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Feuille d’exercices

Variables aléatoires discrétes : quelques premiers corrigés

2025 - 2026

Exercice 3

Ne pas faire tous les calculs en question 1 : on s arréte des que I’on a compris.
Soit X une variable aléatoire discrete.

1. Déterminer la probabilité de 1’événement « X est paire » dans les cas suivants :

a. X G B(n,p) ;
b. X G G(p);
¢ XG @(1).

2. Dans le cas ou X suit ’'une des trois lois ci — dessus, déterminer la probabilité que X soit divisible par 3 .

Dans les trois cas, il s’agit de calculer S = Z P ( X =k ) , et la technique utilisée pour cela est connue depuis
keX (Q)
k pair

le début de premicre année. ..

n n

La. Iei § = ) [Z]Pk(l—p)n_k;onpose T =) [ZJPk(l—P)n_k,et

k=0 k=0
k pair k impair

deux formules du bindme nous donnent :

n

S+7 = Y [Zka(l—p)n_kzl,

k =

et S+T = Y [Zj(_1)"pk(1_p)"—k=(1_zp)".

k=0

On en déduit alors que :

1.b. Maintenant :

9%
Il
N
=
|
g
~
=

n=1
n pair
+ © 5 k
= p(l - p) z ((1 - p) ) apres changement d’indice,
k=0
p(l-pr) l-p

donc : S = =




l.c. Méme principe qu’en l.a.:

2.

+ 0 lk + ﬂ,k
lei S=e¢* Z Z . Onpose également 7 = ¢~ * —_—,
K=o k! K=o k!
k pair k impair
+ ©
S+T=e" Z 2— = 1; =
etl’ona: - ,d’ou: S:1Jre
PR K AK 22 2
k=0 :
e Lorsque X suitlaloi G ( p ), la probabilité cherchée est :
~ n—l ~ 3n—l
s= X p(1- padl ’
n=1 —
n divisible par 3
et cette somme est encore géométrique. On obtient :
2
2 1 1 -p
S = p(l —p) T = ( ) 3
1-(1-p) 3-3p+p

e ¢ Supposons maintenant que X suit la loi B ( n, p ) . La probabilité cherchée est alors donnée par la somme :

n n B —k
S = Z [kjp (l—p)n .
k=0
k divisible par 3
Pour calculer S, on s’inspire de la méthode utilisée en 1. : notons £, 1’ensemble des entiers k € { o, .., n}

n _
qui sont divisibles par 3 (onadonc § = ) ( kj p (1-p)" “); considérons également I’ensemble F,
kekE,

des entiers de { o, .., n} dont le reste dans la division par 3 est 1, et ’ensemble G, des entiers de { 0,..,n }

n _
dont le reste dans la division par 3 est 2. Posons T = z [k} pk (1- p)" ¢ , et
keF,

Notons enfin j = e 3

o OnaS+T+U= Y (Z]pk(l—p)n_kzl.

ke 0,n
oo Remarquons que j P o , de sorte que pour tout £ :

1 si k estdelaforme 3k’ ,ie.si k estdivisible par 3

jk =4 j silerestedeladivionde k£ par 3 est 1, ie. si k estdelaforme 3k + 1 .

i 2 si le reste de la divion de k& par 3 est 2, ie. si k estdelaforme 3k + 2



Ienrésulteque S + jT + j*U =Y [ZJ(jp)k(l —p)"ik,d’oﬁ:
ke 0,n

S+jT+j*Uu=(1+(j-1)p)"

1 si k estdivisible par 3

k
ooo Delaméme fagon, pour tout entier %, ( j? ) = j % silereste de la divionde k par 3 est 1,

j silereste deladivionde k£ par 3 est 2

i o ) — n 9 koo n—k _ 2 "‘
etl’onentire: S + j° T + jU kez;‘,,, (kj(] p) (1-p) (1+(J I)P)

S+T+U =1

Finalement: < S + jT + j*U = (1 + ( j - 1) p)n . En sommant ces trois lignes, et en se rappelant que
n
S+j2T+jU=(1+(j2—1)p)

1+ +j2: 0, on obtient :

e e e Jene corrige pas le cas ou X suitlaloi @ ( A ) : la méthode est exactement la méme.

Exercice 4
Soient X une variable aléatoire réelle discréte qui suit une loi de Poisson de paramétre A et ¥ = ( -1 ) *
1. Calculer P (Y =1).

2. Calculer E(Y).

Lona:(Y=1)e((-1)"=1)e(3IpeN,X =2p)

+ o + 0 - 2p
Onendéduit P(Y =1)= 3 P(X=2p)=3 S —e*eh(n).
p=0 p=0 (2p)'
Remarquons qu’on a de méme P (Y = - 1) =e "sh (k), et qu’on retrouve la relation triviale (puisque Y est a

valeursdans {—1,1}): P(Y =1)+ P(Y = -1) = 1.
2. Comme Y esta valeurs dans {—1,1},0na:

E(Y)=-P(Y=-1)+P(Y =1)=e¢"(ch(h)-sh(r))=e"*".

Exercice 5

n [k + 1
1. Soit (n, p) € N* tel que p < n.Montrer que Z( J:[n 1)
p p +

k=p




2. Soit (n p) e N? tel que 1 < p < n.On considére une urne contenant n boules numérotées de 1 a n .
On tire p boules de cette urne et on note X la variable aléatoire représentant le plus grand numéro tir¢.

Calculer, pour k € X (Q), P(X < k).En déduire la loi de X . Calculer espérance de X .

1. Il s’agit de prouver la formule de Pascal généralisée. On procede par récurrence sur n = p.Pour n = p on a bien

+ 1 . . . \ .
( P j = [ P 1) . S’il est vrai pour un certain n = p, on a alors avec I’hypothése de récurrence et la formule du
p p+

"k 5ok +1 +1 +1 + 2
triangle de Pascal : Z ( j = Z ( j + [n jz [n 1} + (n j = (n 1J,cequiétablitla
p p+ p p+

k=rp b k=p p

récurrence.
p,n .Soitk € p,n ,direque X < k revient a dire que les p boules tirées

2. 1l est immédiat que X (Q) =

sont parmi les k& premicres, on en déduit (nombre de cas équiprobables possibles sur nombre de cas équiprobables

totaux) : P (X < k) = ,etdoncP(sz)zLetpourke p+1,n,
n
2)

j [ . 1)
-1 -1
=7 . Cette dernicre formule est encore valable pour & = p.

)

Oncalculealors:E(X)z%Zn:k k:l ,

R

ork(i:iJ=k(p_(1k)!—(2)ip)!:pp!(kk_!p)!zp(f)j,d’oﬁavecle(a):

E(X)_Li(kj_p@:j_p(p+(1n)!+(;)!p)!_(nu)p.
L ) Tre

Exercice 11

Soient p e N*, U, ..., U » desurnes telles que U, contient £ boules blanches et n — £ boules noires.

On choisit une urne au hasard de fagon équiprobable, puis on tire dans cette urne n boules avec remise.

On note N, le nombre de boules blanches. Déterminer la loi de NV, et calculer son espérance.

On note X le numéro de I’urne choisie, de sorte que X G U ( 0,n ) .

La variable aléatoire N, esta valeurs dans 0, n .La formule des probabilités totales donne :

iP(Np=j|X=k)P(X=k)= L iP(szﬂX:k).
n+1/=



La probabilité conditionnelle de ( N, =3 ) sachant ( X =k ) est la probabilité d’obtenir j succes lors d’une suite

. C . .k
de n expériences de Bernoulli indépendantes de méme parameétre — .
n

- L . n (kY (n-k)""’
On reconnait une loi binomiale : P(N , = _]| X = k) = || = .
Jj)\n n

Onadonc: P(N, = j) = —— 3 (”j(ﬁjj(” - "7)]

n+1,;~=\J n n

On sait que I’espérance d’une variable aléatoire suivant une loi binomiale de parameétres ( n,p ) est n p, donc

S0 (=) -

On en déduit que :

- 58 (5 s 5 0 (52

- I N
dou E(N,) = n”k;k:g.

Autre raisonnement plus simple : Si on note N’ le nombre de boules noires, la symétrie du probléme montre que N
et N' suivent la méme loi, donc ont méme espérance et, comme N , + N’ = n,onabien:

n

E(Np):E(N;):E.

Exercice 13
On dispose de n bulbes qui fleurissent avec une probabilité p € ] 0,1 [ , indépendamment des autres. Si un bulbe fleurit une
anneée, alors il fleurit toutes les années suivantes. Sinon, il fleurit I’année suivante avec probabilit¢ p.Onpose ¢ =1 — p.
Soit T, la variable aléatoire qui compte le nombre d’années nécessaires pour que le bulbe % fleurisse.

Soit 7 la variable aléatoire représentant le nombre d’années nécessaires pour que tous les bulbes fleurissent.

1. Déterminer laloide T, puis cellede T'.

2. Déterminer I’espérance de T .

On note pour ke 1,n , T, le nombre d’années nécessaires pour que le k-ieme bulbe commence a fleurir. Il
est alors immédiat que 7,- G ( p) c’est-a-dire : T, est a valeurs dans N et pour tout m e N,
P(T,=m)=¢""'p (ou ¢=1-p). On a aussi, pour tout me N, P(T, >m)=q" (dire que T, >m, c’est
dire que le bulbe numéro k£ n’a pas fleuri pendant les m premicres années), d’ou on déduit

P(T, <m)=1-¢".

Or I’éveénement 7' <m est I’événement : Tous les bulbes ont fleuri au plus tard I’année m , ¢’est donc

n
I’évenement ﬂ(Tk <m). Comme les variables aléatoires T, sont indépendantes, on en déduit :
k=1

.(n

P sm)=TTP(5 2m)=(-0) =3 -0

k=1 k=0




n(n wa . . o .
D’ou P(T > m) = (k](—l)]‘ ' q" , Ce qui, par combinaison linéaire, suffit 2 montrer la convergence de la
k=1

série de terme général P (T > m) , donc I’existence de I’espérance de T, et la formule :

E(T)= iP(T>m)=i(Zjﬁ.

m=0 k=1 1-¢ *

Exercice 14
Une puce se déplace vers la droite sur une bande numérotée de 1 en 1 a partir de la case 0. Elle peut effectuer, de maniére

équiprobable, un saut de 0 ou 1 case a chaque saut. Pour n € N*, onnote X , la variable aléatoire correspondant a la case
atteinte au saut n, et ¥, le nombre de sauts de 1 case effectués jusqu’au saut .
1. Donner la loi, ’espérance et la variance de Y, .

2. Endéduirelaloide X, .

Exercice 21

1. Soient ( X, ; ) L < < 3 des variables aléatoires mutuellement indépendantes, de méme loi, suivant toutes la loi uniforme
1<j<3

1;.
J

sur {—1,1}.Onnote 4 = [X . ] et D = det ( A). Déterminer I’espérance et la variance de D .

2. Généraliser en dimension 7 .

On va directement trouver une relation de récurrence. On note, pour n € N : v, =V ( D, )

n

On a immédiatement en dimension n =1: A= X, , D, = X |, E(Dl) =0,v, = V(Dl) = E(Dl”) =1.

On note, en dimension n, A, ; la matrice extraite de A en enlevant la i- ¢me ligne, et la j-éme colonne, de sorte que

n

D,=>(-1)"x,, det(AL].).

j=1
Avec la linéarité de ’espérance, et I'indépendance de X, ; et det ( A, ) (lemme des coalitions) on obtient :

n

E(D,)=> (-1)"""E(X,,)E(det(4,,)),doi(puisque E(X, ) =0):E(D,)=0.

j=1

Onaaussi: D? = i:le(det(Am))2 +2 ) (—1)‘7”Xl’jXl’kdet(Al,j)det(AM),
j=1 1<j<k<n

Ce qui donne toujours avec le méme raisonnement :

v, = E(Df) = i E(XLJQ)E((det(ALj))Q) = Z v, ,=nv, .
i=1 j

On en déduit facilement : v, = n!




Exercice 22
Soient X et Y deux variables aléatoires a valeurs dans N . On dit que X est stochastiquement inférieure & Y lorsque :
VkeN,P(X2k)<P(Y 2k).
1. Montrer que si X < Y ,alors X est stochastiquement inférieure & Y .

Vérifier que la réciproque est fausse, en choisissant deux variables aléatoires de Bernoulli pour contre-exemple.

2. Soient X G @ (1), Y G ®@(p)etZ G @(p—A),000 <A < p,tellesque X et Z sont indépendantes.
Déterminer laloide X + Z.Montrer que X est stochastiquement inférieure a Y .

3. Soient X G B ( n, p) etY G B ( n, q), avec p < ¢.Montrer que X est stochastiquement inférieure a Y .
On pourra noter X , , ..., X, des variables aléatoires indépendantes tellesque Vi e 1,n , X, &G B ( P ) R

et Y, ,..., Y, desvariables aléatoires indépendantes tellesque Vi € 1,n ,Y, G B ( P ) , puis raisonner par récurrence.

1.Si X <Y, alors pourtout k € N,(X > k;) c (Y > k),donc P(X > k') < P(Y > k)
Soit X G B(p)etY G B(g)oup<gq,alors P(X>0)=P(Y >0)=1,pourtout k > 2,

P(X=k)=P(Y=k)=0,etP(X=1)=p<P(Y =1)=¢q,donc X eststochastiquement

inférieure a Y . Or il n’a a aucune raison pour que I’on ait X < Y il suffit de choisir p = 1 etY =1 - X pour

s’en convaincre.
D’une fagon générale, on remarquera que le fait pour X d’étre stochastiquement inférieure & ¥ ne dépend que des lois

de X etde Y.

2. On sait que les fonctions génératrices de X et Z sont (pour ¢ € [— 1,1 ]) DOy ( t) =e
¢, (t) = e(”_x)(t_l),et,puisque X et Z sontindépendantes, ¢  , , (t) =0y (t)(py (t) =e
Comme la fonction génératrice détermine la loi, on endéduit: X + Z7 G @ ( u ) .

Comme X < X + Z,onen déduit que X est stochastiquement inférieure a8 X + Z, et comme cette notion ne

dépend que des lois, et que X + Z et Y ont méme loi, on en déduit que X est stochastiquement inférieure a Y .

3. On sait que I’on peut modéliser X par la somme de n variables aléatoires indépendantes X ; telles que

Vie 1,n ,X, G ®B(p).Onpeutdoncposer X = X, +--+ X,V =Y, +---+ Y , et montrer par récurrence

sur n que X est stochastiquement inférieure a Y .

La proposition est vraie pour n = 1 (cf. Q1). Si elle est vraie pour n — 1, onapourtout ¥k € N™ :
(pour k =0 ona P(X, ++ X, 2k)=P(Y, +-+Y, 2k)=1)

Ainsi P(X, +--+ X, 2 k)

P((X, +++ X, 2k)N(X, =0))+P((X, ++ X, , 2k-1)N(X, =1))

)
P(X, 4+ X, ,2k)(1-p)+P(X, +~+X,_, 2k~-1)p (indépendance)
(

P(X, ++X, , 2k)(1-p)+P(X,++ X, ,2k-1)p



> k)(l -p)+ P(Y1 +otY >k - 1)p (hypothése de récurrence)

(
=P(Y, ++Y, ,=k-1)p+P(Y, +-+Y, _ 2k)
SP(Y, +++Y, , =k-1)g+P(Y, +-+Y, , 2k)(p<q)
=P(Y, ++Y,  2k)(1-q)+ P(Y,++Y, , 2k-1)q

=P(Y, +Y, 2 k).

D’ou le résultat.

Exercice 23

Soient ( Q. T,P ) un espace probabilisé et ( A4, ) _, une suite d’éveénements mutuellement indépendants, tous de méme
probabilit¢ p. Onnote ¢ =1 — p.

On définit la suite de variables aléatoires ( T, ) _, enposant, pour tout ® de Q :

(o)=inf(j21/0e4,)

(S}
—~

m):inf(j>T](0))/coeAj)

THI((D):inf(j >Tn(m)/0)e Aj)
1. Déterminer, pour tout k € N ", laloide T, , et vérifier qu’il s’agit bien d’une variable aléatoire.
2. Pour toute suite strictement croissante d’entiers ( n, ) oy déterminer la probabilité conditionnelle :
IP’(T,{+l -T,=n,,, —n, /T =n,,.,T, = nk)
3. En déduire I’égalité ]P’(Tk+1 =n, /T, =n,.,T, = nk) = ]P’(T,Hl =n,,, /T, = nk).
4. Que vaut la probabilité ]P’(T1 =n,,..,1, =n, ) ?

5. Démontrer que les variables aléatoires 7,,7, — T,,..., T, ,, — T, sont mutuellement indépendantes.

1. Décryptons :
Q —> N

T, est’application T : inf{jEN*’COEAj}Si {jEN*’(DEAj}i@.
o —

0 si{jeN*,u)eAj}zg
Autrement dit : [T | = 0] est ’événement « aucun des événements 4 ; n’est réalisé », et, pour j = 1, [T | = j]
est ’événement « A ; est le premier des 4, a étre réalisé ».
Finalement, T, est le temps d’attente du premier succes, lors d’une succession d’épreuves de Bernoulli

indépendantes, toutes de méme parametre p (en convenant de poser 7', = 0 si I’on n’obtient jamais de succes).

Le cours assure alors que 7', est bien une variable aléatoire, et qu’elle suit la loi géométrique de paramétre p: T,

est presque sfirement a valeurs dans N * (donc IP’(T1 = ) = 0),etpourtout j € N*, IP’(Tl = ) =pg’/ !



On montre par récurrence que pour tout n > 1, T, est le temps d’attente du n M€ succes, en convenant de poser T’ . =0

iéme

i n ucces : I’initialisation, on vi ire ; quant a I’hérédité : su u S i
s’iln’y a pas de succes : Iinitialisation, on vient de la faire ; quant a I’hérédité : supposons que 7', représente bien le

temps d’attente du n ™ succés. T (0)) = inf(j >T, (03) /oed; ) signifie que pour j € N 7,

n+1

[ T, ..=17J ] est I’événement : « A ; estle premier des A, aétre réalisé apres le n eme suceds », ce qui revient bien a «j
est le temps d’attente du (n + l) ™ succes ». On convient de poser T, , , ((0) =0si T, (oo) = 0 ousi
{j >T, (o)) / e Aj} = (I signifie que 'onpose T, . | = 0 s’iln’y apasde n eme. queees ou s’il n’y a pas d’autre

succes aprés celui — ci, bref que 1’on pose T'

w1 (03) = 0 lorsqu’il n’y a pas de (n + l)iéme succes.

Moyennant quoi, on a montré 36 fois que 7', est bien une variable aléatoire, et qu’elle suit la loi de Pascal (Pa( n,p ) : T,

F 1 .
est presque sirement a valeur dans n,+ 00 ,etpourtout j = n, IP’(Tn = ]) = (jl B lJpn q" 7.

k
Si I’on suppose ﬂ [T,- = nl} réalisé, [Tk b1 =N — nk} est réalisé si et seulement s’il y a échec aux
i=1
épreuves n, + 1,..,n, ,; — 1, puissuccesal’épreuve n, , | :
ng =1
— — — — _ nppo—ng =1
P(Tk+l_Tk_nk+l_nk|T1_nl""’Tk_nk)_]P) ﬂ A4, mAn“l =9 p
i=n, +1
On peut reprendre exactement la méme explication : Si I’on suppose [T s =Ny } réalisé, [T k1 =Npo1 — Ny ]
est réalisé si et seulement s’il y a échec aux épreuves n, + 1,..,n, ., — 1, puissuccés a ’épreuve n, , ; :

P(Tpi=ngor /Ty=npnTy=n, )=P(Ty, =n, . /Ty =n,).

n, —1 \ . . A
Ona IP’(Tl =n;,..l, =n, ) =phqg™ (succes aux épreuves n |, ..., n; , échec a toutes les autres

¢épreuves d’indice j < n ).

I résulte de Q3 que T , | — T suit laloi géométrique G ( p ), et que cette loi ne dépend pas des valeurs prises

par Ty, T, = Ty,..,T; — T, _,.Onen déduit facilement par récurrence que 7',, 7, — 7;,... T, — T4 _,,... sont

mutuellement indépendantes.

Exercice 24

Soient X et ¥ deux VARD définies sur un probabilisé ( Q,T7,P ) ,etavaleursdans 1, n

SoitA=(ai,j)(i,j)€"1’n]|2lamatricecarréedéﬁniepar:V(i,j)e Ln %, a, -:P[Yzj]()(:i).




n
1. Montrerque: V j € 1,n , Zai jzl.
i=1

2. Onnote ® I’endomorphisme de R " canoniquement associé a la matrice A .

P(X=1)
| P(X=2) .
Montrer que la matrice colonne C = . appartient a Im @ .
P ( X=n )

hint On utilisera la formule des probabilités totales en choisissant un SCE judicieux.

3. On suppose les VAR X et Y indépendantes. Montrer que rg ( A) =1.

4. Inversement, on suppose que rg ( A) =1.0nnote C, ..., C, lescolonnesde 4.
a. Montrer que les colonnes de 4 sont proportionnelles a la matrice C de Q2_.
b. Al’aidede Q1 ,montrerque: V j € 1,n , Cj =C.

c. En déduire alors que les VAR X et Y sont indépendantes.

1. Soit j € {1,...n}. Py _ ;1 estune mesure de probabilités sur (Q,T,P) et ([X = i])l B

n
systéme complet d’événements, on a donc Y Pry -1 (X =i)=1.
i=1

2. Ona:
Zn: a; P(Y =) i Pry- (X
P(Y=1) P(Y=1) ":1 ":1
o IP(Y.=2) _ | P(r=2) 1 ZlazlP(Yzj) _ ;P[ij](x
P(Y'zn) ]P’(an) ) )
Yoan Br=0)| | X Py (x

P(Y =1) P(X =1)

\ ‘ (Y =2) P(X =2)
d’ou, d’apres la formule des probabilités totales : ® = :

P(an) ]P’(in)

P(X =1)
P(X =2) _ X
Le vecteur : appartient donc a Im @ .

P(in)

estun
)P (Y =)
2)P(Y = j)
n)P(Y =)

3. Sil’onsuppose X et Y indépendantes, on a pour tout ( i, j) € {1,..,n} > a i.j = P(X =1i) :les colonnes

de A sont toutes égales (et non nulles puisque la somme des coefficients de chacune d’entre elles vaut 1) ; ona

donc rg(A4) =1.

10



4.a. Le vecteur colonne C = , =| ? | appartienta Im @, est non nul et I"on a dim (Im®) =1,

en résulte que Im @ = Vect ( C ) . Or les colonnes de 4 sont dans Im @ ; par conséquent :
Vje{l,.,n},3%;eR,C,=1,C:

Les colonnes de A4 sont toutes proportionnelles a C .

n n n
4.b. Onad’aprés 1. pourtout j e {1,.., n}, Z a; ; =1,dapres 4.a. Z a;, ;=M Z ¢, ,etl’on
i=1 i=1 —1

i

a ~iICi = '21 P(Xzi)zl;parsuite,kj =letC, =C.

4c. Dapres 4b.:V je{l,.,n}:Vie{l,.,n},a,; =c;, soit: IP)[Y:].](Xzi)zP(Xzi).

i,

Pour tout j € {1,..., n},laloide X sachant [Y = j] estlaloide X, ainsiles variables aléatoires X et ¥

sont indépendantes.

il

Exercice 25

1. Soit r € R . Montrer qu’il existe une variable aléatoire X a valeurs dans N * telle que
1

Vn e N*,P(X = n) = rj'ac”’l (1 - .T)r dz .
0

2. Calculer I’espérance et la variance de X si elles existent.

(0.1 >R

1) On note pour tout n € N™ : ¢ . » et I’on a les résultats suivants :

n

n-1
z — rz” (1—33

(i) Pour tout n € N*, u_ est continue donc continue par morceaux sur [ 0, 1[ .

n

(if) La série de fonctions ( z u, ) _, converge simplement sur [O, 1[ et a pour somme la fonction

fraz—r(1l- x)ril.
(iii) La fonction f est continue donc continue par morceaux sur [ 0,1 [ .
(iv) Pourtout n € N", u se prolonge en une fonction continue sur [ 0, 1], donc est intégrable sur[0,1].

(v) Comme r > 0, on remarque que f est intégrable sur [O, 1[ . Comme les u, sont des fonctions positives, on

n 1 1 1 5, 1
en déduit la majoration pour tout n € N ™ : Z Huk| = Z Iuk = I z u, < J.f : la suite des sommes
k=17 k=19 0 k=1 0

1
partielles de la série numérique de terme général I | u, | est majorée, cette série est donc convergente.
0
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+o0 1 1
On en déduit d’apres le théoreme d’intégration terme a terme que Z I u, = I f=1.
0 0

n =1

n z

1
En résumé : lesréels oo, = I u, sont tous positifs, et la série ( Z o, ) _, estconvergente et a pour somme 1.
0

Il existe bien une variable aléatoire X a valeurs dans N " telle que Vn € N*, P (X =n ) =a

2. Calcul de I’espérance :

Onnotepourtout n € N*, v :

n

,»desorteque (v, =nP (X =n).

{[0,1[—)112{ I

-1
r —nrz” (1—$

+
. e 1 L .
On sait que pour tout z € [O, 1[, z ng" = (—2, donc la série de fonctions (Z v, ) _, converge
n=1 1-2 "

simplement sur [ 0, 1[ et a pour somme la fonction g: z — r (1 —z) :

Premier cas : Si > 1, alors ¢ est intégrable sur [0, 1[ , et le méme raisonnement qu’au (a) montre que la série

1 1
de terme général j v, =n P (X =n) converge et a pour somme I g=— 7
r—
0 0
On en déduit alors que X admet une espérance et que E ( X ) S— T
r —
Second cas : Si r € [0, 1], alors g n’est pas intégrable sur [ 0,1].
1
On raisonne par I’absurde en supposant que la série de terme général I v, =nP ( X =n ) converge.

0

Alors on reprend le raisonnement du (a), sauf le (v) qui est ici admis. Le théoréme d’intégration terme a terme
montre alors g est intégrable sur [ 0, 1], ce qui est absurde : La série de terme général n P ( X = n ) diverge, et

X n’admet pas d’espérance.

Calcul de la variance :

) [0,1[ > R
Onposepourtout n € N*, w_:

n

1
T,desortequej.wn =n’P(X =n).0n
T Hnrm”’](l—x) 0

sait que pour tout z € [0,1[, Y n(n -1)z"* =%,donc Sn(n-1)z"" = 2w -
n=2 (1—$)( n=1 (1—x)(
puisfnzx”‘1:2—x3+inx"‘1: 2x N 1 _ 1+a:“

n=1 (1_$) n=1 (1_.'[:)3 (1_1')2 (]__x)3
donc la série de fonctions ( z w, ) _, converge simplement sur [ 0, 1[ et a pour somme la fonction
hizw—r(l+az)(1- x)rig.
Par le méme raisonnement que pour 1’espérance, on en déduit que X admet une variance si et seulement r > 2,

et que dans ce cason a :
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soitE(X2)= L " = "

r—2 (7’—2)(7’—1) (7’—2)(7’—1)'

Onendéduitque:V(X)=E(X2)—E(X) = - =

Exercice 27
Soit n € N . On considére que toutes les permutations de 1, n  sont équiprobables, et I’on note 7', la variable aléatoire

représentant le nombre de points fixes d’une permutation choisie au hasard.

Calculer I’espérance et la variance de 7', .

Notons, pour 2 € 1,n , X, lavariable aléatoire égalea 1 si i estun point fixe de la permutation o choisie, et a

0 sinon.Ona T, = Z X, o E(T,) =3 E(X,)et

i=1 i=1

V(T ) =Y V(X)+2 Y cov(X,.X,).

i=1 1<i<j<n
IlestclairqueXiC»@n(lJ;d’autrepart,pouri;tj,IP’(Xin=1)=lx !
n : n n-1
Onendéduit:E(Xi)zl,V(Xi):l(l—lj:n_zl,etpourz';tj,
n n n n
1 1 1
cov(XZ,Xj)=E(XZ.X].)—E(XL)E(X7)=E(X1.X]=1)—F—n(n_1) .

IlenrésultequeE(Tn)zZn:lzl,etqueV(Tn)zin_21+2 Z (ﬁ—%}
n{\n —

i=1 1 i=1 N l<i<j<n

Il existe % couples (z',j) de 1,n ° tels que 1 < ¢ < j < n,onobtient donc :
V(Tﬂ):"(";1)+2”(n_1) CHRNNNENE B P el SR e S
n 2 n(n—l) n n n

Exercice 28

On considére une picce équilibrée. On considere un lancer infini de pieces. On note 7'y , la variable aléatoire qui compte le

nombre de lancers nécessaires pour 1’obtention de la séquence X Y ,avec X,Y € { Pile, Face} .

Donner les lois et les espérancesde Tp p, T'r s Tp ps Tr p-

. ‘1 1
1° cas : zy =PP. Onnote z, = P(T,, =n). On a immédiatement z, =0, z, =7 et pour n >3,

x, =P(T,, =n|A)P(A)+P(T,, =n|B)P(B)+P(T,, =n|C)P(C) ol A est’événement : « le premier
tirage a donné F », B 1’événement : « les deux premiers tirages ont donné PF » et C' 1’événement : « les
P(A)+ 1z, .

4 n—2

n—1

. . . . 1
deux premiers tirages ont donné PP ». Ce qui donne : z, = 53;
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1+5

~ s s . . e 1 .
On reconnait une suite récurrente linéaire d’équation caractéristique : - 5 T— Z , de racines 1, , =

1+\/gjn1 [1_\/5Jn1
ful — .

D’ou Pexistence de (4, ) e R? tel que z, = /1( 1 1

De z, =0 on déduit A =—u, puis de x2=l,0ndéduit/1 1+\/§ -A ﬂ :l,etdonc /”L=L.En
4 4 4 4 NG

résumé : T, est & valeurs dans N™U{o0} (en notant « T,, =0 » I’événement : la séquence PP n’apparait

1+\/5Jn—1_£ﬂjn—l |

. . 1
jamais »), et, pour tout n € N*, P(TPP = n) =—— (
2\5

4 4

=1.

On calcule alors 3" P(T,, = n)=— L ! 1 [4(345-3+45)
n calcule alors =n)= - =
n=1 o 2\/5 1_1+\/g 1_1—\/5 2\/5 4
4 4
Ce qui montre que I’événement « 7, =0 » est négligeable : T,, est presque sirement a valeurs dans N".

— 1 . .
Avec la formule : Vz e ]—1,1[ ,an“_l =———, on déduit que 7}, admet une espérance qui vaut :
n=1 1-2x

1 1 1 8(74—3\/3—7—1-3\/5)

E(Ty)=> nP (T, =n)

— 1 - =
o 25 (1_“\/3]2 (1_1_@]2 25| (7-345)(7+35)

4 4

E(T,,)=6.
2°me cas : 1l est clair que T}, suit la méme loi que T}, .

3°me cas : xy = PF. L’événement « T, =n » se produit lors de la premiére apparition de face suivant la

premicre apparition de pile. C’est-a-dire, si on note X le rang premicre apparition de pile (avec X- G (Ej)

et Y le nombre de lancers nécessaires pour obtenir la premiere apparition de face apres cette premiere

. : 1 .
apparition de pile (avec Y- G (5) ), alors T,, = X +Y . Ce qui montre que 7T}, est presque slirement a

valeurs dans N*, que P(T,. =1)=0, et que, pour tout n>2,

el nl il 11 -1
P(Tye =)= 2P (T = 0] X =K)P(X =k) = L P(Y =n=k) P(X =k)= 3 o or =
k=1 k=1 k=t

On en déduit aussi : E(T;)=E(X)+E(Y)=4.

4°me cas : il est clair que T}, suit la méme loi que T, .

Exercice 29

Soit (X ,Y) uncouple de v.ar.d. définies sur un méme espace probabilisé (Q, T, P), telles que

X (Q) ={xl— ,i € I}et Y (Q) ={yj , J € J} , I et J étant des parties infiniesde N ou Z . On suppose que

lav.a.r. ¥ admet une espérance, et que pour tout i € I, ]P’( X =x; ) 0.

1. Soit i € I.
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a. Montrer qu’il existe une variable aléatoire Y, sur un espace probabilis¢ (©, 4, P ) telleque ¥, (©) = ¥Y(Q),
et: VjeJ,P(Y,.=yj)=IP)(Y=yj/X=x,.).
b. Montrer que la v.a.r. ¥, posséde une espérance.

L’espérance de Y, est appelée espérance conditionnelle de Y sachant ( X = x, ), et on la note ]E( Y| X =x, )

On considére une var. Z prenant les valeurs E( Y| X =x,; ), pour i € [ ,avec laprobabilit¢ p, = P (X =X, ).La var.

Z est appelée espérance conditionnelle de Y sachant X ,etestnotée E( Y | X ).
2. Montrer que lav.ar. E( Y | X ) admet une espérance.

3. Prouver alors la formule de I’espérance totale : E( E(Y|X) ) =E(Y),

ie: E(Y)= X B, (Y)P(x=x).

x, eX(Q)

4. Application

Une urne contient p + 1 boules numérotées de 0 a p . On considére I’expérience suivante :

e On choisit une boule au hasard dans 1’urne, puis on I’y remet, mais on supprime toutes les boules dont le numéro est

strictement supérieur a celui que 1’on a tiré.
e On choisit ensuite une deuxi¢me boule dans I’urne.
Soient X et X, les variables aléatoires égales respectivement au premier et au deuxiéme numéro tiré.

Déterminer I’espérance de X .

1. Sous réserve d’existence, [ ( Y| X =x; ) désigne bien sir I’espérance de la loi de Y conditionnellement

a ( X=x; ), espérance qui est donnée par

E(Y|X=xl-)= Z yjP(Yzyj|X=xi)=; z yj]P’(Yzyj,szl-),

jed P(X:xi)jEJ
a condition que cette somme converge absolument.

yj]P’(Yzyj, X=xl~)‘ < ‘y‘iIP’(Yzyj)

Or pourtout j € J,

la somme Z ‘yjIP’(Yzyj)‘converge.
jeJ

Le critére de convergence par majoration pour les séries a terme général positif assure alors que la somme

z ‘yj]P)(Yzyj, X =x,.)‘ converge. Par suite, E(Y|X :xi) existe .
jed

2. E(Y|X) admet une espérance si et seulement si la somme Y E(Y|X :xl-)]P’(X:xi)
iel

convergeabsolument,etdanscecas:E(E(Y|X))= > E(Y|X=xi)]P>(X=xl.).

iel

D’aprés ce qui précéde, on a donc, sous réserve d’existence :

, et, puisque Y admet une espérance,
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E(E(Y|X))=i§1 IP(X;”.)EJMP(Y:“’X:X") P(X=x,)

> X v B(Y=y, X =x,).

iel jel

L’idée est alors de permuter I’ordre de sommation :

e Un appel au systéme complet d’événements associé & Y : ( X =x; ) . permet d’assurer que pour tout
1 €

j € J, lasomme Z P(Y=yj,X=x[)converge,etque:

iel
YP(Y=y,,X=x;)=P(Y=y))
iel
La convergence est bien siir absolue (tous les termes sont ici positifs).

ee (Comme Y posséde une espérance, la somme Z y; P ( Y=y, ) converge absolument, et
jedJ

Z yjP(Yzyj)zE(Y)'

On sait alors que la somme Z Z yjIP)(Y =y;,X= xi) existe, que
jedJiel

Z Z Y P(Y =y;, X =x; ) = E(Y) et que 1’on peut intervertir les ordres de sommation :
jediel

lasomme Y > y;P ( Y=y,,X=x, ) existe elle aussi (convergence absolue), et vaut E (Y').
iel jel

C’est dire que E ( Y| X ) possede une espérance, et que |E ( E ( Y X ) ) =E ( Y ) , d’ou la formule de

I’espérance totale : E(Y): Z E(Y|X=xi)IP’(X=xi)

iel

Exercice 30

On considére une suite ( X, ) seN* de VAR définies sur un méme probabilisé ( Q,T,P ) . On suppose ces VAR

mutuellement indépendantes, et identiquement distribuées selon la loi de Bernoulli de paramétre p € ] 0,1 [ . On note comme

toujours g = 1— p.

1.a. Montrer que, pour tout k£ € N *, I’ensemble Z, = ( ﬂ [Xn =0 }J U { [Xn = l}j est un événement.
nxk

4

k

b. Montrer que, pour tout k € N*, Z, est négligeable. Interpréter ce résultat.

2. On considére la fonction L : Q — N associant a toute éventualité appartenant a Z | la valeur 0, et a tout autre élément ©
de Q I’unique entier n > 1 tel que ® appartienne a [X,, =Xn_1=...=X1] N [XnH;tXl]

a. Montrer que L estune variable aléatoire sur ( Q,T ) .

b. Quelleestlaloide L ?
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¢. Montrer que L admet un moment d’ordre 2.

d. En déduire que L admet une espérance et une variance (a ne pas calculer).
e. Calculer E (L).

l.a. Les X ,, n e N, étant des variables aléatoires, on sait que pour tout n € N~ [X” = 0] et [Xn = 1]

sont des événements. Pour tout £ > 1, ﬂ [X n = 0] et ﬂ [X n = 1} sont alors des événements comme

n =k nxk
intersections au plus dénombrables d’événements ; enfin, Z , = ﬂ [X n = OJ ) ﬂ [X n = 1] est
n2=k n =k

un événement, comme réunion de deux événements.

1.b. Ona ]P’(Zk ) <P ﬂ [Xn = O] + P ﬂ [Xn = 1} (en fait, il y a €galité, mais peu importe ici).
n 2k n 2k
N
Or, d’apres le théoreme de continuité décroissante, P ﬂ [X n = 0] = lim P ﬂ [X 0 = O] ,
N > +o©
n >k n==k
puis, par indépendance mutuelle des X ,, et du fait que ces variables aléatoires suivent toute la loi B ( P ) :
= N 1
P X,=0||= PlX,=0)= i Tl =0.
ﬂ[ " ] N—I)H}—OO]:[ ( " ) N—l)n}—oop
n =k n=k
De méme, P ﬂ [Xn = 1] = 0, etainsi Z, estnégligeable.
n =k

Cela signifie que, pour tout &, il est quasi impossible que les vards X ,, n > k, prennent toutes la méme valeur.

2.a. La fonction L est bien définie sur Q, et elle est a valeurs dans N .

Ona [L = 0] = Z, qui est bien un événement.

Pourtout n € N*, [L = n] ={ ﬁ [Xk = XIJ] m[XnH = XIJ est bien un événement, car 7 est
k=2

stable par passage au complémentaire, et par intersection finie ou dénombrable.
Ainsi, L est une variable aléatoire.

Rermarque L représente la longueur de la premiére séquence de résultats de méme type (succes ou échecs).

Onladit, L(Q)=N.OnaP(L=0)=P(Z,),doncdaprés 1.b., P(L =0)=0.Pourn>1:

P(L=k)=P [ﬂ [Xk:Xl]]m[XnH:Xl] , ot
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P(L=k)=P|| (N [Xe=1]|n[X,, =0]|+P ﬂ [Xe=0]|n[Xx,,  =1]

[ ; P(x, =1)J}P’(Xn+1 =0)+[ﬁ1@(xk =0)}}11>(X,1+1 = 1)

k=1

Il
S
<

+
<
S

c.d.e. Les séries Z n’p"q et z n*q" p convergent absolument (par exemple via la régle de

d’Alembert), donc L admet un moment d’ordre 2 . On sait alors que L posséde une variance, et une espérance.

Ona E(L) =pgq Z (np Y ), et ’on reconnait deux séries géométriques dérivées :
n=1
1 1 P q
E(L)=Pq(—2+—z]=—+—
q P q9 P

Exercice 33

+ o0
1. Montrer que tout entier n. € N peut s’écrire de fagon unique n = Y &, 2" ot Vk € N, &, € {0,1}.
k=0

2. Soit X une variable aléatoire a valeurs dans N telleque Vn € N, P (X =n) = 2”%

On définit, pour k£ € N, les variables de Bernoulli X | par la relation: X = z 28X me

k=0

Déterminer E (X B ) pour tout £ € N.

1. Montrons ce résultat par récurrence sur n € N. Pour n = 0 c’est immédiatavec Vk € N,g, = 0.

Soit n € N, on suppose que le résultat est vrai pour tout entier k¥ < n .

+ o0 + o0
Analyse : pose n = Z €,2" . Alors ¢, estnul a partir d’un certain rang (sinon la série numérique Z g, 2"
k=0 k=0
serait grossierement divergente, et les €, ne sont pas tous nuls (puisque n # 0). On peut donc définir
p-1

p = max{k € N/sk = 1},desortequen =27 + Z e ,2", ce qui montre que
k=0

L In(n . . .
27 <n < Z 2% =27*" — 1 etdonc p = {%J : ceci montre I'unicité d’un tel p . On applique alors
k=0 n

+ o0
I’hypothése de récurrence a n’ = n — 27, n’ s’écrit de facon unique sous la forme n' = e, 2" et, comme
k

k=0
p-1
n<2""" onan' <2, etdonc, pourtout k > p, &, = 0.On peut alors écrire : n' = Z £,2".Onen
k=0
p-1
déduit que I’écriture unique de n sous la forme voulue est: n = e 2% + 27,
k
k=0

Syntheése : 11 est clair que cette écriture convient. Ce qui achéve la preuve.
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Remarque : on reconnait dans ce (a) la démonstration de 1’unicité de 1’écriture d’un entier naturel en binaire.

+ oo

2. Notons, pour tout n € N,(sk(n))keNl’uniquesuiteévaleursdans{0,1} telleque n = » &, (n)2".
k=0
Onaalors X, = ¢, ( X ), et, avec le théoréme de transfert :
+ o + o 8;;(")
E(Xk)z Z_“Oek(n)P(in )= Z_:O XL
Ce qu’on peut aussi écrire : E(Xk,)zP(Xk =1)=P( U P(in)]ou
ned,
Akz{neN/Sk(n)zl}.
Cherchons les n € N tels que €, (n) = 1. Ce sont ceux qui s’écrivent :
k-1 k-1
n = Za 27 + 2" + Z £,27 = Zs 27 +2F 420! ZS 4127, c’est-a-dire les nombre de la
j=0 j=k+1 j=0 j=0
2k 1
forme a + 2¥ + 2" 'bhou a el[O,Q"" —1]]etb e N. Cest-a-dire: A, = U U {a +2°F +2"'”b},et
a=0beN
donc (puisque d’aprés I’unicité montrée au (a) ces évenements sont bien deux a deux disjoints)
2F _1 4o 2F 1 4o 2F ~1 4o
E(X’f): Z ZP(Xza—i-Qk(l—i-Qb ) Z z a+2 (1+20) z Z a+1 2‘ 27+ly ?
a=0b=0 a=00b0=0 a—Ub—U2 2 2
: . 1 (Gt 1 &1
Cequldonne.E(Xk)=22k Z:“OF Zw .
2k _1 1 1 22* _1 to 1 1 22“.
Ona: —=1—-—=——"7ct — = = — .
ago2‘1*1 2° 2? ;022 o1 27 -1
22x+1
2£+1 22A _1 ~ 1

Ce qui donne finalement : E ( X, )

T 9 T 142t
Remarque : On peut aussi faire le raisonnement suivant : Si on note A = {n e N / e,(n)= 1} , il est immédiat

que I’application n — n — 2" réalise une bijection de A sur A . Donc :

P(X,=1)= ZP(in)z Z%,et

P(X,=0)=Y P(X=n)= 221" => 12 =27 3 1 =2” P(X, =1)
ned ned ned 2 ned
Doal=P(X, =1)+P(X, =0)= (1 + 22 )P(Xk =1).
On retrouve bien : E(Xk) =;2k.
1+ 2

Exercice 40

Variance et antirépartition
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Soit X une v.a.r. définie sur un univers probabilisé (Q, T , P ) , a valeurs dans N .

" n n i -1
1. Montrerque: ¥V ne N, > k.P(X>k) z (i ) IP’(Xzi)+T
K=o =

X(X -1
Q admet une espérance si et seulement si la série Z k.P ( X >k )

2. En déduire que la v.a.r.
2 keN

» o X(X-1) +e
converge, et que lorsque cette condition est réalisée, ona : [E — = z k.P (X >k ) .

K=o
+ 00
3. Montrer que, toujours lorsque la condition précédente est réalisée : E(X 2) = > (2k+1).P(X>k) .
K=o
4. Quevautalors V (X ) al’aide de I’anti — répartition ?
Corrigé (début)
1. Pourtout V. n e N,
n n + o
D k.P(X>k) = > k. Y P(X=i)
= K=0 i=k+1
n n + oo
=Zk( Y OP(Xx=i)+ P(X:;)J
k=0 i=k +1 i=n+1

[i 1 2 2
‘ - X(x -1) , . R
2. D’apres le théoréme de transfert, 5 admet une espérance si et seulement si la série
i(i -1 X(x -1) ® -1
> % P (X =i ) converge, et lorsque tel est le cas, E [%j Z ( ) P(X

Exercice 41

Déterminer la loi d’'un minimum de » variables aléatoires indépendantes et toutes de méme loi G ( p ) .

Soient X |, ..., X

n

Soit la variable aléatoire m = min ( X |, .., X, ).Onnote g = 1 — p.

Les X ;,1 < i £ n,sonttoutes a valeurs dans N *, m est donc également a valeurs dans N

Pourtout £ € N ,ona

N D

P(m>k)=P(mn(X,,..,X,)>k)= IP’[

Alors par indépendance des X ; :

n variables aléatoires mutuellement indépendantes et toutes de loi géométrique G ( p ) (avec p € ] 0,1 [ .




P(m > k)= []P(X, > k),doncpuisque les X, suivent toutes laméme loi, P (m > k) = (P (X, > k))"
=1

B + © . B + © j—l_qu_ ‘
OrP(X,>k)= > P(X,=j)= > »pgq - =ah
j=k 41 jo=k+1 -4
Donc P (m > k) = g "*, etil enrésulte que pourtout k € N °,
P(m=k)=P(m>k—-1)-P(m>k)=gqg"F"" _ gnk
:qn(k—l)(l_qn):

On remarque que m suit la loi géométrique de paramétre 1 — ¢ "

Exercice 51

Soit X une variable aléatoire a valeurs dans N~ telle que X et = admettent une espérance finie.

1. Montrer que E(%j > ]E(X)

2. Etudier le cas d’égalité.

1)Ona: E ZP X n n, E( ) ZP (d aprés le théoréme de transfert), et avec

n=1 n=1

I’inégalité de Cauchy-Schwarz : 1= E(l)2 = E(J}LJ < E(X)E(%], d’ou le résultat.

Ns

2) Rappelons la preuve de 1’inégalité de Cauchy-Schwarz faite en cours :

Soit X et Y deux variables aléatoires réelles discretes admettant une variance. Alors XY admet une
espérance et E(XY)2 < E(XQ)E(YQ) .

Pve : De |X Y| (X >+ YQ) on déduit que XY admet bien une espérance. On note alors

o:R>R,t— E(X2)+2tE(XY)+ t? E(YQ) . La linéarité de I’espérance montre que

go(t) = E((X + tY)2 ) , c€ qui montre que Vi e R,(p(t) >0 (puisque (X + tY)2 étant une variable aléatoire
positive, son espérance est positive). Si F (YQ) #0, ¢ estune fonction polynomiale du second degré, son
discriminant est donc négatif : 4E(XY)’ —4E (X ? ) E(YQ) <0, d’ou I’inégalité de Cauchy-Schwarz. (Si
E(YQ) =0, le fait que Vte R,E(X2)+2tE(XY) >0 suffit 2 montrer que F(XY)=0, ce qui établit
encore I’inégalité E(X Y)2 <E (X ? ) E (YQ) dans ce cas particulier.)

De ce raisonnement on déduit que s’il y a égalité et que E (YQ) # 0, alors le discriminant de ¢ est nul, ce
qui montre qu’il existe ¢t € R tel que (X + tY)2 est une variable aléatoire d’espérance nulle, ce qui suffit a

montrer que P (X +tY =0)=1.

On applique ce résultat a JX et L : 1l existe alors A =—-t € R tel que P (X = l) =1, ce qui montre que

Jx

AeN" etque X est presque siirement égal a A .
Réciproquement il est clair qu’une telle variable aléatoire convient.
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