

e
 0 . 

On a bien : ( ) ( )x
x

f x o e
→+
= . 

 

 
 

 

 
 

 
 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 


