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I. Étude de deux familles de polynômes

Soit n ∈ N∗ et (a1, . . . , an) une famille de n réels deux à deux distincts.
Pour tout i dans [[1, n]], on note Li le polynôme de degré n− 1 défini par

(I.1) Li(X) =
n∏

j=1
j ̸=i

X − aj
ai − aj

.

On dit que L1, . . . , Ln sont les polynômes de Lagrange associés à a1, . . . , an.

I.A - Polynômes de Lagrange
On définit l’application

⟨·, ·⟩ :

∣∣∣∣∣∣∣
Rn−1[X]× Rn−1[X] −→ R

(P,Q) 7−→
n∑

k=1

P (ak)Q(ak)

Q1. Pour tous polynômes P et Q, ⟨P,Q⟩ est bien défini et appartient à R.
On a immédiatement la symétrie, la linéarité par rapport à la première variable et

donc par rapport à la seconde via la symétrie.

Soit P ∈ Rn−1[X], alors ⟨P, P ⟩ =
n∑

k=1

P (ak)
2 ⩾ 0 comme somme de termes positifs.

Si ⟨P, P ⟩ = 0, chaque terme de la somme est nul donc P (ak) = 0 ∀k ∈ [[1, n]]. Ainsi P a
au moins n racines distinctes, or il est de degré ⩽ n− 1 donc c’est le polynôme nul. La
défini-positivité est vérifiée.

Ainsi ⟨·, ·⟩ définit bien un produit scalaire sur Rn−1[X].

Q2. Soient i, k ∈ [[1, n]]. Si k ̸= i alors (X − ak) apparâıt dans le produit définissant Li et
donc Li(ak) = 0.

Pour k = i on a Li(ai) =
n∏

j=1
j ̸=i

ai − aj
ai − aj

= 1.

Ainsi dans tous les cas Li(ak) = δik =

{
1 si k = i
0 sinon

Q3. Soient i ∈ [[1, n]] et P ∈ Rn−1[X], alors

⟨Li, P ⟩ =
n∑

k=1

Li(ak)P (ak) =
n∑

k=1

δikP (ak) = P (ai).

Q4. En particulier pour i, j ∈ [[1, n]] on a ⟨Li, Lj⟩ = Lj(ai) = δij donc la famille (L1, . . . , Ln)
est orthonormée. Elle est en particulier libre et son cardinal valant n = dimRn−1[X],
c’est une base orthonormée de Rn−1[X].
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Q5. Cette base étant orthonormée, tout polynôme P ∈ Rn−1[X] se décompose dans cette
base sous la forme

P =
n∑

i=1

⟨P,Li⟩Li =
n∑

i=1

P (ai)Li.

Q6. Soit i ∈ [[1, n]], le polynôme Li est de degré n−1 et de coefficient dominant
1

n∏
j=1
j ̸=i

(ai − aj)

donc le coefficient de Xn−1 dans le polynôme
n∑

i=1

P (ai)Li est donné par

n∑
i=1

P (ai)
n∏

j=1
j ̸=i

(ai − aj)

.

Si P est de degré ⩽ n− 2, ce coefficient est nul, d’où l’égalité demandée.

I.B - Polynômes de Tchebychev
Soit n ∈ N∗. On pose

Tn(X) =

⌊n/2⌋∑
p=0

(−1)p
(
n

2p

)
Xn−2p(1−X2)p.

Q7. Soit x ∈ R, par formule du binôme on a (1+x)n =
n∑

k=0

(
n

k

)
xk. En particulier en faisant

la moyenne des relations pour x = 1 et x = −1 on obtient

1

2
(2n + 0n) =

1

2

(
n∑

k=0

(
n

k

)
+

n∑
k=0

(
n

k

)
(−1)k

)
=

n∑
k=0

(
n

k

)
1 + (−1)k

2

Le coefficient
1 + (−1)k

2
vaut 1 si k est pair et 0 si k est impair, il reste donc

2n−1 =
n∑

k=0
k pair

(
n

k

)
=

⌊n/2⌋∑
p=0

(
n

2p

)
.

Q8. Pour tout p ∈ [[0, ⌊n/2⌋]], le polynôme Xn−2p(1 − X2)p est de degré n et de coefficient
dominant (−1)p. On en déduit que deg(Tn) ⩽ n, et que le coefficient de Xn est donné
par

⌊n/2⌋∑
p=0

(−1)p
(
n

2p

)
(−1)p =

⌊n/2⌋∑
p=0

(
n

2p

)
= 2n−1

donc Tn est bien de degré n, et son coefficient dominant vaut 2n−1.

Q9. On souhaite montrer que Tn est l’unique polynôme à coefficients réels vérifiant la relation

∀θ ∈ R, Tn(cos(θ)) = cos(nθ).

Notons d’abord que si P et Q sont deux polynômes vérifiant cette relation, on a
P (cos(θ)) = Q(cos(θ)) pour tout θ ∈ R et donc (P − Q)(x) = 0 pour tout x ∈ [−1, 1].
Le polynôme P −Q ayant une infinité de racines, c’est le polynôme nul d’où P = Q, ce
qui prouve l’unicité.
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Soit θ ∈ R, on a par formule de (de) Moivre

einθ = (eiθ)n = (cos(θ) + i sin(θ))n =
n∑

k=0

(
n

k

)
cosn−k(θ) ik sink(θ)

Le terme d’indice k dans cette somme est réel si k est pair, imaginaire pur si k est impair
donc en prenant la partie réelle on obtient

n∑
k=0
k pair

cosn−k(θ) ik sink(θ) =

⌊n/2⌋∑
p=0

cosn−2p(θ) i2p sin2p(θ) =

⌊n/2⌋∑
p=0

(−1)p cosn−2p(θ) (1− cos2(θ))p

et donc en identifiant les parties réelles on obtient cos(nθ) = Tn(cos θ).

Q10. Pour k ∈ [[1, n]], on pose yk,n = cos

(
(2k − 1)π

2n

)
. Remarquons que les nombres θk,n =

(2k − 1)π

2n
sont distincts et appartiennent à l’intervalle [0, π]. La fonction cos étant

strictement décroissante cette intervalle, on en déduit que les nombres yk,n = cos(θk,n)
pour k ∈ [[1, n]] sont tous distincts.

Or pour tout k ∈ [[1, n]] on a Tn(yk,n) = cos(nθn,k) = cos
(
kπ − π

2

)
= 0. Ainsi yk,n est

une racine de Tn.

On a ainsi trouvé n racines distinctes de Tn qui est de degré n, on a donc obtenu
toutes les racines et elles sont simples. Le coefficient dominant de Tn valant 2n−1, on
obtient la factorisation

Tn(X) = 2n−1

n∏
k=1

(X − yk,n)

I.C - Soit n ∈ N∗ et W un polynôme unitaire de degré n. L’objectif de cette sous-partie est
de montrer que

(I.2) sup
x∈[−1,1]

|W (x)| ⩾ 1

2n−1

puis d’étudier dans quel cas il y a égalité.

Q11. La fonction cos étant bijective de [0, π] vers [−1, 1], on a

sup
x∈[−1,1]

|Tn(x)| = sup
θ∈[0,π]

|Tn(cos θ)| = sup
θ∈[0,π]

| cos(nθ)| = 1

On en déduit que le polynôme Un =
1

2n−1
Tn, qui est unitaire, vérifie

sup
x∈[−1,1]

|Un(x)| =
1

2n−1
,

qui est la borne recherchée.

On pose Q =
1

2n−1
Tn −W et, pour tout k ∈ [[0, n]], zk = cos

(
kπ

n

)
.

Q12. On a Q = Un −W . Les deux polynômes Un et W étant de degré n et unitaires, leurs
termes en Xn se compensent et deg(Q) ⩽ n− 1.

Q13. Supposons par l’absurde que sup
x∈[−1,1]

|W (x)| < 1

2n−1
.

Soit k ∈ [[0, n]], alors en particulier on a − 1

2n−1
< W (zk) <

1

2n−1
.
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Par ailleurs
1

2n−1
Tn(zk) =

1

2n−1
cos(kπ) =

(−1)k

2n−1
.

On en déduit que si k est pair, Q(zk) =
1

2n−1
− W (zk) > 0, et si k est impair,

Q(zk) = − 1

2n−1
−W (zk) < 0. Ainsi pour k ∈ [[0, n− 1]], Q(zk) et Q(zk+1) sont de signe

contraire et donc Q(zk)Q(zk+1) < 0.

Remarquons que la fonction cos étant strictement décroissante sur [0, π], on a

−1 = zn < · · · < zk+1 < zk < · · · < z0 = 1.

Soit k ∈ [[0, n− 1]]. La fonction polynomiale Q étant continue sur [zk+1, zk], et Q(zk)
et Q(zk+1) étant non nuls et de signe contraire, d’après le théorème des valeurs in-
termédiaires il existe ck ∈ ]zk+1, zk[ tel que Q(ck) = 0. On a ainsi trouvé n racines
distinctes pour le polynôme Q, ce qui est absurde pusique deg(Q) ⩽ n− 1.

Ainsi on a montré par l’absurde que sup
x∈[−1,1]

|W (x)| ⩾ 1

2n−1
.

On suppose maintenant que sup
x∈[−1,1]

|W (x)| = 1

2n−1
.

Q14. Le même raisonnement montrer que, pour k ∈ [[0, n]], Q(zk) ⩾ 0 si k est pair et Q(zk) ⩽ 0
si k est impair.

Par stricte décroissance de la famille des zk, le produit
n∏

j=0
j ̸=k

(zk−zj) contient k facteurs

strictement négatifs et n− k strictement positifs, et a donc le même signe que (−1)k, et
donc que Q(zk). On en déduit que

Q(zk)
n∏

j=0
j ̸=k

(zk − zj)

⩾ 0.

Q15. Or la question 6, adaptée en travaillant dans Rn[X] et les n + 1 points d’interpolation
zn, . . . , z0,permet d’affirmer que, pusique le polynôme Q est de degré inférieur ou égal
à n− 1, on a

n∑
k=0

Q(zk)
n∏

j=0
j ̸=k

(zk − zj)

= 0

Chaque terme de cette somme étant ⩾ 0, cela signifie que chaque terme est nul et donc
que Q(zk) = 0 pour tout k ∈ [[0, n]]. Cela donne n+1 racines distinctes pour Q de degré
⩽ n− 1, donc Q est le polynôme nul.

On obtient finalement queW =
1

2n−1
Tn : le polynôme Un est le seul polynôme unitaire

pour lequel (I.2) est une égalité.

II. Interpolation et convergence des polynômes d’interpolation pour
une fonction de classe C∞

II.A - Interpolation d’une fonction de classe Cn
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Q16. Considérons d’abord une fonction s de classe C1 sur I s’annulant en p+ 1 points
c0 < c1 < . . . < cp sur I pour un certain p ⩾ 1. Soit j ∈ [[0, p−1]], alors s est continue et
dérivable sur [cj, cj+1] et s(cj) = 0 = s(cj+1) donc d’après le théorème de Rolle il existe
dj ∈ ]cj, cj+1[ tel que s′(dj) = 0. On a ainsi p réels distincts d0 < . . . < dp−1 en lesquels
s′ s’annule.

Soit r une fonction à valeurs réelles de classe Cn sur I et s’annulant en n + 1 points
distincts de I. Alors par récurrence finie en utilisant ce qui précède, on montre que pour
tout k ∈ [[0, n]], la fonction r(k) s’annule en n+ 1− k points distincts de I.

En particulier pour k = n, il existe c ∈ I tel que r(n)(c) = 0.

Q17. Soit f une fonction à valeurs réelles de Cn sur I. Soit P = Π(f) le polynôme interpolateur
de f associé aux réels a1, . . . , an comme défini en (II.1) ci-dessus. Soit x ∈ I fixé.

Supposons que x soit distinct de tous les ai et considérons la fonction r définie sur I
par r : t 7→ f(t)− P (t)−KW (t) pour une certaine constante K. Cette fonction est de
classe Cn car f l’est et les fonctions P et W sont polynomiales donc de classe C∞.

Remarquons que W (x) ̸= 0 donc en choisissant K =
f(x)− P (x)

W (x)
on obtient que

r(x) = 0. Par ailleurs, pour tout i ∈ [[1, n]] on a f(ai) = P (ai) et W (ai) = 0 donc
r(ai) = 0. Ainsi la fonction r s’annule en n + 1 points distincts de l’intervalle I (x et
chacun des ai) donc d’après la question précédente il existe c ∈ I tel que r(n)(c) = 0.

Or P est polynomiale de degré ⩽ n− 1 donc P (n) = 0 et W est polynomiale de degré
n et unitaire donc W (n) = n!. Ainsi r(n) = f (n) −K n! donc en évaluant en c on obtient

f (n)(c)−K n! = r(n)(c) = 0 donc K =
f (n)(c)

n!
. Par construction K =

f(x)− P (x)

W (x)
donc

on a bien trouvé c ∈ I tel que

f(x)− P (x) =
f (n)(c)

n!
W (x).

Supposons maintenant que x soit l’un des ai, alors f(ai) − P (ai) = 0 = W (ai) donc
n’importe quel c ∈ I vérifiera la relation

f(x)− P (x) =
f (n)(c)

n!
W (x).

Q18. Posons Mn = sup
x∈[a,b]

|f (n)(x)| qui est bien défini car f (n) est continue sur le segment [a, b]

donc bornée, alors pour tout x ∈ I, il existe c ∈ I tel que

|f(x)− P (x)| = |f (n)(c)|
n!

|W (x)| ⩽ Mn

n!

n∏
i=1

|x− ai| ⩽
Mn

n!
(b− a)n

car pour tout i on a (x, ai) ∈ [a, b]2 donc |x− ai| ⩽ (b− a).

Ainsi la fonction |f−P | est majorée sur I par
Mn

n!
(b−a)n. La borne supérieure étant

le plus petit des majorants, on obtient

sup
x∈[a,b]

|f(x)− P (x)| ⩽ Mn (b− a)n

n!
.

II.B - Suites de polynômes interpolateurs
II.B.1) Convergence uniforme vers la fonction exponentielle

Dans cette section, I = [a, b], où a < b, et f est la restriction à I de la fonction exponentielle :

∀x ∈ I, f(x) = exp(x).
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Pour tout n ∈ N∗, on considère Pn = Πn(f) le polynôme interpolateur comme défini par
(II.2).

Q19. Dans le cas de la fonction exponentielle, on a pour tout n, f (n) = exp
donc Mn = sup

x∈[a,b]
ex = eb. On obtient donc que pour tout n ∈ N∗,

sup
x∈[a,b]

|f(x)− Pn(x)| ⩽ eb
(b− a)n

n!

qui tend vers 0 par croissances comparées, donc par théorème des gendarmes on a
sup
x∈[a,b]

|f(x)−Pn(x)| −→
n→+∞

0 et donc la suite (Pn)n∈N∗ converge uniformément vers f sur

I.

Q20. Posons, pour tout n ∈ N∗, Qn =
n∑

k=0

Xk

k!
.

La série entière
∑
n⩾0

xn

n!
étant de rayon de convergence infini, elle converge uniformément

vers sa somme (qui est l’exponentielle) sur tout segment de R. Ainsi la suite de fonctions
polynomiales (Qn)n∈N∗ converge uniformément vers f sur I.

Soit n ⩾ 1 fixé, on a Qn(0) = 1 = f(0) mais justifions que Qn(x) ̸= f(x) pour x ̸= 0.

Si x > 0 on a directement f(x) − Qn(x) =
+∞∑

k=n+1

xn

n!
> 0. Pour x < 0 c’est moins

immédiat, on peut passer par la formule de Taylor avec reste intégral :

f(x)−Qn(x) =

∫ x

0

(x− t)n

n!
f (n+1)(t) dt = (−1)n+1

∫ 0

x

(t− x)n

n!
et dt

La dernière intégrale est strictement positive car on intègre sur [x, 0] une fonction conti-
nue positive et non identiquement nulle. Ainsi Qn(x) ̸= f(x).

On a bien construit une suite de polynômes (Qn)n∈N∗ qui converge uniformément vers
f sur I et telle que, pour tout n ∈ N∗, la fonction Qn ne cöıncide avec f en aucun point
de I, sauf peut-être en zéro.

II.B.2) Convergence uniforme vers une fonction rationnelle
Dans cette section, a est un réel strictement positif et I = [−a, a]. Soit

f :

∣∣∣∣∣ R → R
x 7→ 1

1 + x2

Q21. La fonction f est rationnelle donc de classe C∞ sur R. Montrons par récurrence sur k
la propriété

Pk : ∀t ∈
]
−π

2
,
π

2

[
, f (k)(tan t) = k! cosk+1(t) cos

(
(k + 1)t+

kπ

2

)

Soit t ∈ J =
]
−π

2
,
π

2

[
alors f(tan t) =

1

1 + tan2 t
= cos2 t = 0! cos(t) cos(t) donc P0

est vraie.
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Supposons Pk vraie pour un certain k, alors en dérivant la relation on obtient pour

tout t ∈ J , en notant φ(t) = (k + 1)t+
kπ

2

1

cos2 t
f (k+1)(tan t) = k!

(
(k + 1)(− sin(t)) cosk(t) cos(φ(t))− cosk+1(t)(k + 1) sin((φ(t)))

)
= −(k + 1)! cosk(t) (sin(t) cos(φ(t)) + cos(t) sin(φ(t)))
= −(k + 1)! cosk(t) sin(φ(t) + t)

= (k + 1)! cosk(t) cos
(
φ(t) + t+

π

2

)
et ainsi, pour tout t ∈ J ,

f (k+1)(tan t) = (k + 1)! cosk+2(t) cos

(
(k + 2)t+

(k + 1)π

2

)
ce qui montre Pk+1.

Par principe de récurrence, l’expression est justifiée pour tout k ∈ N∗.

Pour tout n ∈ N∗, on considère Pn = Πn(f) le polynôme interpolateur de f sur I défini par
(II.2).

Q22. La fonction tan réalisant une bijection de
]
−π

2
,
π

2

[
vers R, on en déduit que pour tout

k ∈ N∗ et tout x ∈ R on a |f (k)(x)| ⩽ (k + 1)!.

Soit a <
1

2
, sur l’intervalle [−a, a] on a pour tout n, Mn ⩽ (n+ 1)! donc

sup
x∈[−a,a]

|f(x)− Pn(x)| ⩽ (n+ 1)!
(2a)n

n!
= (n+ 1)(2a)n

Puisque 2a < 1 on a par croissances comparées (n+ 1)(2a)n −→
n→+∞

0 et donc à nouveau

la suite de polynômes (Pn)n∈N∗ converge uniformément vers f sur [−a, a]

II.B.3) Cas de la somme d’une série entière

Soit
∑
k⩾0

ckx
k une série entière de rayon de convergence R > 0. On pose,

∀x ∈ ]−R,R[, f(x) =
+∞∑
k=0

ckx
k et ∀x ∈ ]− 1, 1[, g(x) =

+∞∑
k=0

xk.

Q23. On a pour tout x ∈ ]− 1, 1[, g(x) =
1

1− x
donc g est de classe C∞ sur ] − 1, 1[ et on

montre par une récurrence très simple que

∀j ∈ N, ∀x ∈ ]− 1, 1[, g(j)(x) =
j!

(1− x)j+1
.

Q24. Par définition R = sup{r ⩾ 0 / (ckr
k) est bornée} donc pour r ∈ ]0, R[, la suite (ckr

k)
est bornée et donc il existe C ∈ R tel que

∀k ∈ N, |ck| ⩽
C

rk
.

Q25. Par dérivation d’une série entière on a, pour tout n ∈ N :

∀x ∈ ]−R,R[, f (n)(x) =
+∞∑
k=n

ck
k!

(k − n)!
xk−n ∀x ∈ ]− 1, 1[, g(n)(x) =

+∞∑
k=n

k!

(k − n)!
xk−n
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et donc, pour tout x ∈ ]− r, r[,

|f (n)(x)| ⩽
+∞∑
k=n

|ck|
k!

(k − n)!
|x|k−n ⩽

+∞∑
k=n

C

rk
k!

(k − n)!
|x|k−n ⩽

C

rn

+∞∑
k=n

k!

(k − n)!

(
|x|
r

)k−n

=
C

rn
g(n)
(
|x|
r

)
et donc d’après l’expression obtenue en Q23, on a

|f (n)(x)| ⩽ C

rn
n!(

1− |x|
r

)n+1 =
n! r C

(r − |x|)n+1
.

Q26. On suppose que a < R/3 et on considère r ∈ ]a,R[ que nous choisirons plus tard.
D’après ce qui précède on a pour tout n

Mn = sup
x∈[−a,a]

|f (n)(x)| ⩽ n! r C

(r − a)n+1

et donc d’après Q18 on a

∀x ∈ [−a, a], |fn(x)− Pn(x)| ⩽
n! r C

(r − a)n+1

(2a)n

n!
=

rC

r − a

(
2a

r − a

)n

On va donc choisir r tel que
2a

r − a
< 1 ⇔ r > 3a, par exemple r =

3a+R

2
. On obtient

alors

sup
x∈[−a,a]

|f(x)− Pn(x)| ⩽
rC

r − a

(
2a

r − a

)n

−→
n→+∞

0

donc une fois encore la suite de polynômes (Pn)n∈N∗ converge uniformément vers f sur
[−a, a]

II.B.4) Interpolation aux points de Tchebychev
Cette section reprend l’étude des deux sections précédentes dans le cas de points d’inter-

polation particuliers, liés aux racines des polynômes de Tchebychev. On considère a > 0 et
I = [−a, a].

Pour tout n ∈ N∗, les points de Tchebychev d’ordre n dans I sont :

a∗k,n = a cos

(
(2k − 1)π

2n

)
, pour k ∈ [[1, n]].

On pose W ∗
n(X) =

n∏
k=1

(X − a∗k,n).

Si f est une fonction définie sur I et si n ∈ N∗, on définit comme au (II.2) le polynôme
interpolateur P ∗

n = Π∗
n(f) de f aux points de Tchebychev d’ordre n.

Q27. Pour tout x ∈ [−a, a], on a

W ∗
n(x) =

n∏
k=1

(x− ayk,n) = an
n∏

k=1

(x
a
− yk,n

)
= an

1

2n−1
Tn

(x
a

)
avec

x

a
∈ [−1, 1] et donc |W ∗

n(x)| ⩽
an

2n−1
= 2

(a
2

)n
.

Q28. On adapte le raisonnement de Q17 mais en améliorant la majoration de |W (x)| :

∀x ∈ [−a, a], |f(x)− P ∗
n(x)| ⩽

Mn

n!
|W ∗

n(x)| ⩽
2Mn

n!

(a
2

)n
8



Dans le cas où f est donnée par f(x) =
1

1 + x2
pour x ∈ R, on a vu que Mn ⩽ (n+ 1)!

donc

∀x ∈ [−a, a], |f(x)− P ∗
n(x)| ⩽ 2(n+ 1)

(a
2

)n
et donc si a < 2, ce majorant tend vers 0 par croissances comparées et la suite (P ∗

n)n∈N∗ =
(Π∗

n(f))n∈N∗ converge uniformément vers f sur [−a, a].

Q29. On reprend dans cette question la fonction f somme de série entière étudiée dans la

section II.B.3. On considère cette fois a <
2R

3
et à nouveau r ∈ ]a,R[ (ce qui définit la

constante C). En reprenant la majoration de Mn obtenue en Q26 et celle de |W ∗
n(x)|

obtenue en Q27, on obtient :

∀x ∈ [−a, a], |f(x)− P ∗
n(x)| ⩽

n! r C

(r − a)n+1

2

n!

(a
2

)n
=

2r C

r − a

(
a

2(r − a)

)n

On aura donc prouvé la convergence uniforme si l’on peut choisir r < R tel que
a

2(r − a)
< 1 ⇔ r >

3

2
a. Puisque l’on a bien

3

2
a < R, on peut par exemple poser

r =
1

2

(
3

2
a+R

)
et ainsi conclure sur la convergence uniforme de la suite (Π∗

n(f))n∈N∗

vers f sur [−a, a].

III. Phénomène de Runge

III.A - Étude d’une intégrale généralisée

Pour tout réel α > 0, on considère la fonction hα : t 7→ ln

(
1− t2

α2 + t2

)
.

Q30. La fonction k : t 7→ 1− t2

α2 + t2
est bien définie et continue sur R (fonction rationnelle sans

pôle réel) et pour tout t on a k(t) =
1 + α2

α2 + t2
− 1 donc k est décroissante sur R+. Elle

est de plus strictement positive sur [0, 1[, donc par composition la fonction hα = ln ◦k
est continue et décroissante sur [0, 1[.

Pour tout t ∈ [0, 1[ on a h(t) = ln(1− t) + ln(1 + t)− ln(α2 + t2). Les deux derniers
termes définissent une fonciton continue sur le segment [0, 1] et donc intégrable. Par le

changement de variable décroissant u = 1−t on a

∫ 1

0

ln(1−t) dt =

∫ 1

0

ln(u) du et ln est

intégrable sur ]0, 1] donc t 7→ ln(1− t) est intégrable sur [0, 1[ et ainsi hα est intégrable
sur [0, 1[.

On pose Jα =

∫ 1

0

hα(t) dt.

Q31. En utilisant la décomposition précédente de hα on obtient que

Jα =

∫ 1

0

ln(1− t) dt+

∫ 1

0

ln(1 + t) dt−
∫ 1

0

ln(α2 + t2) dt

=

∫ 1

0

ln(u) du+

∫ 2

1

ln(v) dv −
∫ 1

0

ln(α2 + t2) dt

=

∫ 2

0

ln(u) du−
∫ 1

0

ln(α2 + t2) dt.
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en réutilisant le changement de variable u = 1−t dans la première intégrale, et v = 1+t
dans la deuxième.

Q32. Une primitive de ln étant u 7→ u ln(u)− u, on obtient∫ 2

0

ln(u) du = 2 ln(2)− 2− lim
u→0

(u ln(u)− u) = 2 ln(2)− 2

On utilise une intégration par partie pour la seconde intégrale, avec t 7→ t et t 7→
ln(α2 + t2) de classe C1 sur le segment [0, 1] :∫ 1

0

ln(α2 + t2) dt =
[
t ln(α2 + t2)

]1
0
−
∫ 1

0

t
2t

α2 + t2
dt

= ln(1 + α2)− 2

∫ 1

0

(
1− α2

α2 + t2

)
dt

= ln(1 + α2)− 2 + 2

[
α arctan

(
t

α

)]1
0

= ln(1 + α2)− 2 + 2α arctan

(
1

α

)
et finalement Jα = 2 ln(2)− ln(1 + α2)− 2α arctan

(
1

α

)
.

Q33. La fonction J : α 7→ Jα est continue sur R∗
+ et Jα −→

α→0
2 ln(2) car arctan

(
1

α

)
−→
α→0

π

2
donc J est prolongeable par continuité sur R+ en posant J(0) = 2 ln(2) > 0. Par
continuité en 0, il existe γ > 0 tel que, pour tout α ∈ ]0, γ[, Jα > 0.

III.B - Application à une somme de Riemann
Pour tout n ∈ N∗, on considère dans ]0, 1[ les points ak,n donnés, pour k ∈ [[0, n − 1]], par

ak,n =
2k + 1

2n
et on pose

Sn(hα) =
1

n

n−1∑
k=0

hα(ak,n) =
1

n

(
hα

(
1

2n

)
+ hα

(
3

2n

)
+ · · ·+ hα

(
2n− 1

2n

))
.

Q34. Soit n ∈ N∗, pour tout k ∈ [[1, n− 1]] on a par décroissance de hα :

∀t ∈
[
2k − 1

2n
,
2k + 1

2n

]
, hα

(
2k + 1

2n

)
⩽ hα(t) ⩽ hα

(
2k − 1

2n

)
et donc par croissance de l’intégrale

hα

(
2k + 1

2n

)
⩽
∫ (2k+1)/(2n)

(2k−1)/(2n)

hα(t) ⩽ hα

(
2k − 1

2n

)
et donc ∫ (2k+3)/(2n)

(2k+1)/(2n)

hα(t) ⩽ hα

(
2k + 1

2n

)
⩽
∫ (2k+1)/(2n)

(2k−1)/(2n)

hα(t)

la première inégalité étant valable pour k ∈ [[0, n− 2]] et la seconde pour k ∈ [[1, n− 1]].

Par sommation on obtient
n−2∑
k=0

∫ (2k+3)/(2n)

(2k+1)/(2n)

hα(t) + hα

(
2n− 1

2n

)
⩽

n−1∑
k=0

hα

(
2k + 1

2n

)
⩽ hα

(
1

2n

)
+

n−1∑
k=1

∫ (2k+1)/(2n)

(2k−1)/(2n)

hα(t)

et donc, par relation de Chasles,∫ (2n−1)/2n

1/2n

hα(t) dt+
1

n
hα

(
2n− 1

2n

)
⩽ Sn(hα) ⩽

1

n
hα

(
1

2n

)
+

∫ (2n−1)/2n

1/2n

hα(t) dt.
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Q35. Lorsque n tend vers +∞ :∫ (2n−1)/2n

1/2n

hα(t) dt −→
∫ 1

0

hα(t) dt = Jα.

Par ailleurs hα

(
1

n

)
−→ hα(0) = 0 donc

1

n
hα

(
1

2n

)
−→ 0. Enfin, pour tout n ⩾ 1 :

1

n
hα

(
2n− 1

2n

)
=

1

n

(
ln

(
1

2n

)
+ ln

(
2− 1

2n

)
− ln

(
α2 +

(
1− 1

2n

)2
))

= − ln(n)

n
+

1

n

[
− ln(2) + ln

(
2− 1

2n

)
− ln

(
α2 +

(
1− 1

2n

)2
)]

Le terme entre crochets est borné et le premier terme tend vers 0 par croissances com-

parées donc
1

n
hα

(
2n− 1

2n

)
−→ 0.

Finalement, chaque membre de l’encadrement deQ34. tend vers Jα donc par théorème
des gendarmes la suite (Sn(hα))n∈N∗ converge vers Jα.

Q36. Or pour tout α > 0 et n ∈ N∗ on a

Sn(hα) =
1

n

n−1∑
k=0

ln

(
1− a2n,k
α2 + a2n,k

)
=

1

n
ln

n−1∏
k=0

1− a2n,k
α2 + a2n,k

et donc
n−1∏
k=0

1− a2n,k
α2 + a2n,k

= exp(nSn(hα)). Pour α ∈ ]0, γ[ on a Jα > 0 donc nSn(hα) tend

vers +∞ et finalement la suite

(
n−1∏
k=0

1− a2k,n
α2 + a2k,n

)
n∈N∗

(qui est positive) diverge vers +∞.

III.C - Le phénomène de Runge
Dans cette sous-partie I = [−1, 1] et α > 0. On considère

fα :

∣∣∣∣∣ [−1, 1] → R
x 7→ 1

α2 + x2

On note, pour n ∈ N∗, Rn ∈ R2n−1[X] le polynôme interpolateur de fα aux 2n réels
{±ak,n ∈ I | k ∈ [[0, n− 1]]}.
On pose Qn(X) = 1− (X2 + α2)Rn(X).

Q37. Considérons le polynôme Sn(X) = Rn(−X). La fonction fα étant paire, on a pour
tout k ∈ [[0, n − 1]] : Sn(ak,n) = Rn(−ak,n) = fα(−ak,n) = fα(ak,n) et de même
Sn(−ak,n) = fα(−ak,n) donc Sn, qui est du même degré que Rn, vérifie les mêmes
conditions d’interpolation. Par unicité du polynôme interpolateur, on a Sn = Rn et
donc Rn est un polynôme pair.

Par ailleurs on a Qn(αi) = 1− ((αi)2 + α2)Rn(αi) = 1.

Q38. Soit k ∈ [[0, n− 1]] on a

Qn(an,k) = 1− (a2n,k + α2)Rn(an,k) = 1− (a2n,k + α2)fα(an,k) = 1− 1 = 0

et de même Qn(−an,k) = 0, on a donc obtenu 2n racines distinctes de Qn.

Or Rn est de degré ⩽ 2n − 1 mais comme c’est un polynôme pair il est en fait de
degré ⩽ 2n − 2 et donc deg(Qn) ⩽ 2n. Enfin, Qn n’est pas le polynôme nul puisque
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Qn(αi) = 1. Ainsi on a obtenu toutes les racines de Qn et elles sont simples. En notant
λn son coefficient dominant on a la factorisation

Qn(X) = λn

n−1∏
k=0

(X − ak,n)(X + ak,n)

et ainsi

∀x ∈ [−1, 1], Qn(x) = λn

n−1∏
k=0

(x2 − a2k,n).

Q39. On en déduit que pour tout x ∈ [−1, 1],

fα(x)−Rn(x) =
1

x2 + α2

(
1− (x2 + α2)Rn(x)

)
=

1

x2 + α2
Qn(x) =

λn

x2 + α2

n−1∏
k=0

(x2 − a2k,n).

La factorisation obtenue à Q38 est en faite valable pour tout x ∈ C (factorisation
polynomiale), en particulier la valeur αi donne

1 = Qn(αi) = λn

n−1∏
k=0

((αi)2 − a2k,n) = λn(−1)n
n−1∏
k=0

(α2 + a2n,k)

et ainsi λn =
(−1)n

n−1∏
k=0

(α2 + a2n,k)

d’où l’on déduit finalement que

∀x ∈ [−1, 1], fα(x)−Rn(x) =
(−1)n

x2 + α2

n−1∏
k=0

1− a2k,n
α2 + a2k,n

.

Q40. En particuler pour x = 1 on obtient pour tout α > 0 :

|fα(1)−Rn(1)| =
1

α

n−1∏
k=0

1− a2k,n
α2 + a2k,n

.

Si l’on choisit α < γ ce produit tend vers +∞ d’après Q36 donc

lim
n→+∞

|fα(1)−Rn(1)| = +∞.
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