Variables aléatoires discretes
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I — Préliminaires

1. Séries géométriques et séries exponentielles
On rappelle les points suivants :

a. Séries exponentielles

k + oo k

. X X
Pour tout x € R, la série Z - converge absolument, et ’'ona:|e* = z —
k>0

b. Séries géométriques, géométriques dérivées, géométriques dérivées secondes

Pour tout ¢ € ]—1,1[,1esséries Z q”, an”fl R Zn(n — l)q"f2 convergent absolument, et ’on a :

n=0 n=1 n>2

+ . 1 + ; 1 + © ( 1) , o 9
q = 5 z nq = — | et n\n — q = — .
oy’ 1-q 5 (1-4¢)°| [/ (1-¢)°

2. Ensembles dénombrables, familles sommables
a. Rappel sur les ensembles dénombrables

Définition

Soit £ un ensemble. Alors :

1_ E estdit dénombrable s’il est équipotent a N , i.e. s’il existe une bijection de E sur N.

On peut alors énumérer ses éléements sous la forme d’une suite ( e n) .
n e

2 E estdit fini, de cardinal p si et seulement s’il est équipotent & {1, ey p} .

3 E estdit au plus dénombrable s’il est fini ou dénombrable.

On montre que Z , Q sont dénombrables. Tout produit cartésien d’un nombre fini d’ensemble dénombrables, toute

réunion d’un nombre au plus dénombrable d’ensemble dénombrables, tout sous-ensemble d’un ensemble dénombrable,

sont dénombrables.

b. Rappel sur les familles sommables

Proposition

Soit S = Z a , une série absolument convergente.
nx0

Alors la nature et la somme de cette série ne dépend pas de I’ordre de la sommation : si I’on permute
les termes de cette série, on garde 1’absolue convergence, et la somme reste inchangée.

Dit correctement -
+ 0 + o0

pour toute bijection ¢ de N dans N, la série Z o (n) converge, et Z Ao(n) = Z a,.

n=0 n=0 n=0




Corolaire - définition

Soit / un ensemble dénombrable. Soit ( u; ) .y une famille de réels ou de complexes indexée par 1.

On dit que la famille ( u,; ) - est sommable lorsqu’il existe une bijection ¢ : N — [ telle que la série

z @ (n) converge absolument. Dans ce cas, pour toute autre bijection v : N — [ : Z @, () converge, et

n>0 n>0
+ 0 + 00
> —_—
I’on a Z a(p(n) = Z aw(n).
n=20 n=0
+ o0
On note alors : Z a; = Z @o(n)-
iel n=20

Ainsi on ne modifie ni la nature, ni la somme, d’une « série »

absolument convergente en modifiant I’ordre de ses termes. Pour une partie infinie / de N ou 7Z , ou de tout autre

ensemble dénombrable, on s’autorisera alors 1’écriture Z u ; lorsque la série en question est absolument convergente

iel

(ou plus exactement, lorsque la famille ( u; ) o est sommable...). Traduction mathématique :
1 e

Théoréme 1 (convergence commutative)

Soit ( u l-) ., une famille sommable de réels. Alors pour toute permutation ¢ de [ :
1 €

Z Us(i) = Z u;

iel iel

c. Sommation par paquets

Théoréme 2 (sommation par paquets)

Soit / un ensemble dénombrable, et ( u; ) , une famille de réels. Alors :

ie

La famille (ui ) o est sommable, i.e. Z u,; converge absolument,
IS

iel
si, et seulement si, pour une (resp. toute) partition ( A, ) fen de /,ona:
€
. La famille (u,- ) ‘ est sommable, de somme z u; .
i ied,
oo La série Z Z u; | converge absolument.

keN\{iedy,

On a de plus, dans ce cas :

+ oo

T DITES)

iel k=0 ied, keN ied,

Application :

Soit X une variable aléatoire réelle discréte définie sur un espace probabilisé ( Q,T,P ) ,

avecX(Q):{xk,keN}.




Soit s € N ™. On suppose que X admet un moment d’ordre § (rappeler ce point...)

Montrer que pour tout entier r € { 1, .. } , X admet un moment d’ordre 7.

hint  séparer les x, selon que |xk| < 1ou |xk| > 1.

Interversion des ordres de sommation : théoréme de Fubini

Proposition 1 & Définition 1  (Fubini — Tonelli)

Soit ( u,; /.) (1 ))en? une famille double de réels positifs ou nuls .

(i) e
On suppose que :
o Pour tout entier naturel i € N , la série z u,; ; converge.

jeN

On note alors A; sa somme.

oo La série z A; converge, et a pour somme S .
ieN
Alors :
. Pour tout entier naturel j € N, la série Z u,; ; converge.
ieN

On note alors B ; sa somme.

oo La série Z B ; converge, et a pour somme S .
jeN
On dit alors que la série double Z u,; ; converge, ou encore que la famille
( i, ] ) e N?
( u,; ) , est sommable , et admet pour somme :
> J ( i, Jj ) e N
+ o0 + oo + o0 + o0
S= 2| 2wy = 2| 2wy
i=0\ j=0 j=0i=0
Remarque Autre maniére de formuler les choses, le théoréme de Fubini — Tonelli assure que, pour une suite

+ ©
a termes positifs, les séries numériques Z Z u; ;| et
jeN\i=0

double (ul-,j)(i’j)eN2

+ o
Z Z u; ; | sont de méme nature, et ont méme somme en cas de convergence.

ieN\/j=0
Erencice - type :
Etudier la convergence de la série double Z u; ;j,ou:

Le cas échéant, calculer sa somme.




e.

Théoréme de comparaison pour des séries doubles

Théoréme 1 (sous-familles des familles sommables a termes positifs)

(convergence d’une « sous-série » d’une série double convergente a termes positifs)

Soit [ et J des ensembles finis ou dénombrables.

Soit ( u,; ) o une famille double de réels positifs ou nuls .
LI (l,j)E[XJ

On suppose que la série double z u, ; converge et admet pour somme S .

(i,j)elIxJ

Alors, pour toute partie 7 'x J ' < I x J,la série double z u,; ; converge,
(i,j)el'xJ"

et a pour somme un réel § ' vérifiant: |S "' < S|,

Théoréme 2 (théoréme de comparaison pour les séries doubles a termes positifs)

Soit / et J des ensembles finis ou dénombrables.
Soit <ui’j)(i,_j)e Lyt (Vf’f)(i,_;)e e deux familles doubles de réels tels que :
. V(i,j)elxJ,0<u, ; <v, .
oo La série double Z v, ; converge.

(i.j)elxJ
Alors :
o La série double Z u, ; converge.

(i,j)elIxJ
oo 0 < Z u; ; < Z Vi

(i,jyelxdJ (i,j)elxJ

f. Séries doubles absolument convergentes (ou sommables)

Définition 1

Soit [ et J des ensembles finis ou dénombrables.

Soit ( u; ; ) (i 7)eins une famille double de réels quelconques .

On dit que la série double Z u; ; converge absolument , ou encore que la

(i,j)elIxJ

famille (ui’-j)(i,j)e[xJ est sommable, lorsque lafamllle( ‘ u; ; ‘ ) (i.,j)elxJ

est sommable, i.e. lorsque la série double Z | u; ; | converge.
(i,j)elxJ

Théoréme 1  (de Fubini)

Soit [ et J des ensembles finis ou dénombrables.

Soit ( u; ; ) (i 7)elns une famille double de réels quelconques .



On suppose que la série double z u,; ; converge absolument. Alors :
(i,j)elxJ

. Pour tout entier i € I, la famille (u 0 ) . est sommable (i.e. pour le
J) e

programme, la « série » Z u;,
jedJ

; converge). On note alors A; sa somme.

oo La famille ( A4, ) ., et sommable, et a pour somme S
L e

(i.e. pour le programme, la « série » Z A, converge, et a pour somme S ).

iel
Meézoci...
(] Pour tout entier j € J, la famille (u i )i <, est sommable (i.e. pour le
programme, la « série » Z u; ; converge). On note alors B ; sa somme.
iel
.o La famille ( B ) ies est sommable, et a pour somme S

(i.e. pour le programme, la « série » Z B ; converge, et a pour somme § ).
iel

On a de plus dans ce cas :

iel \ jelJ jed \iel (i,j)e[xJ

S:Z Z”i,/‘ =Z Z”i,j = uj,

Enercice - type :
Etudier la convergence de la série double Z u; ;j,ou:
(i,j)eN?
it
. 2 _ (=1 !
V(i,j)eN Uy = i )

Le cas échéant, calculer sa somme.

Théoréme 2  (de sommation par paquets)

Soit [ et J des ensembles finis ou dénombrables.

Soit ( u;, j) une famille double de réels quelconques .

(i, j)elxJ

On suppose que la série double Z u; ; converge absolument. Alors :
(i,j)elIxJ

Pour toute partition (Ak)k N de I'xJ,ona:
€

. La famille ( u; _i) est sommable, de somme Z u

i,j)ed iLj
( ) k (i,j)e 4,

oo La série Z Z u, ; | converge absolument.
keN\ (i,j)e d;




oo z u; ; = Jij [(i]ZA,ui’jJ = Z ) Z Ui j

Evencice - type :
Etudier la convergence de la série double z u; ;,ou:
(i,j) e N?
vV (i,j)eN?, u, N S
(i g)!

Le cas échéant, calculer sa somme.

II — Variables aléatoires réelles discreétes

1. Variable aléatoire réelle discréte

Définition

Soit ( Q,A4,P ) un espace probabilisé.
On appelle variable aléatoire réelle discréte sur ( Q, A4, IP’) toute application X : Q — R telle que :
i — X (Q) estunsous—ensemble fini ou dénombrable de R .

ii — Pour tout sous — ensemble 4 de X ( Q ) S ( X e A) est un événement.

On dit alors que X suit une loi finie (respectivement une loi infinie discréte) lorsque X ( Q )

est fini (respectivement, lorsque X (Q) est infini dénombrable).

2. Loi d’une variable aléatoire réelle discrete

Soit X une variable aléatoire réelle discréte définie sur un espace probabilisé ( QAP ) .

a. Proposition — définition (loi d’une vard)

L’application :

P(X(Q)) >R

AcX(Q) P P(Xed)=P(X 'ecd)
est une mesure de probabilités sur (X (Q), e (X (Q)))

On dit que [P, est la loi de probabilités de la vard X .

b. Conséquence pratique (détermination de la loi d’une vard)

D’aprés ce qui précéde, préciser la loi de la vard X revient a décrire I’application P y , ce qui revient encore a déterminer son
ensemble de départ, & savoir X (Q ), et a donner, pour tout sous — ensemble 4 de X (Q),lavaleurde P (X e 4).Ecrire

rigoureusement ce dernier point serait a priori technique et fastidieux (si I’on suppose par exemple que X ( Q ) = N, il faudrait



que la description écrite donne, par exemple aussi, P ( X € 2N ) , P ( ' X est le produit de cinq nombres premiers' ) , etc.).

Heureusement, la remarque qui suit permet de simplifier le travail a fournir :

Constatation (caractérisation de la loi d’une variable aléatoire réelle discrete)

Pourtout 4 € X (Q),onaP (X € 4) = z P(X =x).

xed

On en vient doucement a la conséquence pratique annoncée

D’aprées la constatation précédente, si 1’on connait X ( Q ) , et si I’on connait ’application

. X(Q) -»>R
L .{xeX(Q)HP(X:x)’

alors on connait la loi de X .

Fﬂ L’application £ , ci— dessus est d’ailleurs parfois appelée, pour cette raison mais par abus de langage, loi de X . Fﬂ

Et alors :

Lorsqu’il est demandé de déterminer la loi de la vard X, il s’agit en pratique de :

e  déterminer 'ensemble X ( Q) ;

e o donner, pour tout x de X ( Q ) , la valeur de la probabilit¢ P ( X =x ) .

c¢. Un premier exemple

On lance un dé équilibré a six faces numérotéesde 1 a 6. Notons X la variable aléatoire

représentant le nombre de lancers nécessaires pour obtenir un premier 6 .

Déterminer la loi de X .

Réponse
. I . . ‘ . . r *
. X est une variable aléatoire discréte, car son univers — image est I’ensemble dénombrable N .

* e Notons, pourtout k € N*, 4, I’événement : « Un 6 est obtenu lors du & “me Jancer ».

* r by I3 . . . LY . ie
Pourtout n € N °, I’événement ( X =n ) est réalisé si et seulement si un 6 est obtenu, pour la premiére fois, lors du » “™ lancer,

donc si et seulement si le 7 “™ lancer améne effectivement un 6, alors que les 7 — 1 jets précédents n’en ont pas apporté.

n—-1__
On a donc (X =n ) = ( ﬂ A, J N A, , et, par indépendance des lancers, on en déduit que
k=1

- (T (@) | 2(a) - |(2)

k=1

d. Variables aléatoires discrétes de méme loi

"Définition" (variables aléatoires discrétes de méme loi)

Soient deux vards X et Y, définies sur le méme espace probabilisé ( QAP ) .

On dit que X et Y ont la méme loi lorsque I’une des propositions équivalentes suivantes est vérifiée :

i- VxeX(Q), P(X=x)=P(Y =x).



ii— Pourtout x réeltelque P(X = x) #0,P(X =x)=P(Y = x).

iii — Pourtout x réel, P(X =x)=P(Y =x).

FQJ Si I’on se référe a la définition de la loi d’une variable aléatoire discréte, les vards X et Y ont la méme loi si et seulement si

X(Q)=Y(Q) etpourtout x e X(Q), P(X =x)=P(Y = x) ;il sagit donc ici d’une extension de définition, qui s’avérera

souvent nécessaire lors de futurs exemples pratiques Fﬂ

Remarque
Deux variables aléatoires ayant la méme loi n’ont aucune raison d’étre égales : considérons, par exemple, 1’exemple débile

d’un lancer d’une piéce équilibrée, et des variables aléatoires X et Y données par

X =1 si onobtient " Face", et X = 0 sinon
Y =1 si onobtient "Pile", et ¥ = 0 sinon
1
Il est clair que X et Yontlamémeloi(X(Q) = Y(Q) = {0;1} eth(X = 0) = IP’(Y = 0) = 5,

P(X=1)=P(Y=1)= %), et il est non moins clair que X et Y ne sont pas égales (remarquons, par exemple, que

|X - Y| est une variable certaine égalea 1 ...).

3. Caractérisation des lois de variables aléatoires discrétes

En premiére année, on a vu que les lois de variables aléatoires discrétes d’univers — image fini sont caractérisées de la maniere

suivante :

Proposition 1

Soient n € N*, E = {xk,l <k < n} un ensemble de n réels, et (pk) une suite finie
1<k<n

de n réels tels que :

e pourtout k € {1,.,n}, p; =0;

oo Zn:pkzl.

k=1

Alors il existe un espace probabilisé ( Q, AP ) , et une variable aléatoire discréte X définie

sur cet espace, tels que X(Q) = EetV k e {1,..,n}, IP’(X = xk) =pi-

Les lois infinies discrétes d’univers — image infini (dénombrable) sont caractérisées de maniére analogue :

Proposition 2

Soient £ = {x L.k € N} un ensemble de réels, et ( P )k N une suite de réels tels que :
€

. pourtout k € N, p, >0 ;
+ 0
ee Jasérie Z P converge, et Z pr =1
k=0 k=0

Alors il existe un espace probabilisé ( Q,A,P ) et une variable aléatoire discréte X sur cet

espace telsque X(Q) = E etV k ZO,IP’(X = xk) =Dy




F Ce résultat peut s’étendre a un ensemble de la forme £ = {xn ,neNetn2n, } ,oun, € N. R

On admettra ce résultat, dont la démonstration est parfaitement inintéressante.

On admettra également la proposition suivante :

Proposition 3

Soient ( QA ) un espace probabilisable, et X une variable aléatoire réelle discréte sur ( QA ) ,

d’univers-image dénombrable E = {x” , N € N}.

Soit par ailleurs ( Pa ) \ une suite de réels tels que :
ne

. pourtout n € N, p, > 0 ;
+ 0
ee laséric Z p, converge, et z p, =1
n>0 n=0

Alors il existe une mesure de probabilités P sur (Q, A ) telleque: vV n>0,P (X =x, ) =p,

Exemple 1
L’énoncé : " Soit X une variable aléatoire a valeurs dans { 1,....n } , et de loi donnée par
2k
Vkell,.,nt,P( X =k)=———"
{ } ( ) n (n +1)

a bien un sens, car il existe une telle variable aléatoire. En effet :

. pour tout k£ € {1,..., n},le réel p, = ———  estpositif ounul ;
n (n +1

n

.e onaipkz;Zkz 2 n(n+1)_1’

Pt n(n+1)= n(n+1) 2 -

et il s’ensuit qu’il existe une variable aléatoire X, d’univers — image égal a { 1,..,n } , telle que pour tout

k € {1,...,n}, ]P’(X = k) =Pk
Exemple 2

Soitlasuite(pk)k y+ définie par: V k e N*, p, = !

d’univers — image N ", telle que pour tout k € N*, P (X = k) = p,.
Pour tout k e N*,ona p, > 0.Deplus, pourtout N € N":

N N 1 N1 1 N N 1
S Zimt i) i g

P k+1

N +1

N N N
o 1 . 1
et en changeant d’indice dans la somme E on obtient : E Pr = 2 —
i1 b+l k=1 i1k

| =

=2
N

l N
On en déduit que =1- ,puis que lim =1.
a kglpk N +1 p d Nﬂ*‘”(kz;pk]

Alors, par définition de la convergence d’une série, la série de terme général p, est convergente,

—— . Montrons qu’il existe une variable aléatoire X,
k(k+1)



+ 0
etl’ona Z P = 1. Il existe donc une variable discréte X définie sur un espace probabilisé ( QTP ) telle que
k=1

X(Q)=N" etpourtout k e N*: P (X =k) = p,.

4. Systéme complet d’événements associé a une variable aléatoire discréte

a. Proposition

Soit X une variable aléatoire réelle discréte définie sur un espace probabilisé ( QAP ) . Alors

la famille (( X = x)) . est un systéme complet d’événements.

eX(Q)

R On dit que la famille ( ( X =x ) ) . est le systéme complet d’événements associé a la variable aléatoire X . 25

x(Q)
Démonstration
o Pour tout (x, y) € (X ( Q)) * tel que x # v, les événements (X = x) et (X = y) sont clairement incompatibles.

oo Ona:

U (x=x)= U «x -1 ({x}) par définition des événements (X = x)
xeX(Q) XEX(Q)

x ! U {x} d’aprées les propriétés des images réciproques
xe X(Q)

- X (x(0)= .

la famille ( ( X = est donc bien un systéme complet d’événements|.

x))xeX(Q)

b. Conséquences

Etant donnée une variable aléatoire discréte X :

° ZP(XZX):I.

xeX(Q)

7 Lorsque X (Q) est infini, de la forme X(Q)z{xn,n Zno}, Z P (X = x) =1 signifiequelaséric » P(X =x)

xeX(Q) n=ng

converge absolument et a pour somme 1, et ceci ne dépend pas de I’indexation de X ( Q ) choisie. |%

ee Pourtoutsous—ensemble 4 de R : P(X € 4) = z P(X =x).
xednX(Q)

e o o Pour tout événement B :

P(B) > P(Bn(X=x))= > P(B (X =1x))

xeX(Q) xeX(Q),]P(X:x)#O

= P yon(B)-P(X =x),
xeX(Q),]P(sz)#O

que I’on écrit plus simplement, en posant P _ (B)-P(X =x)=0lorsque (X = x) estun événement négligeable :

P(B)= XE;Q)P (x-x)(B) P(X =x)

c’est la formule des probabilités totales naturellement associée a B, et au systéme complet ( ( X =x ) ) cex(Q)

10



5. Fonction de répartition d’une variable aléatoire réelle discréte

a. Définition

Soit X une vard, définie sur un espace probabilisé ( Q, AP ) .

R >R

On appelle fonction de répartition de X', et I’on note F', , I’application F, : .
pp p X pp X{xl—)IP(XSx)

Premiéres propriétés

Soit X une variable aléatoire réelle discréte, et soit F', la fonction de répartition de X . Alors :

i F  est croissante.
i lim Fy(x)=0et lim Fy(x)=1.
X > —©0 X —> + o

b. Expression de la fonction de répartition a I’aide de la loi de probabilité

Soit X une vard de fonction de répartition F , .

On sait que pour tout sous — ensemble 4 de R, IP(X € A) = Z IP’(X = x).
xedn X(Q)

En considérant les ensembles 4, = |- o, x|, pour x € R, on obtient le résultat suivant :

Proposition

Pourtout x e R : Fy(x)= > P(X=u).
x(Q)

X

u e
u

En particulier, lorsque X(Q) cN:VneN, Fx(n) = Z ]P’(X =n).

Exemple (Iégérement anticipé)
Considérons une variable X suivant la loi géométrique G ( p ) , et déterminons sa fonction de répartition I .

Soit x € R .

. Six<l,alors:{neX(Q)/nSx}={neN*/nSx}=@,etFX(x): ZP(X:n):O;

ne@
oo Sile,alors:{neX(Q)/nSx}={neN* /nSx}z[[l,LxJ]] , donc :
Lx] [x] 1= glx]
Fy(x)= > P(X=n)= z[;q”‘lzpﬁzl_qlle
n=1 n=1 -

o | x | désigne ici la partie entiére de x . o

c. Expression de la loi de probabilité a I’aide de la fonction de répartition
On se borne ici au cas d’une variable aléatoire a valeurs dans N . On a alors le résultat suivant :

Proposition

Soit X une vard de fonction de répartition F y , et a valeurs dans N. Alors pour tout n € N

P(X =n)=Fy(n)-Fy(n-1).

Démonstration

n n—1
Puisque X(Q) < N,onapourtout n € N : Fy(n)= D> P(X =k)et Fy(n—-1)= Y P(X =k).Lerésultat en découle.
k=0 k=0

[ La démonstration reste valable lorsque 7 = 0, car alors Fy(n-1)=F,y(-1)=0. Fo

11



d. La fonction de répartition caractérise la loi d’une vard

D’aprés ce qui précéde, lorsque X ( Q) < N, la fonction de répartition de X permet de déterminer la loi de

probabilité de cette variable aléatoire. On en déduit immédiatement que deux variables discrétes, a valeurs dans N et
ayant méme fonction de répartition, ont méme loi. On admettra que ce résultat reste valable si ces variables aléatoires
discrétes ne sont pas a valeurs dans N :

Proposition

Deux variables aléatoires X et Y définies sur le méme espace probabilisé ont la méme fonction de

répartition si et seulement si elles ont la méme loi.

e. Exemple d’utilisation des fonctions de répartition
Les fonctions de répartition sont un outil important, en particulier, lorsque 1’on recherche de la loi d’un maximum de variables

aléatoires.

Fﬁj Si I’on recherche la loi d’un minimum, on s’intéressera a sa fonction d’antirépartition x — P ( X > x) . Fﬂ

Exemple

On lance n fois un dé usuel. On note X le plus grand des résultats obtenus ; déterminer la loi de X .

11 est clair que la variable aléatoire X est a valeurs dans { 1,..,6 } .

Pour k € { I.., n} ,notons X, le résultat du k£ —iéme lancer. X, suit la loi uniforme sur { 1, ..., 6} , et I’on en déduit que pour tout

Maintenant : pour i € {1, .., 6}, le plus grand des résultats obtenus est inférieur ou égal & i si et seulement si fous les résultats sont

n
inférieurs ou égaux a i ; nous avons donc : P ( X <i ) =P [ n ( X, <i )J . Les lancers sont indépendants ; il en résulte que :
k=1

. . n
P ( X < i) = P ( X, < i) = H é = (é) . Notons en outre que cette formule reste correcte lorsque i = 0.

On en conclut que pour tout i € {1,..,6} : ]P’(X:i):IP’(XSi)flP’(XSifl):[ij 7(1._1] .

III — Lois discrétes usuelles

On considere ici une variable aléatoire X, définie sur un espace probabilisé ( QAP ) .

1. Loi d’une variable aléatoire quasi — certaine

. On dit que X est la variable aléatoire certaine égale & a lorsque X (Q) = {a},etdanscecas: P(X =a) = 1.
ee Onditque X estune variable quasi — certaine égale a a lorsque P ( X =a ) = 1. Lavar. X estalors,

presque sirement, & valeurs dans { a } .

2. Loi de Bernoulli

a. Définition

Soit p unréeltel que p € [0,1].Posons ¢ =1 — p.

12




On dit que X suit la loi de Bernoulli de paramétre p, et ’onnote X G 3(1, p),

lorsque X(Q) ={0,1},P(X =1)=petP(X =0)=gq.

Q—->R
En particulier, si 4 estun élément de 4, application 1 , : { 1 si ® € A estune variable de Bernoulli, de
0P

0 sinon

parameétre p = IP’( X e 4 ) 1, est appelée variable indicatrice de I’événement 4 .

b. Epreuves de Bernoulli
Considérons une épreuve aléatoire ayant pour issues possibles le succes avec probabilité p € [ 0,1 ] , et I’échec avec probabilité

g =1 — p.Soit X lavar. valant 1 sil’onaunsucces, et 0 sinon. Alors X G ®(1, p).

1 Ceci justifie le nom donné d’épreuve de Bernoulli de paramétre p a toute épreuve aléatoire ayant deux issues possibles. &3

3. Lois uniformes discretes

a. Définition

Soit F = {xl, X e X } un sous — ensemble fini de R, de cardinal # .
On dit que X suit la loi uniforme sur F lorsque

. X(Q)ZF;

oo Vke{l,...,n},]P’(X:xk):l.
n

Cas particulier

Lorsque X suit la loi uniforme sur I’ensemble {1,2,..,n},onnote: | X G U(n) |.

b. Lois uniformes et choix aléatoires

La loi uniforme permet de donner un sens a la locution « au hasard » : lorsque I’on dit, sans autre précision, que 1’on choisit
un élément « au hasard » dans I’ensemble F' = { X1oX gsey X,y } , il est sous — entendu que la variable aléatoire représentant

le nombre choisi suit la loi uniforme sur F'.

4. Lois binomiales

a. Définition

Soient n un entier naturel, et p unréeltel que p € [0, 1].Posons q=1-p.
On dit que X suit la loi binomiale de paramétres n et p, etl’onnote X G 3 ( n,p ) , lorsque

o X(Q)=1{0,.,n};

) Vke{O,...,n},P(XZk)Z(ijkqn_k.

F7 On vérifie aisément que, lorsque n = 1, laloi @( n,p ) est la loi de Bernoulli de paramétre p : il était donc légitime de noter

B(1,p) cette loi. ¥

b. Modéle usuel et schéma théorique

La loi binomiale apparait naturellement lors de tirages indépendants et avec remise :

Modeéle usuel
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Considérons une urne contenant une proportion p de boules blanches, ou p € [0, 1],et une proportion ¢ = 1 — p de

boules noires. Effectuons, successivement et avec remise, n tirages au hasard d’une boule de cette urne, et notons X la
variable aléatoire représentant le nombre de tirages amenant une boule blanche.
Alors X suit la loi binomiale de paramétres n et p .
De maniere analogue :
Schéma théorique
Considérons une suite de n épreuves de Bernoulli indépendantes, de méme paramétre p .
Soit X la variable aléatoire représentant le nombre de succes enregistrés lors de ces n épreuves.

Alors X suit la loi binomiale B( n, p ).

5. Lois géométriques
a. Définition

Définition

Soit p unréel tel que p e |0, 1[ ; comme d’habitude, on notera ¢ = 1 — p.
On dit que la variable aléatoire X suit la loi géométrique de paramétre p, etl’onnote | X G g( P ) , lorsque
e X(Q)=N";

ee VkeN ,P(X=k)=pgh '

Vérification
Vérifions que 1’on a bien défini la loi d’une variable aléatoire discréte. Pour cela, posons pour tout £ € N g Pr = Pq k-1

e Onapourtout ke N:p, >0 ;

e e Lasérie géométrique Y. p, = X pq k-1 converge, car sa raison, ¢, est strictement inférieure a 1 en valeur absolue, et
k>1 k>1
+ 1
I'ona: Z pr=p—— =1.
k=1 1-gq

On sait alors qu’il existe bien des variables aléatoires X, a valeurs dans N * et telles que pour tout k € N *, P ( X=n)=pgq

k-1

b. Schéma théorique

Considérons une suite infinie d’épreuves de Bernoulli de paramétre p, mutuellement indépendantes. Pour tout n € N *, on

note X , lavar. égalea 1 siun succes est enregistré lors de la n — iéme épreuve, eta 0 sinon.

Notons X la variable aléatoire représentant le numéro de 1’épreuve lors de laquelle on obtient le premier succes. Alors X suit

la loi géométrique G ( p ). En effet :

ee Pourtoutn € N":

P(X=n)=P X, =0)|N(x,=1)
k=1

n—1

= H ]P’(X P = O) P(X n = 1) car les épreuves sont indépendantes,
k=1
n—1

= H q|p=rpqg" ", ce qui achéve la démonstration.
k=1
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C.

Remarque

Soulevons ici une difficulté courante : I’événement " le résultat de chacune des épreuves est I’échec” n’est pas un
événement impossible, de sorte que la variable aléatoire X décrite ci — dessus n’est pas définie de manicre
entiérement correcte. Cette difficulté est classiquement levée en convenant d’attribuer & X la valeur 0
lorsqu’aucun succés n’est enregistré. On a alors :
+ 0
P(X=0)=1- XP(X=n)=1- 3 pg" " =1- 1L <0
n=1

L’éveénement ( X =0 ) n’est pas impossible, mais il est presque impossible. Ainsi, I’ensemble des valeurs atteintes par X

avec une probabilité non nulle est égal 2 N*, etpourtout n € N*, P(X =n) = pg” ' : X suitbienlaloi G( p).
Caractérisation des lois géométriques par la propriété d’amnésie
La proposition suivante établit I'une des propriétés fondamentales des lois géométriques, leur caractérisation par la
propriété d’amnésie :

Proposition

Soit X une VAR discréte définie sur un univers probabilis¢ (Q, 4, P ) telle que :
° X(Q) c N* .
ee P(X=1)e]0,1[.Onpose p=P(X=1).
2
see V (s.1)e(N") L Py (X>s+1) =P(X>1).
Lorsqu’une VAR Y veérifie la propriétée eee | clle est dite sans mémoire , ou amnésique .

Alors, X suit la loi géométrique de paramétre p .

Réciproquement, toute var. de loi géométrique posséde la propriété d’amnésie

Preuve :
Sens direct
Soit X une variable aléatoire vérifiant les propriétés o, ee ct eee .

Soit n € N . En appliquant la relation eee avec s = 1 et ¢ = n , on obtient ]I”[X>1](X >n+1) =P(X >n),soit:

P((X>n+1)n(X>1))

F(X 1) =P(X>n). Mais (X >n+1)n (X >1)=(X>n+1) (si X estplusgrande que

P(X>n+1)

W:P(){>n):

n + 1, elle est plus grande que 1 ... ). On en déduit que

la suite (IF’ ( X>n )) nen oSt géométrique, de raison [P ( X >1 )

Comme X estavaleursdans N*, P(X >1)=1-P(X =1) = ¢, en notant comme d’habitude ¢ =1 — p, et

(IP’ ( X>n )) nen oSt géométrique de raison ¢

On en déduit que pour tout 7 eN", IF’(X >n)=q"IP(X >O)=q” (X étant a valeurs dans N*,IP’(X >0):1).

Onaensuitel?’()(=rz)=IP’(X>11—1)—II-”()(>11):q"_1 —gq"=pqg" '

| la variable aléatoire X suit la loi géométrique de paramétre p |

Sens réciproque

Considérons réciproquement une variable aléatoire Y de loi ¢ ( p ) ,avec p € ]0, 1 [ . Alors Y est bien & valeurs dans N ™, et 'on a

2
P ( Y=1 ) =pe ] 0,1 [ ; montrons maintenant que Y est amnésique. Pour tout (s, t) € (N * ) s
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P((X>s+1)n(X>5))
P(X >vs)

]P’[X>S](X>s+t)

et comme on connait la fonction d’antirépartition des lois géométriques, on en déduit que

s+t

Pry. q(X>s+)=f—=g'=P(x>1¢):

s

| Les variables aléatoires suivant des lois géométriques sont amnésiques | .

n joueurs lancent en méme temps une picce honnéte. Chaque joueur est gagnant s’il obtient une
face de la piece que tous les autres joueurs n’ont pas.
1. Quelle est la probabilité qu’il y ait un gagnant a une partie donnée ?

2. Soit X le nombre de parties nécessaires pour obtenir un gagnant.

Déterminer la loi de X .

1. Notons Y le nombre de « Face » obtenus lors de la partie. Les #n lancers sont indépendants, et, pour
s e s . 1 . . 1
chacun d’entre eux, la probabilité d’obtenir « Face » vaut 5 donc Y suitlaloi | n, —

11y aun gagnant a la partie si un seul joueur obtient « Face », ou si un seul joueur obtient « Pile », 1a probabilité qu’il y ait un

gagnant  la partie est donc p = P ( (Y =1) U (Y =n —1)). On distingue alors deux cas :

e Sin=2,lesévenements (¥ =1) et (¥ =n — 1) sont égaux, d’ou :

p:P(Y:1)2[2j1 _ 1

1)22 2

ee Sin#2,(Y=1)et(Y =n—1) sontdeux événements incompatibles, et ainsi

p:IP’(Y:l)+]P’(Y:n—1):[n]1 ! +["]11 soit | p = —1—

122717 (1)227 1" Tl

2. Les parties sont indépendantes, et, pour chacune d’entre elles, la probabilité qu’il y ait un gagnant est la

méme, a savoir p . On sait alors que la variable aléatoire X égale au nombre de parties nécessaires pour qu’il y ait un gagnant
suit la loi géométrique de parametre p :

X estavaleursdans N ™, etpourtout n e N*, P(X =n)=pgq

n—1

Lboug=1-p.

7. Lois de Poisson

a. Définition

Soit X une variable aléatoire définie sur un espace probabilisé ( QAP ) . Soit A un réel

strictement positif.

On dit que X suit la loi de Poisson de paramétre 1, et ’onnote X G P (A ), lorsque

° X(Q)=N;

k
oo VkeN,]P’(X=k)=e_7‘x—.
k!

Vérification

Vérifions que I’on a bien défini la loi d’une variable aléatoire discréte.
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k
On pose pour tout k € N: p, = e_kx—.

k!
. Onapourtout k e N: p, >0 ;
a Ak < Y
oo la série exponentielle =ec —— converge, et : =e¢ "e* =1.
P kgo P kg() k! ¢ kgopk

11 existe donc bien un espace probabilisé ( Q,T,P ) , et une variable aléatoire X définie sur cet espace, tels que X ( Q) =N etpour

Lt

tout k e NyP(X =0)=¢e
k!

b. Lois de Poisson, lois des événements rares
On ne donnera pas a proprement parler de modéle théorique pour les lois de Poisson. Notons cependant que ces lois
apparaissent, sous certaines conditions, comme lois limites de lois binomiales... nous préciserons ce fait en fin de chapitre.
Retenons dés maintenant que les lois de Poisson permettent de modéliser le nombre de succes enregistrés lors d’un grand
nombre d’expériences aléatoires indépendantes, ayant toutes une méme probabilité de succes, faible ; c’est pourquoi on

qualifie parfois ces lois de lois des évenements rares.

Exemples
Soit X le nombre d’appels enregistrés, pendant une durée donnée, par le standard téléphonique du syndicat d’initiative de
Saint — Firmin — Les Bains :
On peut considérer qu'un grand nombre d’individus est susceptible de contacter ce standard, mais que la probabilité qu’une
personne donnée appelle effectivement pendant la période considérée est trés faible. Si I’on suppose de plus que chaque
individu a la méme probabilité d’appeler le standard, et que les appels sont indépendants les uns des autres, alors on
modélisera le nombre X par une variable aléatoire suivant une loi de Poisson (de paramétre a préciser).
De la méme fagon, on pourra modéliser par des variables aléatoires suivant une loi de Poisson :
-- Le nombre de véhicules se présentant a un péage pendant une période fixée,
-- Le nombre d’assiettes cassées, un jour donné, par un serveur a I’adresse moyenne ;

-- le nombre de piéces défectueuses sortant, pendant une période donnée, d’une chaine de montage...

c. Conditionnement Poisson / binomial : un exercice — type

Evencice — type [

Le nombre N de yahourts mangés par Erwann en TD apreés rafle au réfectoire suit une loi de
Poisson de paramétre A . Ces yahourts sont expédiés indépendamment les uns des autres.

La probabilité pour que 1’'un de ces yahourts soit aux fruits est égale a 7.

On note X la variable aléatoire représentant le nombre de yahourts aux fruits ingurgités ; ¥ est la

var. égale au nombre des autres yahourts. Onadonc N = X + Y .
1. Calculer, pour tout ( n, k ) e N2 , la probabilité conditionnelle ]P’( N =) ( X =k )

2. Endéduire que X suit la loi de Poisson de parametre A ¢ .

3. Déterminerlaloide Y.

4. Montrer que les variables aléatoires X et Y sont indépendantes.

1. Supposons I’événement ( N = n) réalisé. Alors Erwann se tape 7 yahourts ; chacun d’entre eux est aux fruits avec la
méme probabilité ¢, et ce indépendamment des autres. Conditionnellement a ( N=n ) , la variable aléatoire X représentant le

nombre de yahourts aux fruits engloutis suit donc la loi B (n, ¢ ) :
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Vke O,n ,]P’(X:k/N:n):(th"(lt)"_k ;

etpourtoutk>n,IF’(X=k/N=n)=0.

2. ( N=n ) , < ©stunsystéme complet d’événements (c’est le systéme complet d’événements associc¢ a la var N).
La formule des probabilités totales assure que la séric » | P (X =k / N =n)P (N = n) converge, et que
n=0
+ 0
P(X=k)= > P(X=k/N=n)P(N=n).
n=20

D’aprés la question précédente, la probabilité conditionnelle P (X = k / N = n) estnulle dés que n < k, d’ou:

P(X=k)= P(X =k /N =n)P(N = n).Enexplicitant les probabilités mises en jeu dans cette somme, on obtient
n =k
< (1) & n-k A"
P(X=k)= ) L (1-1) —dou
n=k :
—A + 0 n -A k + o0
(5] k n! n—k A (5] A k 1 n—kan-k
P(X=k)=—-t — (1 -1t = —1 — (1 -t A
( )= g'k(n—k)!( ) k! Ek(n_k)!( )
s (-

>

I
o
bl

—_

>

~
SN—
g

n=k (”_k)!

o (= 0n)

-
puis en changeant d’indice : P (X = k) = ek—'(kt -
: j=0 J:

On reconnait la somme d’une série exponentielle, et I’on en déduit que : P (X = k) = ¢ (A1) kell=nr _ ¢ (ht) g

On en conclut que ‘ X suit la loi de Poisson de paramétre A ¢ ‘ .

3. Lavar Y joue le méme role que X, lorsque I’on change ¢ en (1 — ¢ ). Par symétrie, | ¥ suitdonclaloi ® (A (1 - 1) )

4. Pourtout (k,() e N?:

P(X=kY=0)=P(X=k,N=k+1() car N=X +7Y
=Ply_gs ) (X =k N=k+)P(N=k+1).

Par hypothése, N suitlaloi @ (), et I’on sait que la loi conditionnelle de X sachant (N = k + () estlaloi B(n,k + ().On

, Y k(1 _ N a-hok+t
obtiemdoncP(sz,Y=€)=(k,:[]fk(1—’)/(keg),“”:t L t;)cuge' : '
+ ()! LR

D’autre part, puisque X et Y suivent respectivement les lois @ ( At ) et @ (X ( 1-t¢ )) :

e—}»(lft)(?“(l_t))(’ (}‘t)k(x(l_t))/eik.

0! k'l

(20)"

P(X =k)P(Y = 6)—{e-“k'1-

On constate ainsi que pour tout (k, () e N*, P(X =k, Y =()=P(X =k)P(Y =1):

| Les variables aléatoires X et Y sont indépendantes | .

Les lois présentées dans le paragraphe suivant ne sont pas au programme ; il n’est donc pas obligatoire de retenir les formules les
concernant ; toutefois, il faut savoir retrouver de maniére automatique une loi hypergéométrique ; les lois de Pascal ou les lois
binomiales négatives sont des sous — produits directs des lois géométriques, que I’on rencontrera (probablement) fréquemment dans les

épreuves de concours, et ¢ ’est pourquoi un minimum de savoir — faire est nécessaire les concernant.
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8. (HP, mais en exercice) Lois hypergéométriques ; lois de Pascal et lois binomiales négatives

a. Lois hypergéométriques

Enencice — type 2

Une urne contient initialement N boules, parmi lesquelles une proportion p € ]0, 1[ de
boules noires, et une proportion ¢ = 1 — p de boules blanches.
1. Soitn € N*, n < N .On tire, successivement et sans remise, # boules de I’'urne. Soit X,

une variable aléatoire modélisant le nombre de boules noires obtenues.

a. Déterminer 'univers — image X , (Q) de X ,.

[\

On distinguera entre autres lescas N p < net N p > n.

(ij( qu
. ., k n—k
b. Justifier I'égalité : V k € {0,...,n}, IP’(Xn = k) =

)

On dit que X | suit la loi hypergéométrique de paramétres N, n et p, notée H ( N,n,p ) .

2. Onnote Y le nombre de tirages nécessaires pour obtenir toutes les boules noires.

Déterminer laloide Y .

l.a.

1.b.

n siNp>n
Le nombre maximal de boules noires que I’on peut obtenir est égal a . P . De méme, le nombre
Np st Np<n
. . , . . . 0 siNg=>n . L
minimal de boules noires que 1’on peut tirer est égal a . . Entre ces deux valeurs, tout est possible... Ainsi,
n—Ngsi Np<n

I’univers — image de X est X (Q) = {max(O,n - Ng),...,min (n, Np)}
. Ilya n fagons de choisir les boules obtenues lors des 7 tirages (sans se préoccuper de 1’ordre d’obtention).

ee Soit k € 0,n .L’événement (X n = k) est réalisé si et seulement si, au cours des »n tirages, on

N
obtient £ boules noires (et donc, fatalement, » — &k boules blanche). Il y a [ kp J fagons de choisir, parmi

les N p boules noires initialement dans 1’urne, les & boules qui seront tirées ; de méme, il y a ( qk] fagons de choisir

les n — k boules blanches tirées. Finalement, la probabilité d’obtenir £ boules noires est :

L L)
"

N
Notons que cette formule reste correcte lorsque & ¢ X (Q) :en effet, si k > p , alors ( kpj est nul, et, lorsque

P(x

n

. Ng
k<n-Ng,onan—-k>Ng,dou i =0.
n—

2. Ilestclair que Y esta valeurs dans {N Dsoees N} .

Pourtout k € {N p,.., N}, I’événement (Y = k) est réalisé si et seulement si la derniére des N p boules noires est obtenue

. . . . N p — 1 boules noires sont obtenues lors des & — 1 premiers tirages
lors du & — éme tirage, donc si et seulement si : . . .
une boule noire est obtenue lors du tirage N°k

Ainsi, en notant 4, 1’événement "le k ™ tirage améne une boule noire" :
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P(Y=k)=P((X,,=Np-1)nd,)=P(x,_, =Np—1).]P’((XH:NP_1))(A,{).

s I
On sait déja d’apres Q1.b. queIP’(kalsz—l): Np—lNk—Np . D’autre part, si
)
I’événement (Xk_1 =Np- 1) est réalisé, alors il reste dans ’urne avant le & ** tirage N — (k — 1) boules, parmi
1
1 11 le boule noire ; < P A, )= —.
esquelles une seule boule noire ; par conséquent, ((Xk,,:Np—l))( k) Y ——
Lol
On en déduit que [P’(Y = k) = Np-1)\k=Np . ! , expression que 1’on peut arranger un peu : on obtient
N N -k +1
<)
! —1)! — !
B(Y = k)= 1 (Ng)! (k=1)I(N -k +1)! 1
Np-1(k-=Np)(Ng-(k-Np))! NI N—k+1
_ 1 (Ng)! (k=1)Y(N —k)! _ 1 (Ng)!(k—-1)!
Np-1(k-Np)(N-k)! NI Np-1(k-Np)IN!

b. Lois de Pascal

Erencice — type 3

Soient r € N " et p € ] 0,1 [ . On considére une suite d’épreuves de Bernoulli indépendantes telles que

pour chacune d’entre elles, la probabilité¢ de succes soit égale a p .

On note X , le nombre d’épreuves qu’il faut réaliser pour obtenir, pour la premicre fois, » succes, non
forcément consécutifs ( X , est donc le numéro de 1’épreuve ou I’on obtient le 7 *™ succés). On convient
que X, = 0 sil’onn’obtient jamais r succes.

1.a. Soit n un entier supérieur ou égal a r.

Quelle est la probabilité d’obtenir moins de r succes lors des n premiéres épreuves ?
b. Al’aide de 1.a., montrer que { woeQ/X, ( ) ) = O} est un événement négligeable.
2. Déterminer laloide X , .

3. Ecrire qu’il s’agit bien d’une loi de probabilité.

g . L m! -
En déduire que, pour tout entier s > 1, la série Z ————— ¢ "™~ converge, et
s (m—s)!
g m! m—s s !
que —q = —Q— 7"
m=s (m—s)! (l_q)s+

4. (anticipé) Déterminer B ( X ) et V (X ).
5. Déterminer la fonction génératrice G y de X, .

Les fonctions génératrices de variables aléatoires réelles discrétes seront étudiées plus

tard ; pour I'instant, il suffit de savoir que G y — est la fonction définie sur [ -1,1 ] par:

+ o0
Vaxel[-1,1], GX,(X): > ]P’(Xr =n)x".
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l.a. Notons Y, le nombre de succes enregistrés lors des n premicres épreuves. Lesdites épreuves sont
indépendantes, et lors de chacune d’entre elles, la probabilité d’obtenir un succes est égale a p, la variable aléatoire Y, suit donc la

loi binomiale B ( n,p ) ; par conséquent, la probabilité d’obtenir (strictement) moins de » succés lors des n premieres épreuves est :

P(Y,<r-1)= ril (Z]pkan

k=0

ou I’on a posé comme d’habitude ¢ =1 — p.
1.b. Sil’on n’obtient jamais » succes, alors on obtient toujours moins de » succes lors des n premiéres épreuves. Par conséquent,

I’événement (X .= 0) est inclus dans 1’événement ( Y, <r- 1) ,pourtout n > r, et’on adonc:

Vnzr,osP(X,:O)

IN

]P’(Y Sr—l).OrpourtoutnZr,pourtoutke 0,r -1,

n

= b q =

n _ n(n—-1).(n—-k+1 " n(n-1).(n-k+1).(n-r+1) ,_, r on—r
P T LT

croissances comparées, donc par encadrement, P ( X, = 0) =0 : | L’événement (X ;= O) = {(n e Q/X ,(w ) = 0} est

négligeable |.
2. o Si’on obtient r succes, il faut au moins » épreuves pour le faire, et, si ’on n’en obtient pas », X , estnulle :

‘donc a valeurs dans {0} U [ r,+ oo[ l

ee D’aprés 1.b., ‘ P ( X, = O) =0 ‘.Pour tout n > r, ’événement (X ;= n) est réalisé si et seulement si le » ™ succés est

o e exactement » — 1 succes sont enregistrés lors des n — 1 premiéres épreuves
enregistré lors de la n

ieme

épreuve, donc ssi {

un succes est enregistré lors de la n épreuve
notant 4, I’événement " un succés est enregistré lors de la n *™ épreuve ", on a donc : (X .= n) = (Y w1 =T = 1) NA,.
Les événements (Y,, e 1) et A, étant indépendants, on en tire : IP(X,‘ = n) = IP(Y” e 1)-IP(AH) .

Onavuen 1.b. que ¥, | suitlaloi @(n - l,p),etbiensﬁr IF’(An) = p ;onen conclut que

_1 o -,
]P(X,=n)=[:_l]p"q( - 1)-p=U_l]p q

3. Dire quelaloide X , estbien une loi de probabilité revient a dire que pour tout n € X, (Q) , P ( X,=n ) est positif ou nul, et que

a serie = n ) est conver, ente, € somme cgale a . omme .= = , CE dernier pomt equwaut ala
la séri P(X, gente, d coaled 1. C P(X, =0) =0, ce dernier point équivaut a |
ne X, (Q)

convergencedelasériez ]P’(X,_ :n),etél’égalité iﬁ ]P’(XV :n):l,soit: i [n_ijp’q"’ =1.
r r -

nzr n=r n=

= (n-1)

En arrangeant la somme précédente, on obtient z

= (n —r)!(r —1)!

(1-¢g) q" " =1,puisenposant m =n — 1 :

+

8

m! r m—(r-1)
1- -1,
R e P A
i 5 m! we(ren _ (=1t - m! . 5!
soit: z T = ————,etencore,ennotant s = r — 1 : Z — g =

q T \s+1”
w S (m=(r = 1)) (1-49) i (m =) (1-49)
On a retrouvé la convergence des séries géométriques dérivées s — iémes (de raison g € ]0, 1[ ici), ainsi que la valeur de leur somme.

+ 0

4. ¢ Onakl ( X, ) = Z nP ( X, =n ) , sous réserve de convergence absolue de la série correspondante.
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n—-1 "
Orpourtouthr,nIP(X,_ —n)—n(r_lJp’q"’ = (rp—l)!(n—nr)!qnir'

P n
(r —l)l,lz,(n —r)!

On en déduit que X , possede une espérance, et, toujours d’apreés 3. :

n

q "~ converge ; sa convergence est absolue, puisque tous ses termes sont positifs.

D’apres 3., la série

b 5 n n-r p’ r! r
E(X,6 )= _ _r
G G I G (R

e o D’apres le théoréme du transfert, et sous réserve de convergence absolue :

+ o

E((X, + I)X,‘)z > (n+ l)nIP’(X,, = n).Orpourtout nxr,

(n+UnP(X,—n)—n@r+”[n_qprqwr_ p’ (n+1n o

r—1

_r (n+1)! MU

(r=1)1((n+1)=(r+1))

. (n+1)! (ne1)=(re1) _ m! mo(r 1) o
Or la série ,,;.((n+1)—(r+1))!q —”1;qu converge d’apres 3., et
+ o0 ' '
> (n+1)! gl U &.Laconvergenceétantévidemmentabsolue, E((X, + l)X,)

n:,((n+l)—(r+1))! (]_q)r+z

r !
existe, et’ona: E ( ( X, +1 )X - ) -_r (r - 1) - ! ( r 1) . On en déduit, par linéarité de 1’espérance, que

(}’—l)l(l—q)r+2 p’

E(sz) existe, et que E(sz) = E((X, + I)X,) - E(X,.).Lavar. X , possede donc une variance, et I’on a

1 2
v(x,)=B(x})-8(x,) =B((x, +1)x,)-5(x,)-B(x,) LIS
d’ou v@n):ég_%gzgg
e Pourtout x e [-1,1]:V n>r, ]P’(X, = n) x"| < IF’(X, = n),etl’onsaitquelasérie Z IF’(Xr = n) converge.
D’apres le théoréme de convergence par majoration pour les séries a terme général positif, Z ‘]P’(X , = n) x"| converge ; la série

nzr

Z ‘P(szn)x"

nzr

est donc absolument convergente, et de ce fait elle converge : la fonction génératrice G de X, est bien

définie sur [—1,1].

ee Pourtout x e [-1,1]:

r—1 (r=1)0,= (n-r)!

yr ol

:7. Z —'))!(qx

ieme

On reconnait & nouveau une somme de série géométrique dérivée ( r—1 ) ,et1’on en tire :

G, (x)-t2x) (r=1)! z[ px )

r (r—l)!(l_qx)" 1-gx
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c. Lois binomiales négatives (exercice corrigé en fin de poly)

Erencice — type ¢
On rappelle, que, pour tout entier » € N " et pour tout réel ¢ tel que |q| < 1, la série

~ m! 7!

—— g "’ converge, et que - g" =
er(m_r)!q & a mZ::r (m_s)'q (l—q)r+1

m!

. . . . r r . r r
Pourtout £ € N, et pour tout r € Z, définissons le coefficient binomial généralisé ( . ] par :

(r] r(r=1)(r =k +1)

k) k!

On remarquera que, lorsque » € N, on retrouve le bon vieux coefficient du bindome, donné par

(}"]z mmOSkﬁr

0 sinon

1. Montrer que pour tout » € Z, pour tous réels x et y telsque y # 0 et |—| < 1, la série

Z (;jxk y”" =% converge, et Zw: (;jxky’k = (x + y)r.

k=0 k=0
Cette formule est appelée formule du binéme généralisée.
2. On considére un entier » = 1, ainsi qu’un réel a strictement négatif.

Montrer qu’il existe une variable aléatoire X a valeurs dans N et telle que pour tout £ € N,
-r I -r—k . . Cq. . ’ .
]P’(X = k) = ( i ja (1 - a) . On dit que X suit la loi binomiale négative @(—r, a).
3. Soit r un entier strictement positif. On considére une suite d’épreuves de Bernoulli indépendantes,
ayant toutes méme probabilité de succés p € ] 0,1 [ . On note X la variable aléatoire représentant le

ieme

nombre d’échecs subis avant I’obtention du »

négative @[—r,—ij.
P

succes. Montrer que X suit la loi binomiale

IV - FONCTIONS D’UNE OU PLUSIEURS VARD(S)

On admettra que

Toute fonction a valeurs réelles d’une variable aléatoire réelle discréte, ou de plusieurs variables aléatoires

réelles discrétes définies sur le méme espace probabilisé ( Q, 4, P ) , est encore une variable aléatoire réelle discréte
définie sur (Q, 4, P).
Par exemple, tout produit, tout quotient défini de vards définies sur le méme espace probabilisé, est encore une vard.

De la méme fagon, toute combinaison linéaire de variables aléatoires réelles discrétes définies sur le méme
espace probabilisé ( Q,A4,P ) , est encore une variable aléatoire réelle discréte sur ( Q,A4,P ) . On remarquera alors que,

muni des lois naturelles, I’ensemble des vards sur ( Q, 4,P ) estun R — espace vectoriel.




V — INDEPENDANCE

A_ INDEPENDANCE

1. Indépendance de deux variables aléatoires discrétes

Définition

Soient X et Y deux vards définies sur un méme espace probabilisé ( Q,4,P ) .

On dit que X et Y sont indépendantes (pour la probabilité IP) lorsque

V(4,B)e(®(R)) ,P(XeAd,YecB)=P(Xecd).P(YeB)

Proposition

Soient X et Y deux vards définies sur un méme espace probabilisé ( Q,4,P ) .
Les vards X et ¥ sont indépendantes si et seulement si pour tout (x, y) € X (Q)xY (Q),

les événements (X = x) et (Y = y) sont P —indépendants, i.e. si et seulement si :

| V(x,2) e X(Q)xY(Q),P(X=x,Y=y)=P(X =x).P(Y=y)]|

2. Indépendance mutuelle d’une famille de variables aléatoires discretes

Définition 1 (indépendance mutuelle d’une famille finie de vards)

Soient X |, ..., X, des vards définies sur le méme espace probabilisé (Q, 4, P ).

X,,.., X, sontdites (mutuellement) indépendantes si et seulement si :

n

i=1

¢ () < IT Xi(g),p[_ﬁ[xi . j: [T (x, =)

Définition 2 (indépendance mutuelle d’une famille dénombrable de vards)

X ,, n € N, sontdites (mutuellement) indépendantes si et seulement si pour toute partie finie 7/ < N,

n 2

la famille ( X [) ., est indépendante au sens de la définition précédente.

Remarque

On dit également que n variables aléatoires X |, ..., X , sont indépendantes deux a deux lorsque pour tout i # j, X,

n

et X', sont indépendantes.

On fera attention de ne pas confondre les notions d’indépendance mutuelle et d’indépendance deux a deux (la premiere

est fondamentale, la deuxiéme ne sert pas a grand — chose).

3. Propriétés

Proposition 1

Soient X et Y deux vards indépendantes définies sur un méme probabilisé ( Q, A4, 1P’) ,
f et g deux applications numériques définies respectivement sur X (Q) et ¥ (Q).

Alors, f (X ) et g (Y ) sont deux vards indépendantes définies sur (Q, 4, P) .
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Proposition 2 (lemme des sous — familles)

Soit ( X, ) 2 < Iy une suite de vards (mutuellement) indépendantes, et / < N.

Alors la sous — famille ( X, ) . < 7 estencore une famille de vards indépendantes.

Proposition 3 (lemme des coalitions)

Soit ( X, ) 2 < Iy une suite de vards (mutuellement) indépendantes.

Alors toute vard fonction de certaines de ces variables est indépendante de toute fonction d’autres de ces

variables aléatoires.

4. Schémas de Bernoulli
On appelle schéma de Bernoulli toute suite (finie ou infinie) d’épreuves aléatoires mutuellement indépendantes, ayant toutes
deux issues possibles : succes et échec, et telles que, lors de chacune d’entre elles, la probabilité de succes est la méme.
Autrement dit, un schéma de Bernoulli est une suite d’épreuves de Bernoulli, indépendantes et ayant toutes le méme parametre.

On appellera encore schéma de Bernoulli toute suite finie ( X, ), _, _ ,ouinfinie (X, ), _, ., de variables de Bernoulli

k e
indépendantes et de méme paramétre p ; on parlera alors de schéma de Bernoulli de paramétre p , (et de taille » dans le cas

d’une suite finie ( X, ) ). On a la proposition suivante :

1<k<n

Proposition

Soit ( X, ) un schéma de Bernoulli de paramétre p etde taille n € N .

1<k<n

Posons §, = Z X, .Alors S, suitlaloi 8(n, p).

k=1

" Preuve "'

S, représente le nombre de succes enregistrés lors d’une succession d’épreuves de Bernoulli indépendantes, ayant toutes p pour probabilité

de succes, on sait alors que S, suitlaloi @ (n, p).

B_ THEOREMES DE STABILITE

1. Loi de la somme de deux vards a valeurs entiéres : la formule de convolution discréte
Soient X et Y deux variables aléatoires définies sur le méme espace probabilisé, et a valeurs dans N . On cherche la loi de la

var Z = X + Y .Notons déja que Z est, de maniére évidente, a valeurs dans N.

Pour tout n € N, on peut écrire, en utilisant le systéme complet d’événements ( X =k ) associé a la var. X, que la série

k eN

> P(Z=n,X =k) converge,etque P( Z =n) = P( Z = n, X = k).Onen déduit que

k=0 k=0
+

P(Z:n):ZP(XH':n,X:k):f]?(X:k,Y:n—k).

k=0

On note de plus que, lorsque £ > n, n — k est strictement négatif, donc ( Y=mn- k) est I’événement impossible ; il en

résulte qu'alors P ( X = k,Y = n — k) = 0 .Parconséquent, | P( Z = n) = Zn: P(X =k, Y=n-k)

k=0
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Si I’on suppose de plus X et Y indépendantes, on obtient le résultat suivant :

Cette formule doit étre redémontrée systématiquement ; elle est appelée formule de convolution discreéte, et elle est a la base

des démonstrations des théorémes de stabilités énoncés ci — dessous.

2. Stabilité des lois binomiales

Théoréme 1 (théoréme de stabilité des lois binomiales)

Soient m et n deux entiers naturels, et p un réel appartenant a [0, 1] .
Soient X et Y deux variables aléatoires indépendantes, suivant respectivement les lois
binomiales B (m, p) et B(n, p).

Alors la variable aléatoire Z = X + Y suit la loi binomiale 3 ( m+ n,p )

Théoréme 2 (généralisation)

Soit p unréel appartenanta [ 0, 1]. Soitun entier » € N, et r entiers naturels n,,..., n ;soient X .., X,

r variables aléatoires mutuellement indépendantes, telles que pour tout £ € { 1,..,r } , X, Ga ( n,,p ) .

Alors la variable aléatoire S, = z X} suit la loi @( z n,,Dp j
k=1 k=1

Preuve
j
C’est une conséquence directe du théoréme précédent : pour tout j € {1,...,7},onpose S, = > X, , et 1’on définit la propriété¢ 7 ()
k=1

j
par i (j) <= S, G @[ D> on,, p].Montrons par récurrence que pour tout j € {1,..,r}, # () est vérifiée.
k=1
Initialisation
S, = X, suit évidemmentlaloi (n,,p).
Heérédité
J+1

j
Soit j € {1,...,r = 1} ;supposons # (). Ona S, , = z X, = z Xy +X,,,=8,+X,,,,et:

k=1 k=1

. par hypothese, X , , | suit la loi binomiale 3 ( ns p) ;

i+
J
oo par hypothése de récurrence, S, & @ Z n.,,p|;
k=1

oo d’apres le lemme des coalitions, S ; et X ;| sontindépendantes.
j+1

j
D’apres le théoreme de stabilité des lois binomiales, S ; , | suit donc la loi binomiale de paramétres z ngtng = Z n, etp,
k=1 k=1

dou o (j+1).
Conclusion

Ona # (1) etpourtout j € {1,...,r =1}, # (j)= #(j+1),dou # () pourtout j € {1,...r}.

En particulier,ona 9 (r) :| §, = Z X, suitlaloi@[an,p]
k=1 k=1
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3. Théoréme de stabilité des lois de Poisson

Théoréme 1 (somme de deux variables aléatoires poissonniennes indépendantes)

Soient A et u deux réels strictement positifs. Soient X et Y deux variables aléatoires indépendantes, suivant
respectivement les lois de Poisson @ (1) et @ ().

Alors la variable aléatoire Z = X + Y suit la loi de Poisson @ (A + p).

Théoréme 2 (généralisation)

Soitun entier n € N *, et n réels strictement positifs A ,,..., A , ; soient X ,,..., X , n variables

aléatoires mutuellement indépendantes, telles que pour tout k € {1,..,n}, X, G @ ( A, )

Alors la variable aléatoire S, = Z X, suitlaloi @( Z A j

k=1 k=1

4. Stabilité des lois de Pascal (exercice)

Erencice — type 5

Etant donnée une variable aléatoire X définie sur un espace probabilisé ( Q,4,P ) , on dit que X suitla
loi de Pascal de paramétres » € N et p € |0,1[ ,etl’onnote X G @1 (r, p), lorsque

e X(Q)= r,+o

n
ee pourtoutn > r P(X=n)=( ]p’q"'r(avecqzl—p).
r

i . . ) " (k n+1
1. Soit s un entier positif ou nul. Démontrer que pour tout n € s,+© Z = Ll
o Us s +

2. Soit p unréeltel que p € ]O, 1[, et soit ( X, ) . une suite de variables aléatoires indépendantes,

ie

et identiquement distribuées selon la loi G ( p ).

Montrer que, pour tout » € N, la variable aléatoire S, = Z X, suitlaloi ®a(r, p).
i=1

3. Soient X et Y deux variables aléatoires indépendantes, de lois respectives @a (7, p) et @a(s, p).

Montrer que la variable aléatoire Z = X + Y suitlaloi Pa ( r+ s, p).

VI- MOMENTS DE VARIABLES ALEATOIRES DISCRETES

A_ MOMENTS D’UNE VARIABLE ALEATOIRE REELLE DISCRETE

1. Espérance d’une vard

Soit X une variable aléatoire réelle discréte, définie sur un espace probabilisé ( Q,A,P ) .

a. Cas d’un univers — image fini

On suppose que X ( Q ) est un ensemble fini.
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On définit alors ’espérance de X', que 'onnote E( X ), par: E( X ) = z xP(X =x).
2 Lorsque X prend un nombre fini de valeurs, cette variable aléatoire admet toujours une espérance. &3

Cas d’un univers — image dénombrable

On suppose que X () est un ensemble infini de la forme : X (Q) = {xn,n e N, n>n, }

n

On dit alors que X admet une espérance, ou que X est d’espérance finie, lorsque la série Z x, IP’( X =x

nzng

) est

absolument convergente, et dans ce cas on définit I’espérance de X, notée [E ( X ) , par :

2. Premieres propriétés

a. Lineéarité

Proposition

Soient X et Y deux variables aléatoires discrétes, définies sur le méme espace probabilisé, et soit A un
réel. On suppose que X et Y possédent toutes deux une espérance.

Alors la variable aléatoire A.X + Y admet une espérance, et’ona: E(A X + Y ) =AE(X )+ E(Y).

Cette propriété s’étend naturellement a une combinaison linéaire quelconque de variables aléatoires discrétes, admettant toutes

une espérance.

Fﬂ La démonstration de ce résultat, faisant intervenir des séries doubles, n’est pas si évidente... Fi

Exemple (espérance d’une loi hypergéométrique)
Soient N e N, n e {O, vees N} ,et p € ]0, 1[ tel que N p soit entier. On pose ¢ = 1 — p . On considére une urne
contenant N p boules blanches, et N ¢ boules noires. On effectue un tirage simultané de n boules de cette urne, au hasard,

et ’on note X le nombre de boules blanches obtenues. Déterminons I’espérance de X .
Pour tout i € { 1., Np} ,notons X , la variable aléatoire égale a 1 sila boule blanche N°i a été obtenue, eta 0 sinon.

. On choisit n boules parmi N : chaque boule est donc tirée avec une probabilité de e Il s’ensuit que les X', sont

des variables de Bernoulli de paramétre % ,etque Vi e {1, .o Np }, E ( X, ) =

z|s

Np Np
ee  Lasomme z X, représente le nombre total de boules blanches obtenues : Z X, =X.
i=1 i=1

N Np
On a alors, par linéarité de I’espérance : IE](X) = Zp: E(Xi) = Z N = %Np =np.
1 i=1

i

eee Onsaitque X suitlaloi .7'[( N,n,p ) . On a donc montré, sans calcul, que si X suit cette loi, alors [E ( X ) =np.

b. Croissance

Soient X et Y deux variables aléatoires discrétes, définies sur le méme espace probabilisé et admettant une espérance.

On suppose que X > Y presque sirement (p.s.): P(X > V) = 1.

Alors: E(X)>E(Y).

Remarque
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En choisissant Y constante égale & a, on en déduit que si X > a p.s., alors E( X ) > a .De méme,

si X <aps.,alos BE(X)<a.

3. Théoréme du transfert

Le résultat présenté ici, connu sous le nom de théoréme de transfert, est essentiel. Il permet en effet de déterminer 1’espérance de
variables aléatoires, sans avoir nécessairement a en préciser la loi.

Le programme ’appelle théoréme du transfert, nous en ferons de méme désormais.

Théoréme (du transfert)

Soit X une variable aléatoire réelle discréte, définie sur un espace probabilisé ( Q, AP ) , et soit f
une application définie sur X (Q ), a valeurs dans R.
e Onsuppose que X ( Q) estun ensemble fini.

Alors la variable aléatoire f ( X ) possede une espérance, et I’on a :

E(f(X))= 2 f(¥)P(X=x).

xe X(Q)
e o On suppose que X(Q) est un ensemble infini de la forme : X(Q) = {x",n e N, n2n, }

La variable aléatoire f ( X ) posséde une espérance si et seulement si la

série Z f ( X, ) IP’( X =x, ) est absolument convergente, et dans ce cason a :

nzn,

B/ (X)) = X () P(x = x,).

n=n,,

On admettra ce résultat (démonstration nettement hors — programme).

Exemple 1

Soit A > 0 ; considérons une variable X de loi QD( K), etposons ¥ = e™*.

n
. . _ el
La série exponentielle Z e’ IP( X =n ) =e " 4 converge absolument, et a pour somme
nx=0 nx=0 n.

+ © e 7\1
e " z # = e * e°".D’apres le théoréme du transfert, la variable aléatoire ¥ admet donc une espérance, et
n=20 n

Exemple 2
On lance indéfiniment un dé usuel, et on note X le numéro du lancer amenant le premier 6 .
Si X est pair, on gagne X euros ; sinon, on perd X euros.
Soit Y la variable aléatoire représentant le gain algébrique (positif ou négatif) ainsi obtenu. Déterminons I’espérance de Y,

apres avoir établi son existence.

La variable aléatoire X suit la loi g 3 : elle représente en effet le temps d’attente du premier succes lors d’une succession infinie
) c R 1

d’épreuves de Bernoulli indépendantes, toutes de paramétre re

Ona Y = X lorsque X estpaire,et ¥ = — X si X estimpaire, donc ¥ = (— 1 ) “Xx.
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n—1

. n 1 5 . . . . .

Orlasérie > (-1)"nP(X =n)=- 5 don (— gj converge absolument (c’est une série dérivée de série géométrique de raison
n=1

nz1

+ o0 n -1
_3 , strictement inférieure 2 1 en valeur absolue), et — 1 Z n (— éj = - 1 % = - S .
6 i 6 6(1-(-5/6)) 121
Le théoréme du transfert assure alors I’existence de E( Y ), et fournit I’égalité : E(Y ) = — 6

121

4. Moments d’une vard
a. Définition

Définition

Soit » € N". On dit que X admet un moment d’ordre 7 lorsque la variable aléatoire X "

posséde une espérance ; dans ce cas, le moment d’ordre » de X, noté m, ( X ) , est défini par :

m,(X)=E(Xx").

I:G En particulier, le moment d’ordre 1 de X est son espérance, sous réserve d’existence. FU

Cas d’un univers — image fini

Supposons X(Q) de cardinal fini n, et posons X(Q) = {x"}1<k< .

Pour tout » € N ,la VAR X " posséde une espérance, car son univers image est lui aussi fini. Il en résulte que X admet

un moment de tout ordre, et d’aprés le théoréme du transfert :
VreN, mr(X) = E(X”) = i (xk )r}P’(X =X, )

Cas d’un univers — image dénombrable

Supposons maintenant X ( Q ) dénombrable, et notons X ( Q ) = { X, }
n n

. Pourtout r € N, d’apres le théoréme
0

. . ;. r
du transfert, X admet un moment d’ordre r si et seulement si la série Z (xn ) IP’( X =x, ) converge absolument, et

nzn,
+ 00 .
danscecas: m, (X ) = E(X’) = > (xn) ]P’(X = xn).
n = I‘lo
b. Proposition
H On suppose que X admet un moment d’ordre » € N *. Alors pour tout s € { 1..,r } , X admet un moment d’ordre s .

5. Variance et écart — type

a. Définition

Soit X une variable aléatoire réelle discréte.
. . . 2 .
On dit que X posséde une variance lorsque la vard. ( X - E( X ) ) est définie, et est

d’espérance finie. Dans ce cas, on définit la variance de X, notée V( X ) ,par:

V(X)=B((x-B(xX))").
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Remarque

. . r . N . . \ . by r 2
Dire que la variable aléatoire X posséde une variance revient donc a dire que X posséde une espérance, et que ( X - E( X ) )

possede une espérance.

b. Premiéres propriétés
Soit X une variable aléatoire réelle discréte, définie sur un espace probabilisé (Q, A4, P).

Proposition 1 : formule de Huygens — Koenig.

La variable aléatoire X posséde une variance si et seulement si elle admet un moment d’ordre 2, et dans ce cas :

V(X)=E(Xx*)-E(X)".

Proposition 2 : quasi définie — positivité de la variance

On suppose que X posséde une variance. Alors :

e V(X)20;

oo V( X ) = 0 sietseulement si X est une variable quasi — certaine.

Proposition 3 : variance d’une fonction affine de VARD

On suppose que X posseéde une variance. Alors pour tout ( a,b ) € R*,laVARD aX + b

possede une variance, et| V(aX + b) = an(X) |

c. Ecart—type

Définition 1 : écart — type d’une vard

Soit X une variable aléatoire discréte possédant une variance.

On définit I’écart — type de X, noté o( X ),par o( X ) = V(X)) .

[ Cette définition a bien un sens, car la variance de X est positive. 2

Définition 2 : variable centrée — réduite

Soit X une variable aléatoire discréte.

e Ondit que X estune variable centrée lorsque X posséde une espérance et [ (X ) =0;

e Ondit que X est une variable réduite lorsque X posséde une variance et V (X ) =1.

Proposition

Soit X une variable discréte non quasi — certaine et possédant une variance. Alors la VARD

. X -E(X ) ) . . . o
X = # est centrée et réduite. On dit parfois que X  est la variable centrée réduite issue de X .

o (X)
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B_ ESPERANCE ET VARIANCE DES LOIS DISCRETES USUELLES

Théoréeme

Soit X une variable aléatoire réelle discréte, définie sur un espace probabilisé ( Q,7T7,P ) , suivant 1’une

des lois usuelles au programme de PC. Alors X posséde une espérance et une variance, et :
i— variable aléatoire quasi — certaine

Soit @ € R.Si X est presque stirement égaled a, alors E(X ) =a et V(X ) = 0.

i — variable de Bernoulli

Soit p € [0,1].8i X G B(1, p),alors E(X)=petV(X)=pgqg.
En particulier, pour tout 4 € T, I’espérance et la variance de la variable indicatrice de 4 sont
données par B (1, ) = P(4) et V(1,) =P (4)P(4).

iii—  variable aléatoire de loi uniforme sur {1, ..., n}.

n+1

Soitn e N".Si X G rU(n),alors E(X) =
iv— variable aléatoire de loi binomiale

Soit n € N ", etsoit p € ]0,1[.Onpose ¢ =1~ p.Si X G B(n, p),alors E(X) =np

et V(X)=npgq.

v— Loi de Poisson

Soit A > O.SiXC»CP(k),alorsE(X)=ketV(X)=k.

vi—  Loi géométrique

Soit p € ]0,1[.SiXC g(p),alors E(X) = 1 et V(X) = iz
p p

VII - VECTEURS ALEATOIRES REELS DISCRETS

A_ VECTEURS ALEATOIRES REELS DISCRETS

1. Vecteur aléatoire discret

a. Définition

Soit (Q, A, P ) un espace probabilisé. On appelle vecteur aléatoire réel discret tout n — uplet ( X, X, ) de

variables aléatoires réels discrétes définies sur ( Q, 4, P ) ,0U 7 estun entier strictement positif.

Dans le cas ou n = 2, on dit que (Xl, X, ) estun couple aléatoire réel discret.

b. Univers —image
Définition

Soit ( X, X, ) un vecteur aléatoire discret, défini sur un espace probabilisé ( Q. 4, P ) . On appelle univers — image
de (Xl, o X, ) I’ensemble (X, D ) (Q) de tous les vecteurs (X, (©), .. X, (co)),lorsque o décrit Q) :

(XX, ) (@) = {(X (). X, (0)),0eQ}c R",
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Exemple
Une urne contient #n jetons numérotés de 1 a n . On tire un jeton de cette urne, on 1’y remet, mais on supprime
tous les jetons portant un numéro strictement supérieur a celui qui a été obtenu. Aprés quoi, on effectue un deuxiéme

tirage d’un jeton de cette urne. On note X le numéro du premier jeton obtenu, et ¥ le numéro du deuxiéme.

Alors :

. X (Q) est, de maniére évidente, égala {1,..,n} ;

ee Pourtout k € {1,..,n},sil’onsuppose (X = k) réalisé, le deuxi¢me tirage s’effectue dans une urne

contenant k£ jetons numérotésde 1 a k , le deuxiéme numéro obtenu peut donc prendre n’importe quelle
valeur entre ces deux extrémes ; mais, comme £ peut lui — méme prendre n’importe quelle valeur entre 1 et n,

on en conclut, finalement, que ¥ (Q) = {1,..,n}.
o oo Ilrésulte de tout cecique (X (Q))x (Y (Q)) = {1,...n}",alors que
(X,7)(@) ={(k.¢) e{1,..,n}” / k < (}.Onconstate, sur cet exemple, que
(X.7)(2) < (X(Q))x(¥(Q)),maisque (¥,7)(Q) * (X (Q))x(¥(2)).
En réfléchissant un peu, on se persuadera facilement que, de maniére générale, pour tout vecteur aléatoire réel discret

(Xl,...,Xn) : (Xl,...,Xn)(Q) estune partiede X, (Q)x..x X (), mais n’a pas de raison particuliére de

lui étre égal.

¢. Loi d’un vecteur aléatoire discret

Notation

Soient n € N", et X = (X Y. ¢ ) un n — uplet de variables aléatoires réelles discrétes.

o Pour tous sous — ensembles 4, ..., 4, de R, onnote (X1 €ed,,... X, €4, ) I’événement :

(X, €d,,..X,e4,)=(X,e4,)N..N (X, e4,)= ﬁ(XkeA,().

oo Pourtout(x,,...,xn)eR",l’éVénement ﬁ (szxk) est noté :
k=1
ﬁ(Xk:xk) = (Xlle,...,X":xn).
k=1

Loi conjointe d’un couple aléatoire discret

Soit ( X, X, ) un couple aléatoire réel discret.

o X, X,)(Q) > R
On appelle loi conjointe du couple (Xl, Xz) I’application ( ) N IP’(X ¥ ) .
X5 X, 1 =X, A, =X,

Cette loi conjointe pourra étre notée ﬁ( X, x5
>4 2

[ Déterminer la loi du couple ( X, X, ) revient donc a :

+  Déterminer I’ensemble (X . X ,)(Q) ;

++ Préciser, pour tout (x,,xz) de (X,,Xz)(Q),lavaleurde lP’(Xl =x,X, =x2). R

Généralisation : loi conjointe d’un vecteur aléatoire discret
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Plus généralement, pour tout entier n > 2, et pour tout n — uplet ( X, X, ) de variables aléatoires réelles discrétes
définies sur (Q, A, P), on appelle loi de (Xl, o X, ) ’application :

(... X,)(Q) > R
(xl,...,x”) = ]P)(Xl:x],...,X":xn).

Donner la loi de ( X, X, ) revient a préciser ( X, X, ) (Q ) , et a déterminer, pour tout (xl, s X, ) de

(Xl,...,Xn)(Q),lavaleur IP)(X1 =X, X, :xn).

On dispose, a I’image de ce que I’on a déja rencontré pour une variable aléatoire discréte, d’un théoréme de caractérisation des

lois conjointes :

Caractérisation d’une loi conjointe

Proposition 1

Soit ( X,Y ) un couple aléatoire discret défini sur un espace probabilisé ( Q,4,P ) .

Alors la famille ( ( X=i,Y=j ) ) ( est un systéme complet d’événements.

i) e(x.v)(Q)

Corollaire

P(X=i,Y=j)=1.

(i.7) e (x.¥)(Q)

F1 On admettra que la somme de cette série double convergente, a termes positifs, ne dépend pas de 1’ordre de sommation (Fubini). &3

La réciproque de ce résultat est vraie, et c’est le théoréme de caractérisation annoncé :

Proposition 2

Soit ( P ) , une famille de réels telle que :

(i.j)eN
e pourtout (i, j)eN?, p,  estpositif ounul;

ee lasérie double Z p. , converge, et Z p.,; =1L

(i.j)eN? (i.j)eN?
Alors il existe un espace probabilis¢ (Q, A, P) et un couple de variables discrétes ( X, Y )

définies sur cet espace, tels que: V (i, j) € N2, P(Xlz i,Xzzj) =p.;.

[ Le résultat se généralise au cas d’une famille ( p, ,0Uu @ estune partiede N’ oude Z°. o

'/)(L/)EO
Exemple 1

Soit n un entier naturel non nul, et soit ® = { ( i, J ) eN?/0< j<i<n } . Montrons qu’il existe un couple
aléatoire discret ( X, Y) défini sur un espace probabilisé ( Q, 4, P) tel que ( X,Y ) ( Q) =0

S S
(n+1)(i+1)
1

(n+1)(i+1)

etV (i,j)e® P(X, =i, X,=])

Pour tout (i, j) € @, onpose p, , =
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e Pourtout (i, j) e p . ; estpositif ou nul ;

o,
ee [asomme (finie) Z P ; estévidemment bien définie, et 'on a:
(i.j)eo

1 n l i 1 n
R 1| = 1=1.
St ns

i+1 = n+1:=

Le théoréme de caractérisation d’une loi conjointe vu ci — dessus prouve alors qu’il existe un espace probabilisé et

un couple de variables discretes (X , Y) sur cet espace tels que
(X.Y)(Q)=0.,etV (i,j)e®, P(X, =i, X,=j)=p, .

Exemple 2

iJ
Soit A un réel. On pose, pour tout (i, j) € N*, p, =1 l-,l TN

Pour quelle(s) valeur(s) du réel A la famille ( P ) () e N définit — elle la loi de probabilité d’un couple aléatoire discret ?
> i,j)e€ -

e p, ; estpositif ou nul pour tout (i, j) € N? sietsculementsi LeR".

oo Ici, Z ;. ; désigne la série double Z Z p,; = XZ[ 'Z P ].Or:
i

(x,/‘)eN i20 /20 i>0 />o]

; o 1
o Pour tout i € N fix¢, la série z = (série exponentielle) converge, et Z —
jz0 J = j
+ o0 i
oo La série exponentielle A Z — converge, et A Z — =2e".

i>0 l

Ainsi, la série double Z

P, ; estbien convergente ; sa somme est égale a 1 si et seulement si A=
(i,j) eN?

e~ °. Notons

que dans ce cas, la condition A € R * est vérifiée. Par conséquent :

Il existe un espace probabilisé (Q, 4, P) et un couple de variables discrétes (X, Y ) sur cet espace tels que

(X,Y)(Q):NzetV(z‘,j)eNz,]P’(X,=i,X2=j)=pl,j si et seulementsi A = ¢~ °.

F7 On a utilisé en fait le théoréme de Fubini évoqué ci — dessus. 2

e. Fonction de répartition
Soit ( X,, X, ) un couple aléatoire réel discret. On appelle fonction de répartition du couple (
(x,.x,)(Q) > R

(xl,xz) — ]P’(Xlﬁxl,XZsz)'

) ) I’application

La généralisation de cette définition au cas d’un n —uplet X = ( X, X, ) de variables aléatoires réelles discrétes est immédiate,

comme ci — dessus pour la loi.

2. Loi conjointe et lois marginales

Définitions
Soit ( X.,Y ) un couple de variables aléatoires discrétes définies sur ( Q, 4, P ) .
Les var (discrétes) X et Y sont appelées les marginales du couple ( X , Y ).

Leurs lois sont appelées les lois marginales de la loi conjointe du couple ( X,Y ) .
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On suppose dans ce qui suit que X (Q) = {x,, ,ie]},et Y (Q) = {yj,jeJ},oﬁ I
et J désignent des parties finies ou infinies de N ou de Z . On notera alors dans ce cours :

Viel,p,, =1P>(X=xl.)et vVjelJ,p.; :H”(Y:yj).

Proposition

Dans la méme situation que ci — dessus, et avec les mémes notations :

Viel,p,. :Z p., et Vjed,p,, = Zpi’j .

jeJ iel

Démonstration

Soitiel. (Y =y.)._, estunsystéme complet d’événements, on sait alors que la somme P(X=x.,Y=y. )est
y j)jed y p q i y J
jeJ

convergente, et que P(sz,.) = ZIE”(X:x,,Y=yj>.Autrementdit: Viel,p,, = z Dij-

jeJ jedJ
[ Dans le cas (pour des var discrétes finies) d’une présentation en tableau de la loi conjointe du couple ( X,Y ), les lois de

X et Y s’obtiennent donc en sommant sur chaque ligne et sur chaque colonne les valeurs du tableau. On écrit alors les

résultats dans une colonne et une ligne supplémentaires, les marges, d’ou le nom de variables et lois marginales... R

Nous pouvons alors généraliser au cas de vecteurs aléatoires qui ne sont pas forcément des couples.

Lois marginales d’un vecteur aléatoire réel discret

Soit n e N”, et soit ( X, X ) un vecteur aléatoire réel discret. Pour i € { 1,..,n } ,laloi de

n

probabilité de la variable aléatoire X ; est appelée loi marginale de la variable aléatoire X ;.

Les lois marginales s’obtiennent encore par sommation ; par exemple :

ViieX, (Q),P(X, =x)-= Z(Q)P(ﬁ()(i=xi)] .

3. Lois conditionnelles
a. Définition

On suppose dans ce paragraphe que ( X,Y ) est un couple de VAR discréetes défini sur un espace probabilisé ( Q,4,P ) ,

avec X (Q) = {xi,iel} et Y (Q) = {yj,jeJ},oﬁ I et J désignent des parties finies ou infinies de N ou de Z .

Onnoterapourtout jeJ,P(Y =y )= p.  ,etpourtout (i, j)elxJ:P(X=x,,Y=y,)=p, ;.
j . J 2

Conditionnement d’une VAR discréte par un événement non négligeable
Soit 4 un événement non négligeable. On appelle loi de X conditionnellement a A
X(Q) >R
x, =P, ( X = x, )

i

(ou sachant A ') I’application

F On a bien sor Z ]P’A(X:xt.) =1.

iel
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Cas particulier

Soit j € J tel que IP( Y= y/.) # 0.La loide X conditionnée par I’événement (Y =y j) est

X(Q)->R

I’application Pij -
X, b —
p.;

Démonstration

C’est une évidence au vu de la définition précédente, puisque I’on a, pour tout i € [ :

]P)Y—,- (X:x[.):]P)(X:x[,Y:yj):&.
o P(Y=y,) p.,

Conditionnement d’une variable aléatoire discréte par une autre VAR discréte

On appelle loi de X conditionnée par Y (ou sachant Y ) I’ensemble des couples

((x[,yj),]P’(Y:y/_)(sz,)) (i.j)< 1.y Le I'ensemble des couples [(x”yj)’ P ]
’ P (ivj)elxJ

R Pour 1 = {1, s n} et J = {1, s p} avec n et p petits, cette loi est souvent représentée par un tableau a

double entrée, dont la somme des éléments situés sur chaque ligne (ou chaque colonne) est égale a 1. 2

b. Lois conditionnelles et indépendance

On démontre facilement le résultat suivant :

Proposition

Soit ( X,Y ) un couple de variables aléatoires discrétes. Les assertions suivantes sont équivalentes :
i— Les variables aléatoires X et Y sont indépendantes

ii— Pourtout y € R tel que P (Y = y) # 0,laloide X etlaloide X sachant (Y = y) sont égales.

iii — Pourtout x € R telque P(X = x) # 0,laloide Y etlaloide Y sachant (X = x) sont égales.

=

xemples

Application S
Soient a, b et y trois réels différents de 0 et 1. Soient X et Y deux variables aléatoires

réelles définies sur un espace probabilisé ( O, A4,P ) et dont la loi conjointe est donnée par :

Y
X 0 1 y
0 a 1/8 1/4
1 b 1/10 1/5

1. Déterminer les valeurs de a et b pour que X et Y soient indépendantes.

2. Quelles sont alors les lois conditionnelles de X pour les différentes valeurs de Y ?
On suppose désormais que a = 1/5.

3. Déterminer y pour que le coefficient de corrélation linéaire de X et Y soit nul.

4. Les v.ar. X et Y sont— elles alors indépendantes ?
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1.

Application §

Soit ( X, Y') un couple de VAR discrétes définies sur ( Q, A4, ), a valeurs entiéres.
Pour (k,() e N? onnote p, , =P (X =4k,Y=10).Onsupposequel’ona:

k -t

ree ol (1-a
( ) si (k,0)eN?et 0<(<k
Pi = 01 (k—=1)! ,
0 sinon
A et o étant des réels donnés telsque A > 0 et 0 < a < 1.

1. Vérifier que I’on définit bien ainsi la loi de probabilité d’un couple ( X, Y ) de VARD.

. Déterminer la loi de probabilité de la variable aléatoire X .

2
3. Déterminer la loi de probabilité de la variable aléatoire Y .
4. Les variables X et Y sont-elles indépendantes ?

5

. Déterminer la loi de probabilité de la variable aléatoire Z = X — Y.

6. Déterminer la probabilité conditionnelle ]P’[ P ]( Y=1¢ )

7. Qu’en déduire pour les variables aléatoires ¥ et Z ?

B_ COVARIANCE D’UN COUPLE

Théoréme du transfert pour I’espérance d’une fonction d’un couple de vards

Soient X et Y deux variables aléatoires discrétes définies sur un méme espace probabilisé ( Q,A,P ) . Soit @ une

application définie sur une partie de R > contenant ( X,Y ) (), avaleurs dans R ,etsoit Z=¢ (X,Y).

On admettra qu’alors Z est une variable aléatoire discréte.

L’espérance d’une telle variable aléatoire est donnée, sous réserve d’existence, par le résultat suivant, que I’on admet également :

Théoréme (dit du transfert)

Soient X et Y deux variables aléatoires discrétes définies sur un méme espace probabilisé ( QAP ) .
Notons X (Q) = {xi Ji€ I} et Y (Q) = {yj, je J} . Soit ¢ une application définie sur une partie
de R * contenant (X, Y )(Q),a valeurs dans R. Soit Z la variable aléatoire définie par Z = ¢ (X, V).

Alors :

e Lavar Z admet une espérance si et seulement si la série double

Z |(p(xl.,yj)| ]P’(X:xi,Yzyj) converge.

(i,j)elxJ

ee Danscecas,ona:

E(Z):(_ pa) Itp(xi,yj)IP(X:xi’Y:yj)
i,j)elx.

38



1 On signale que, comme toujours, P (X =x,,¥ = y,) estnullorsque (x,, ¥, )& (X,¥)(Q).F

FiSi x(Q) et Y(Q) sont finis, alors Z admet automatiquement une espérance. [

2. Espérance d’un produit

a. Espérance d’un produit de deux vards

Proposition

Soient deux variables aléatoires discrétes X et Y, définies sur le méme espace probabilisé ( Q,A,P ) .On
suppose que X et Y admettent toutes deux une variance.
Alors la variable aléatoire Z = X Y est d’espérance finie, et I’on a

E(XY) = > ijP(X =i,Y =)

(i.7) e (x.¥)(Q)

= ( > ij]P’(X:i,Y:j)].
iex(e)\ . )

jeY(Q

Idée de la preuve

11 suffit d’appliquer le théoréme de transfert a la variable aléatoire Z = X Y : celui — ci assure que 1’on a bien

sn- 3%

ijP ( X=iY=j ) ] , sous réserve de convergence absolue de cette série double.
ieX(Q)\ jer(Q)

Orpourtout (i, ) e R?, [ij| <—(i*+ j*),car: = (i + j*)—ij==(i-j) 20, et

N | —
N | =

1
2
1 .2 .2 .. 1 . .\ 2

— (i + + 7 = —\1 + >0.

o JP) =S (i)
De plus, les séries doubles

> ( > iz]P’(X:i,Yzj)J: PIPP(X =i,Y=j)=V(X)et
ieX(Q)\ jer(Q) )

ieX(Q

Z ( z jZP(X=i,Y=j)]= Z JPP(Y = j)=V(Y) convergent.
ieX(Q) jeY(Q) i

Jje Y(Q)

Le théoréme de convergence par majoration pour les séries a terme général positif permet d’en déduire que
jeY(Q)

> ( > ijP(X=iY= ])J converge, d’ou le résultat.
ieX(Q)

b. Espérance d’un produit de n vards indépendantes

Proposition

Soient X et Y deux variables aléatoires définies sur un méme espace

probabilisé ( Q,T,P ) , indépendantes, et admettant chacune une variance. Alors :

E(XY)=E(X)E(Y).

Idée de la preuve

Avec les notations et hypothéses adoptées dans ce chapitre, on peut écrire, grace au théoréme du transfert, que XY

posseéde une espérance, et que
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E(XY): Z z xiy_,.lP’(X:xi,Y:yj): z Z x,.yij’(X:x,.)lP’(Y:yj),

iel jeJ iel jed

en raison de I’indépendance des variables aléatoires X et Y. On a alors :

E(XY)=2 > x,.yjIP’(X:x,.,Yzyj)= Zx[P(X=x[)ZyjP(Y:yj)=E(X)E(Y),

iel jeJ iel jedJ
ce que I’on voulait démontrer.
Notons que ceci n’est pas vraiment une preuve : la justification des opérations effectuées sur les sommes ci-dessus

ferait appel a la notion, hors-programme en PC, de familles sommables.
FJ 11 suffit en fait que X et Y admettent une espérance et soient indépendantes pour que le produit XY admette une espérance. o

De maniere plus générale :

Proposition bis

Soit n un entier naturel supérieur ou égal a 2, etsoient X |, ..., X , n variables

n

aléatoires définies sur un méme espace probabilisé, indépendantes, et admettant chacune

une espérance. Alors : E[ﬁ X,(j = ﬁE(Xk) .
k=1 k=1

3. Covariance, coefficient de corrélation

a. Définition

Soient X et Y deux variables aléatoires discrétes définies sur un méme espace probabilisé, et admettant

chacune un moment d’ordre deux. On définit la covariance de X et Y par la formule de Huygens — Konig .

cov(X,Y)=E(XY)-E(X)E(Y).

b. Propriétés

Proposition

Soient X, Y, et Z des VAR discrétes définies sur un méme espace probabilisé (Q , T, P ) s
et admettant chacune un moment d’ordre deux. Soit également A € R . Alors :

i

cov (X,Y) = cov (¥, X).
i — cov(X+Y,Z)=cov(X,Z)+cov(Y,Z).
i — cov(AX,Y)=02Acov(X,Y).

v — cov(X,X)=V(X).

v - V(X+Y)=V(X)+V(Y)+2cov(X,Y).
vi — Identités de polarisation
cov(X,Y) =

(V(X+7)-V(X)-V(r))

(V(X)+V(Y)-V(x-7))

N e S e ‘N

(V(X+7)-V(x -7)).

Notons qu’il résulte aussi de la proposition précédente que :
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cov (X,¥) = B((X B (X)) (¥ -B (1)),

ce qui est généralement pris comme définition de la covariance.

Le dernier point de la proposition précédente se généralise comme suit :

Proposition (variance d’une somme : identité de polarisation étendue)

Soient n un entier naturel supérieur ou égala 2, et X, ..., X, n variables aléatoires

n

définies sur un méme espace probabilisé, admettant chacune une variance.

n
Alors, Z X , admet une variance, et :

| (5]

év(xk)+ Y cov(x,X,)

(i,j)e Ln *li%j

;V(Xk)+ 2 > cov(Xl.,Xj).

1<i<j<n

c. Coefficient de corrélation

Définition

Soient X et Y deux variables aléatoires définies sur un méme espace probabilisé, et admettant
chacune une variance non nulle. On appelle coefficient de corrélation linéaire des VAR X
cov(X,Y)

S V() JV(Y)

et ¥ lenombre p (X, Y ) définipar: p(X,Y)

Les résultats suivants sont connus sous le nom d’inégalité de Cauchy — Schwarz :

Proposition

Soient X et Y deux variables aléatoires discretes admettant chacune un moment d’ordre 2. Alors :

Cauchy — Schwarz version PC
o Jeov(X,¥)|<JV(X)JV(Y)

Autrement dit, lorsque les variances de X et Y sont non nulles : | p ( X, Y) | <1.

e e De plus, | p ( X, Y) | = 1 si et seulement si les variables X et Y sont quasi — slirement
affinement lies, autrement dit ssi il existe A, € R et b variable aléatoire

certaine, tels que ¥ = A, X + b presque slirement.

coe (E(XY)) <E(Xx*)E(r?).

d. Indépendance et non — corrélation

Définition

Soient X et Y deux vards définies sur un méme espace probabilisé ( Q,A4,P ), et admettant

chacune une variance. On dit que X et Y sontnon — corrélées lorsque cov (X,Y ) = 0.

[ Lorsque les variances de X et Y sont non nulles, il revient au méme de dire que p (x,v)=o0. &
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Proposition

Soient X et Y deux variables aléatoires définies sur un méme espace probabilisé,

indépendantes, et admettant chacune une variance. Alors X et Y sont non — corrélées : cov ( X, Y) =0.

[ Attention, la réciproque est fausse, et cela est fréquemment illustré dans les exercices. [

Conséquence de ce résultat, ’expression de la variance d’une somme se simplifie notablement en situation de non —

corrélation, et en particulier en cas d’indépendance :

Corollaire

Soit n € N ", etsoient X, .., X, n variables aléatoires définies sur un méme espace

n

probabilisé, admettant chacune un moment d’ordre 2, et non — corrélées.

Alors i X, admet une variance, et ’on a V(i Xk] = i V(Xk ) .
k k=1 k=1

=1

VIII - SERIE GENERATRICE D’UNE VAR A VALEURS DANS N

1. Définition

Soit X une variable aléatoire définie sur un espace probabilisé ( Q,A4,P ) , a valeurs dans N .

a. Série génératrice d’une variable aléatoire a valeurs entiéres

La série génératrice de X', notée G  , est la fonction d’une variable réelle ¢ définie par : Gyt E ( t )

b. Expression comme somme d’une série entiére

Soit ¢ unréel. D’apres le théoréme du transfert, G  est définie en ¢ si et seulement si la série

Z P ( X =n ) t" converge absolument. Lorsque tel est le cas :

n=>0

G () =B(1¥)= 3 P(x=n)e"

+ o0
Autrement dit, G y estla fonction G y : ¢ > ]E(t X ) = Y P(X =n)t", définie sur l'ensemble :
n=0

{te R, > P(X=n)t" convergeabsolument}.

n=0

2. Séries génératrices des lois géométriques et de Poisson

Proposition

e Soient p € ]0, 1[, g =1 — p,etsoit X une variable aléatoire suivant la loi géométrique G ( p ) . Alors la

,etpourtout t € |——,—|:

9 9

A 1
série génératrice de X a pour rayon de convergence | —
q

pt
Gx(f)Zm




ee Soit A > 0,etsoit X une variable aléatoire suivant la loi de Poisson @ ( A ) . Alors la série génératrice de X

a pour rayon de convergence ,etpourtout 1 € R: | Gy (t) =¢e Mie-1)

3. Propriétés fondamentales des séries génératrices

On considére ici une variable aléatoire X définie sur un espace probabilisé ( Q, A4, P ) , a valeurs dans N .

a. Définition et valeur en 1

La série génératrice de X est définieen 1, etlPona| Gy (1) =1 |.

Preuve : ((X =n) ) , . Ctantun systéme complet d’¢vénements, > P(X=n)1"= ) P(X =n) converge

n =0 n =0

+ o0
(absolument), etl'ona » P(X =n)=1.
n=20

b. Minoration du rayon de convergence

Le rayon de convergence de G , est supérieur ou égala 1.

c. Les séries génératrices caractérisent la loi

Deux var a valeurs dans N ont la méme loi si et seulement si leurs séries génératrices sont égales.

4 Espérance, variance et dérivées de la fonction génératrice

Proposition

Soit X une variables aléatoire définie sur un espace probabilisé ( Q,A4,P ) , a valeurs dans N . Alors :

. X admet une espérance s si G , est dérivable en 1, et lorsque tel est le cas :

oo X admet une variance s si G ”* (1) existe, et lorsque tel est le cas :

Gy’ (1)=E(X (X -1)).

5. Fonction génératrice d’une somme de variables aléatoires (entiéres) indépendantes

Etant donnée une variable aléatoire X a valeurs entiéres, on note ici R ( X ) le rayon de convergence de sa série génératrice.

Théoréeme

Soient X et Y deux variables aléatoires définies sur un espace probabilisé ( Q,A4,P ) , a valeurs dans N,

indépendantes. Alors R (X + Y ) > min(R(X),R(Y)),et:

Viee |-min(R(X),R(Y)),min(R(X),R(Y)) | Gy, y(t)=Gx(t)Gy(1)

Autrement dit, G y | y estle produit de Cauchy de G y etde Gy .
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IX- INTRODUCTION A L’APPROXIMATION

A_ DEUX INEGALITES PROBABILISTES

1. Inégalité de Markov

Théoréme (inégalité de Markov)

Soit X une variable aléatoire a valeurs positives, admettant une espérance E( ) .

E(X)
I

Alors pourtout & > 0 : P(X > 4) <

Démonstration (a connaitre !)

. . . . Y=1s1X 221
On considere la variable aléatoire Y définie par : { 0 s Autrement dit, Y est la var. indicatrice de
sinon

Pévenement (X 2 1) Y =1, (X).
Alors, Y est une variable de Bernoulli, de paramétre p = lP’( Y = 1) = P(X > k) ; par suite, ¥ posséde une espérance, et
E(Y)=P(X 221).

AY =AsiX >2A

0 ] , et, comme X esta valeurs positives, il en résulte que A ¥ est
sinon

D’autre part, on note que I’on a {

inférieure & X .
On en déduit, par propriété de croissance de 1’espérance, que E( ALY ) < E( X ) , puis, par linéarité, que A E( Y ) < E( X ) .

Onadonc AP(X > A) < E(X). o

Application S
. . . . 1
On considére une var X suivant une loi géométrique de paramétre p = o
1. A l’aide de I’inégalité de Markov, donner une majoration de P ( X > A ) ,pour A > 0.

2. Comment choisir A de maniére a ce que le résultat précédent assure que P ( X > A ) <107*?

3. Pour de vrai, pour quelles valeursde L a—t—on P (X > A1) <10 *?

Application 6

Une inégalité de Kolmogorov

Soit X une var. définie sur un espace probabilisé (Q, 4, P).

On suppose X bornée,ie.que: 3P e R’/ Vo e Q,|X((o)| < B.

. . E ( X? ) -a’
Soit oo € R . Montrer que : IP’(| X| > 0.) 2 T
hint On copiera honteusement la démonstration faite en cours de l'inégalité de Markov,

en faisant intervenir la var Y = 1[a2 BZ] (X2 )

44




2. Inégalité de Bienaymé - Tchebychev

Théoréme ( inégalité de Bienaymé — Tchebychev)

Soit X une variable aléatoire admettant une variance V(X ) .

Alors pour tout £ > 0 : ]P’(|X - E(X)|

Démonstration

La variable aléatoire X posséde un moment d’ordre 2, elle admet donc également une espérance ; on peut alors définir la var.

Y = ( X -E(X) ) * Y est clairement 4 valeurs positives, et, par définition d’une variance, E(Y) existe et vaut V(X ). 1l

. o ‘ . 2y < B(Y)
est donc licite d’appliquer I’inégalité de Markova Y. Ilvient: V ¢ > 0, ]P’(Y > g ) < —,
€
. 2 2 V(X) s : V(X)
s01tV8>0,]P’((X—E(X)) > ¢ )S—z,etlonablen:V8>0,P(|X—E(X)|Zs)s - O
€ €

Une urne contient des boules blanches et des boules noires ; la proportion de boules blanches
présentes dans ['urne est p € ] 0,1 [ . On effectue n tirages successifs et avec remise d’une

boule. Soit X , la var. égale au nombre de boules blanches obtenues en # tirages.

1. Donnerlaloide X, .

2. Montrer que V(X,,) <.

4

3. A Tl’aide de I’inégalité de Bienaymé — Tchebychev, donner une majoration de

4. Comment doit — on choisir n pour pouvoir affirmer avec un risque d’erreur inférieur a 5 %

X

_n_p
n

X
que —= est une valeur approchée de p a 10> prés ?
n

3. A titre culturel :la notion de convergence en probabilité
Définition hors — programme

Soit ( X, ) .- une suite de variables aléatoires définies sur un méme espace probabilisé ( Q,A4,P ) , et soit Y une variable

n e

aléatoire définie sur ce méme espace. On dit que ( X, ) .- converge en probabilité vers Y, lorsque :
n e

Ve>0, lim JP’(|Xk—Y|28):0.

n —> +©x

4. Loi faible des grands nombres

a. Espérance et variance d’une moyenne

Soit ( X, ) .- une suite de variables aléatoires définies sur un méme espace probabilisé,
n e

. r 7 . 2
indépendantes, admettant une espérance commune p et une variance commune G
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R , .
Alors pour tout n € N, — Z X, admet une espérance et une variance, et ’'on a :
nog =

1 < 1 & o’
E —E X = t V]| — X = =
k H,e (I’lkz1 kJ n

n -1

Démonstration

. . , - 1 & . . ,
Les variables aléatoires X, admettant toutes p pour espérance, X , = — Z X , possede donc elle aussi une espérance, et

n =1

par linéarit¢ E ()_( n ) = p ;de plus, les var. X, possédent toutes une variance, X » en a donc une elle aussi. On a

1 Z X, ] = Lz \% ( Z X, ] , puis par indépendance (donc non — corrélation) :
n n

k=1

V(X)) =5 XV (x,) =5 (no?) = 2.

b. Théoréme (loi faible des grands nombres)

Soit(Xn)

n e

.- une suite de variables aléatoires définies sur le méme espace probabilisé,

. r 7 . 2
indépendantes, admettant une espérance commune p et une variance commune G - .

. 1
Alorspourtout € > 0 : lim P| |—
n— + o n

iXk—p > €
k=1

n

\ . 1
Autrement dit, et sous ces hypothéses, la suite (— Z X,

] converge en probabilité vers la var. certaine égale a .
n ;- .
neN

Démonstration

. . . . - 1 3 .
11 suffit d’appliquer I’inégalité de Bienaymé — Tchebycheffalavar. X , = — Z X ; , en commencant par reprendre ce qui

o=

précede : toutes les variables aléatoires X , admettant p pour espérance, X . possede elle aussi une espérance, et par

linéarit¢ [ ( X, ) = p ; deplus, les var. X, possedent toutes une variance, X » en a donc une elle aussi.

- 1 < 1 < . . .
OnaV (X n ) =V - z X, | = n_2 \% kz X ; |, puis par indépendance (donc non — corrélation) :
k=1 -1

- 1 S . . .
\% (X p ) = 3 Z A\ (Xk ) = Pl ( no’ ) = % . Les hypothéses d’application de 1’inégalité de Bienaymé — Tchebychev

< ————=,dou

2
ZSJ:O.

_ _ P(X.)
sont bien réunies ; on obtient pour tout € > 0, pourtout n € N, IP’( ‘Xn - E(Xn )‘ > 8) <
€
. est une suite de variables aléatoires définies sur le méme

2
. . 1 &
> SJ < Gg > . On en déduit, par encadrement, que lim ]P’[ ‘— Z X, -

n n — +o nk:1

Remarque

Ce résultat reste vrai avec 1’hypothése plus faible : ( X, )

1 1 117 7 . 2
espace probabilisé, non corrélées, admettant une espérance commune [l et une variance commune G - .
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1. Enoncer et démontrer le théoréme de stabilité des lois de Poisson.

2. Montrer que la somme de n variables aléatoires indépendantes, suivant toutes la loi de

Poisson de paramétre 1, suit la loi de Poisson de parameétre n.

2n k

3. Onpose Q,(x) = e " D X
Ko k!

Montrer en vous aidant de la question précédente que lim O, ( n ) =1.

n - + o

B_ UNE APPROXIMATION DE LOI

1. Convergence en loi notion hors — programme

a. Définition

Soit ( X, ) . une suite de variables aléatoires définies sur un méme espace probabilisé ( Q, A4,P ) ,etsoit ¥

ne

une variable aléatoire définie sur ce méme espace probabilisé.

On dit que la suite ( X, ) - converge en loi vers la variable aléatoire Y, et I’on pourra noter ( X, ) v Y lorsque,

en tout point x ou la fonction de répartition de Y est continue : lim P ( X, < x) =P ( Y < x) .

n—+wo

b. Cas discret

Lorsque Y est une variable aléatoire discréte, la suite ( X, ) .- converge en loi vers Y si et seulement si :
n e

Vyer(Q), lim P(x, <y)=P(Y<y).

n— +o

Et pourtant, les éléments de Y ( Q ) sont justement les points ou la fonction de répartition de Y peut ne pas étre continue... c’est comme ¢a.

2. Approximation de lois binomiales par des lois de Poisson

a. Théoréme

Soit ( p") , une suite d’¢léments de [ 0, 1], et soit ( X, ) , une suite de variables aléatoires. On

suppose que :

>

) Pourtout n € N, X, suit laloi (B(n,pn)'

ee lasuite (np converge vers un réel A strictement positif.
") neN

k
Alors : V keN, lim ]P’(Xn:k):e_xt—‘.

La suite ( X, ) converge donc en loi vers une variable aléatoire discréte X de loi P (2).
n

n e N
Démonstration

Pour tout £ € N :



donc :

etl’onenconclutque]P’(Xn=k) ~ e o
n — + o !

b. Conséquence pratique

Pour n € N* " suffisamment grand" et p € [0, 1] " suffisamment petit ", tels que le produit A = n p ne soit
" pas trop grand ", on peut approcher la loi d’une variable aléatoire X de loi @( n,p ) par la loi P ( A ) .
En pratique, on juge souvent cette approximation possible lorsque » > 30, p < 0,1 et np <10 ;on

Y

s’autorisera alorsa écrire: V k e N, P(X = k) ~ e T

Annexe : corrigé de I’exercice d’application 4, p. 23

= (r L r
. SireN, Z ( . j x* y"~* estlasomme finie Z [ j x* y"~*, évidemment convergente, et la formule du bindme habituelle donne

k=0 k=0 k
w r r : *
> [ij" y" " =(x+y)",onadonc le résultat. Supposons maintenant que » € Z ", posons alors r = —q.
k=0
k-1 k-1 k-1
. . L
o r _jUO(r J)_j];[(J( J j)_ ij‘[O(q J) r _ A(q-’rk—l)'_ k q+k_1
na = = =(-1) &———,donc =(-1) ——=(-1) )
k k! k! k! k k!(q—l)! k

. - r v _ R .. L. . .
Réécrivons la série Z ( X j x* v ¥ autrement (tout ce qui suit est licite : on ne suppose pas que la série converge, on n’écrit pas de trucs
k=0

interdits entre séries, on se contente de transformer le terme général).

- —1+k)! g
Ona Y [ijkyr-k =Y > (g ) [_;J ,puisenposant m = q — 1 + k :

k=0 (q—l)!kzo k!
Z (rjxky"_k: y‘li z m' [_xjmq+l
K=o Uk (q-1)1, 5 (m-qg+1)1_ » ’
m' ¥ m—q + 1
Comme |—| < 1, d’apres le résultat admis en début d’exercice, Z -_ [—J converge, et
,,,Zq,l(m—q+1)! y
+ o | m—q + 1 _1 '
m:zq:,l (’"—rrlq*'l)'[_;j =(q7)q.0nendéduitque > [Z]xky"" converge, et que

(1+x K>0
y
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+ o - _ | + o
[rjxky’k: y’ (4 ])'q,d’oﬁl’égalité (rjxky’k:(x+y)_q=(x+y)r

(q_lﬁ[1+xj k20
v

k

. Notons pourtout k > 0, p, = ( ja k (1 -a ) ~7~* Notons déja que les p, sont bien définis, car 1 — a # 0, puisque a est

r+k—1 r+k -1

. j;onadoncpk=( . J(—a)k(l—a)rk’

strictement négatif. De plus, on a vuen 1. que ( —kr ] =(-1) g [

et il est alors clair que p, est positif, puisque tous les facteurs le sont. De plus, comme a < 0, < 1. La formule du bindme assure

1-a

+ o0
donc que )’ p, converge,etque »  p, =(a+1—-a) " =1.0nsaitalors qu’il existe un espace probabilis¢ (Q, 4,P ), et une
K=o

variable aléatoire X sur cet espace, tel que X (Q) = N etpourtout k e N, P(X = k) :[ ‘ ]a"(l - a)fhk.

. Lavariable aléatoire X est a valeurs dans N . Pour tout » € N, notons Y, la variable aléatoire représentant le nombre d’échecs subis lors

des n premieres épreuves, et Z la variable aléatoire indicatrice du succes lors de I’épreuve n + 1 ; Y, suit la loi binomiale classique

n+1 n

B(n,p),et Z la loi de Bernoulli de paramétre p .

n+1

Soit k € N.1’événement [ X = k| est réalisé si et sculement siily a k échecs avant le r me succes. Notons que ceci est réalisé si et

. | 'y a succes a une certaine épreuve n . , . .
seulement si . Manifestement, on n’a pas le choix quant a la valeur de # : [ X = k]

Il ya » — 1 succes et k échecs avant cette épreuve

o . Il y a succes al’épreuve r + k
est réalisé si et seulement si : . ) ) .
Il ya r — 1 succés et k échecs avant cette épreuve

Autrement dit, [ X = k| = [Zr e = IJ ) [Y, Sk =T — 1},et comme il y a indépendance des épreuves :
r+k—1 o . .
]P’(X=k)=IP’(ZHk=1)1P’(Y,,+,“l=r—1).0nadoncIP>(X:k):p | p’" "' q", puis par symétrie des
r—

. . . r+k—1 p ; —r (7 + k-1
coefficients binomiaux, P (X = k) = p " q*.Onamontré que pour r > 1, p = (-1) ‘ . On peut donc
r

réécrire P (X = k) sous la forme P (X :k):( . jp"(—q)k,d’oﬁ

e (e8] (U BRI )

X suit la loi binomiale négative 3 { —-r,— q] .

p

Deux questions supplémentaires

. . -1 1/2 -1/2
4. Calculer, pour p entier naturel, les coefficients , , .
p p p

5. En utilisant un produit de Cauchy, démontrer la formule de Vandermonde généralisée , a savoir :

V(a,B)eR*, VneN, i(?j[nsijz(a+ﬁ]

i=0 - n

1. Pourtout p > 1 :
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, (-1/2
e ¢ Passons maintenant a N
P

0 ()25 ) pERELE

2 | = = '
p P

2

Simplifier cette expression est archi classique ; on commence par intercaler au numeérateur les termes d’indices pairs, en écrivant que

_1 (1)'1.2.3.4.5.(2p - 1).(2p)
p2 ‘[_Ej p'(2.4.6....(2p))
(2t 1y’ (2p)! -2 1’ (2p)!
On en déduit que pz :(_Ej pi(2.46.. (2p) " pz :[_Ej pl(27(1.2.3...p))

L’essentiel est fait ; il ne reste plus qu’a apporter la touche finale, et I’on obtient :
2 wm ) e )
) 2) pr(27(p)) 4) (p1)’ 4 P
. 2
e e o [ln’estpas nécessaire de recommencer pour [ J , car

{1/2)_;(_;](_;j"'(_2[)2_3J_ 1 (_%)(_%)(_%j (- .On déduit alors

1
1 = 2
p p! 2(_219—1) p! 2p -1

C 1/2 -1 1Y (2p
de ce qui préceéde que = _ =
p 2p -1 4 p

On remarquera que ces trois formules restent valables lorsque p = 0.

o+ B

. Légalite (1 + 1) =(1+¢)%(1+ t)B donne pour tout n € N :

B[ etz (B0 et [ (£ o]

n + n i n )
soit : Z (a . B] tk " [ Z (O_L]t’ ]{ z (B.jt-’ J + o(t” ) . La formule du produit polynomial donne alors, en ne gardant
i=o\!

k=0 j=0\J

que les termes significatifs (ie. de degré inférieur ou égal & n ) du terme de droite de cette égalité :

IR TAL 0 A

L’unicité du développement limité autorise a identifier les coefficients de ces deux écritures, et en particulier les coefficients des termes

de degré n . On obtient ainsi la formule de Vandermonde généralisée :

VneN, (a:ﬁjgzo(?j[n[ij

Remarque : au lieu de faire le produit de deux développements limités, on aurait pu faire celui de deux développements en séries

entiéres (produit de Cauchy donc).
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