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I. Etude de deux familles de polynoémes

Soit n € N* et (aq,...,a,) une famille de n réels deux a deux distincts.
Pour tout ¢ dans [1,n], on note L; le polynéme de degré n — 1 défini par

n

X —a;
I.1 L; = -
(L) x) ===
j=1 7
J#i
On dit que L4, ..., L, sont les polynomes de Lagrange associés a aq, ..., ay,.

I.A - Polynémes de Lagrange
On définit 'application

R, 1[X] x R, 1[X] — R
b (P,Q) — 3 Pla)Q(a)
k=1

Q1. Pour tous polynomes P et Q, (P, Q) est bien défini et appartient a R.

On a immédiatement la symétrie, la linéarité par rapport a la premiere variable et
donc par rapport a la seconde via la symétrie.

Soit P € R,,_1[X], alors (P, P) = Z P(ax)* > 0 comme somme de termes positifs.
k=1

Si (P, P) = 0, chaque terme de la somme est nul donc P(ax) = 0Vk € [1,n]. Ainsi P a
au moins n racines distinctes, or il est de degré < n — 1 donc c’est le polynéme nul. La
défini-positivité est vérifiée.

Ainsi (-, -) définit bien un produit scalaire sur R,,_;[X].

Q2. Soient i,k € [1,n]. Si k # i alors (X — a;) apparait dans le produit définissant L; et
donc L;(ax) = 0.

n
a/, _— a.
Pourk:ionaLi(ai):H 2 =1.
oAy — ay
7j=1
J#i
. 1 sik=1
Ainsi dans tous les cas L;(ag) = 0 = { 0 z;non ¢

Q3. Soient i € [1,n] et P € R,,_1[X], alors
(Li,P) = Li(ax)Play) = Y 0uPar) = P(a;).
k=1 k=1

Q4. En particulier pour 4, j € [1,n] on a (L;, L;) = L;(a;) = d;; donc la famille (Ly, ..., L,)
est orthonormée. Elle est en particulier libre et son cardinal valant n = dimR,_[X],
c’est une base orthonormée de R,,_;[X].
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Q5. Cette base étant orthonormée, tout polynome P € R, 1[X] se décompose dans cette
base sous la forme

i=1 =1

1
Q6. Soit i € [1,n], le polynoéme L; est de degré n —1 et de coefficient dominant —

[T(ai - aj)
=1
i
donc le coefficient de X! dans le polynome Z P(a;)L; est donné par

i=1

n

Z P(a;) .
= (i - ay)

j=1
J#i
Si P est de degré < n — 2, ce coefficient est nul, d’ot I’égalité demandée.

I.B - Polynémes de Tchebychev
Soit n € N*. On pose

T,(X) = Lnf(—mp ( ")X“pu — X2,

p=0 2p
n

Q7. Soit x € R, par formule du binéme on a (1+xz)" = Z (n) 2" En particulier en faisant

k
k=0
la moyenne des relations pour x = 1 et x = —1 on obtient
1 1 (< (n "\ /n "L\ 14 (=1)k
(2" +0") = - —1)F ) = S
e =3 (S () + 3 (1)) - X ()
k=0 k=0 k=0
14 (1) : : : o
Le coefficient — vaut 1 si k est pair et 0 si k£ est impair, il reste donc

_— n n\ [n/2] n
> ()-2 ()
E pair =0

Q8. Pour tout p € [0, [n/2]], le polynéme X" ?P(1 — X?)? est de degré n et de coefficient
dominant (—1)?. On en déduit que deg(7},) < n, et que le coefficient de X™ est donné

p=0 p=0
donc T), est bien de degré n, et son coefficient dominant vaut 2" 1.
Q9. On souhaite montrer que 7, est I'unique polynome a coefficients réels vérifiant la relation
Vo € R, T, (cos(0)) = cos(nd).

Notons d’abord que si P et () sont deux polynomes vérifiant cette relation, on a
P(cos(0)) = Q(cos(#)) pour tout 6 € R et donc (P — Q)(x) = 0 pour tout = € [—1,1].
Le polynome P — () ayant une infinité de racines, c’est le polynome nul d’ou P = @), ce
qui prouve l'unicité.



Soit # € R, on a par formule de (de) Moivre

. . n n
e = ()" = (cos(f) +isin(0))" = Z (k) cos" ¥ (0) i* sin*(6)
k=0
Le terme d’indice k dans cette somme est réel si k est pair, imaginaire pur si k est impair
donc en prenant la partie réelle on obtient

n [n/2] [n/2]
Z cos"*(0) i* sin®(9) = Z cos" ?P(0) i* sin? (0) = Z (=1)P cos™ () (1 — cos?(6))?
kk:(} p=0 p=0

pair

et donc en identifiant les parties réelles on obtient cos(nf) = T,,(cos ).
(2k — 1)m

Q10. Pour k € [1,n], on pose yi, = cos < 5
n
(2k — 1)m

2n
strictement décroissante cette intervalle, on en déduit que les nombres y;,, = cos(by. )

pour k € [1,n] sont tous distincts.

). Remarquons que les nombres 0}, =

sont distincts et appartiennent & lintervalle [0,7]. La fonction cos étant

Or pour tout k € [1,n] on a Ty, (ykn) = cos(nb, ) = cos (k:7r — g) = 0. Ainsi yj,, est

une racine de T,,.
On a ainsi trouvé n racines distinctes de 7T,, qui est de degré n, on a donc obtenu
toutes les racines et elles sont simples. Le coefficient dominant de 7T}, valant 2"~ !, on

obtient la factorisation
n

To(X) =2 [T(X = )

I.C - Soit n € N* et W un polynome unitaire de degré n. L’objectif de cette sous-partie est
de montrer que

(12) sup [W(z)| > —

z€[-1,1] PAE

puis d’étudier dans quel cas il y a égalité.
Q11. La fonction cos étant bijective de [0, 7] vers [—1, 1], on a

sup |Tn(z)| = sup [T,(cosf)| = sup |cos(nd)| =1

z€[—1,1] 0€[0,n] 0€[0,n]
On en déduit que le polynome U, = FTM qui est unitaire, vérifie
Ua@)] =
sup |U,(x)| = —,
z€[-1,1] 2n—1

qui est la borne recherchée.

1 k
On pose Q = 2—Tn — W et, pour tout k € [0,n], 2z = cos <—7T>

n—1 n

Q12. On a Q = U, — W. Les deux polynomes U, et W étant de degré n et unitaires, leurs
termes en X" se compensent et deg(Q) < n — 1.

1
Q13. Supposons par I'absurde que sup |W(z)| < =)
ze[—1,1]
1
Soit k € [0,n], alors en particulier on a g1 < W(z) < ST



, 1 (—1)*
Par ailleurs ﬁTn(zk) = onoi cos(km) = ISR
1
On en déduit que si k est pair, Q(z) = T Wi(zx) > 0, et si k est impair,
1
Q(z) = T W (z) < 0. Ainsi pour k € [0,n — 1], Q(zx) et Q(2x41) sont de signe

contraire et donc Q(zx)Q(zk+1) < 0.
Remarquons que la fonction cos étant strictement décroissante sur [0, 7], on a

1=z, < <G <z <--<2z=1.

Soit k € [0,n — 1]. La fonction polynomiale @) étant continue sur [zx11, 2x], et Q(zx)
et Q(zxs+1) étant non nuls et de signe contraire, d’apres le théoreme des valeurs in-
termédiaires il existe ¢, € |zxi1, 2x[ tel que Q(cg) = 0. On a ainsi trouvé n racines
distinctes pour le polynéme @, ce qui est absurde pusique deg(Q) < n — 1.

Ainsi on a montré par I'absurde que sup |W(z)| > =Y
z€[—1,1]

1
On suppose maintenant que sup |W(z)| = —.
z€[-1,1] 2n

Q14. Le méme raisonnement montrer que, pour k € [0, n], Q(zx) = 0si k est pair et Q(zx) <0

si k est impair.
n

Par stricte décroissance de la famille des z, le produit H(zk — z;) contient k facteurs
j=0
ik
strictement négatifs et n — k strictement positifs, et a donc le méme signe que (—1)*, et
donc que Q(zx). On en déduit que
Q(z)

- =0

TG =)
=0
ik
Q15. Or la question 6, adaptée en travaillant dans R,,[X]| et les n + 1 points d’interpolation

Zn,y - .., 2o,permet d’affirmer que, pusique le polynome () est de degré inférieur ou égal
an—1,ona

i _ Q(zr) _0
h=0 H(Zk — 2j)

7=0
i#k
Chaque terme de cette somme étant > 0, cela signifie que chaque terme est nul et donc

que Q(zx) = 0 pour tout k € [0,n]. Cela donne n+ 1 racines distinctes pour ) de degré
<n—1, donc @ est le polynome nul.

1
On obtient finalement que W = 2n—Tn : le polynome U, est le seul polynome unitaire

)
pour lequel (I.2) est une égalité.

I1. Interpolation et convergence des polynémes d’interpolation pour
une fonction de classe C*™

II.A - Interpolation d’une fonction de classe C"



Q16. Considérons d’abord une fonction s de classe C! sur I s’annulant en p + 1 points

co < ¢ <...<¢psur ] pour un certain p > 1. Soit j € [0,p— 1], alors s est continue et
dérivable sur [¢;, ¢j11] et s(¢;) = 0 = s(c;41) donc d’apres le théoreme de Rolle il existe
d; € lcj, cj1] tel que s'(d;) = 0. On a ainsi p réels distincts dy < ... < dp_1 en lesquels
s" s’annule.

Soit r une fonction a valeurs réelles de classe C" sur I et s’annulant en n + 1 points
distincts de I. Alors par récurrence finie en utilisant ce qui précede, on montre que pour
tout k € [0,n], la fonction r*) s’annule en n + 1 — k points distincts de 1.

En particulier pour k = n, il existe ¢ € I tel que 7™ (c) = 0.

Q17. Soit f une fonction a valeurs réelles de C" sur I. Soit P = II( f) le polynéme interpolateur
de f associé aux réels ay, ..., a, comme défini en (II.1) ci-dessus. Soit x € I fixé.
Supposons que x soit distinct de tous les a; et considérons la fonction r définie sur 1
par r: t— f(t) — P(t) — K W (t) pour une certaine constante K. Cette fonction est de
classe C™ car f l'est et les fonctions P et W sont polynomiales donc de classe C*°.
f(z) — P(z)
W(z)
r(z) = 0. Par ailleurs, pour tout ¢ € [1,n] on a f(a;) = P(a;) et W(a;) = 0 donc
r(a;) = 0. Ainsi la fonction r s’annule en n + 1 points distincts de l'intervalle I (z et
chacun des a;) donc d’apres la question précédente il existe ¢ € I tel que 7™ (c) = 0.

Remarquons que W(z) # 0 donc en choisissant K = on obtient que

Or P est polynomiale de degré < n — 1 donc P™ = 0 et W est polynomiale de degré
n et unitaire donc W™ = n!. Ainsi ™ = f(® — K n! donc en évaluant en c on obtient

(n) —
f™M(c)—Knl=r"(c)=0donc K = f n'(c) Par construction K = % donc
on a bien trouvé c € [ tel que

(e
1)~ Py = Dy

Supposons maintenant que x soit 'un des a;, alors f(a;) — P(a;) = 0 = W (a;) donc
n’importe quel ¢ € [ vérifiera la relation

Q18. Posons M,, = sup |f™(z)| qui est bien défini car f™ est continue sur le segment [a, b]
z€a,b]
donc bornée, alors pour tout z € I, il existe ¢ € I tel que

@) - Pla)| = Lo IIu wl < e by

car pour tout ¢ on a (z,a;) € [a,b]? donc |z — ai| < (b—a).
M,
Ainsi la fonction | f — P| est majorée sur I par _|n (b—a)™. La borne supérieure étant
n!
le plus petit des majorants, on obtient

sup | () — Pla)] < M0 =0)",

z€[a,b] n!

I1.B - Suites de polynémes interpolateurs
I1.B.1) Convergence uniforme vers la fonction exponentielle
Dans cette section, I = [a,b], o a < b, et f est la restriction a I de la fonction exponentielle :

Vo e I, f(z) = exp(z).



Pour tout n € N*, on considere P, = IL,(f) le polynéme interpolateur comme défini par
(I1.2).

Q19. Dans le cas de la fonction exponentielle, on a pour tout n, f™ = exp

donc M, = sup e® = e’. On obtient donc que pour tout n € N*,
z€[a,b]

b— a)”
sup |f(@) — Pofa)] < e L=
z€[a,b] n:

qui tend vers 0 par croissances comparées, donc par théoreme des gendarmes on a

sup |f(x)— P,(x)] — 0 et donc la suite (P,),en+ converge uniformément vers f sur
z€la,b] n—+o0

Q20. Posons, pour tout n € N*, (), = o

k=0
n

x
La série entiere Z —~ étant de rayon de convergence infini, elle converge uniformément
n=0 ’
vers sa somme (qui est 'exponentielle) sur tout segment de R. Ainsi la suite de fonctions
polynomiales (Q,,)nen+ converge uniformément vers f sur I.
Soit n > 1 fixé, on a Q,(0) = 1 = f(0) mais justifions que @, () # f(x) pour z # 0.
+00 n
x
Siz > 0 on a directement f(z) — Q,(x) = Z — > 0. Pour z < 0 c¢’est moins
n!
k=n+1
immeédiat, on peut passer par la formule de Taylor avec reste intégral :

r—t)"

)= Q) = [

FED @) dt = (~1)"! / Ukl

n! n!

La derniere intégrale est strictement positive car on integre sur [z, 0] une fonction conti-
nue positive et non identiquement nulle. Ainsi Q,(z) # f(x).

On a bien construit une suite de polynomes (Q,,)nen+ qui converge uniformément vers
f sur I et telle que, pour tout n € N*, la fonction ), ne coincide avec f en aucun point
de I, sauf peut-étre en zéro.

I1.B.2) Convergence uniforme vers une fonction rationnelle

Dans cette section, a est un réel strictement positif et I = [—a, a]. Soit
R —- R
f: 1
T =
14 22

Q21. La fonction f est rationnelle donc de classe C* sur R. Montrons par récurrence sur k
la propriété

k
Pp: Vte }—g, g[, f® (tant) = k! cos*t1(t) cos ((k + 1)t + ;)

1

T tan?l — cos?t = 0! cos(t) cos(t) donc Py

Soit t € J = ]—g,g[ alors f(tant) =

est vraie.



Supposons Py vraie pour un certain k, alors en dérivant la relation on obtient pour

tout t € J, en notant p(t) = (k + 1)t + k%r
coiQt fED(tant) = k! ((k+ 1)(—sin(t)) cos®(t) cos(i(t)) — cos® () (k + 1) sin(((t))))

= —(k+1)!cos®(t) (sin(t) cos(x(t)) + cos(t) sin(¢p(t)))
= —(k+ 1)!cosk(t)sin(p(t) + 1)

= (k+1)!cos®(t) cos (go(t) +t+ g)

et ainsi, pour tout t € J,
kE+1
FE (tant) = (k4 1)! cos™2(t) cos ((k + 2)t + #)
ce qui montre Py.

Par principe de récurrence, I'expression est justifiée pour tout k € N*.

Pour tout n € N*, on consideére P, = II,,(f) le polynéme interpolateur de f sur I défini par
(I1.2).

Q22. La fonction tan réalisant une bijection de } —g, g [ vers R, on en déduit que pour tout
k€ N* et tout # € Ron a |f®(z)| < (k+ 1)

1
Soit a < =, sur U'intervalle [—a, a] on a pour tout n, M, < (n+ 1)! donc

(20)"

n!

sup |f(z) — Fu(z)] < (n+1)!

z€[—a,al

= (n+1)(2a)"

Puisque 2a < 1 on a par croissances comparées (n+ 1)(2a)” — 0 et donc a nouveau
n—+o0o

la suite de polynomes (P, ),en+ converge uniformément vers f sur [—a, al

I1.B.3) Cas de la somme d’une série entiére
Soit E ¥ une série entiere de rayon de convergence R > 0. On pose,

k>0
+00 Foo
Ve e]-R.R[ f(x)=) ca® et Vre]l-L1 g(z)=) 2"

1
Q23. On a pour tout z € | — 1,1[, g(x) = T donc g est de classe C* sur | — 1,1] et on
—x

montre par une récurrence tres simple que

. : J!

Q24. Par définition R = sup{r > 0/ (cxr") est bornée} donc pour r € |0, R[, la suite (c;r¥)
est bornée et donc il existe C' € R tel que

VkeN, Jal < %
T

Q25. Par dérivation d’'une série entiere on a, pour tout n € N :
+o00 k!
. (n) . . k—n . (n) o . k—n
Vee]|—-R,R[, f"™(z)= ,;an—(k? — n)!x Vee|-1,1, ¢™(z)= ,; = n)!x
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et donc, pour tout z € | — r, 7|,

+oo | k—n
Z\k! II’“"\Z ||’“"<9 LAY ) RGN
Tk rn l{f—n)' r rn

k=n (
et donc d’apres I'expression obtenue en Q23, on a

| !
O ()] < ¢ n! _ nlrC

HED
T

Q26. On suppose que a < R/3 et on considere r € ]a, R[ que nous choisirons plus tard.
D’apres ce qui précede on a pour tout n

nlrC
M, = sup |f"M(2)| < ———
z€[—a,a) h (’f‘ - a)n-i—l

et donc d’apres Q18 on a

nlrC  (20)" _ rC [ 2a \"
vrcload, lnta - Bl < G B 1 ()

3a+ R

On va donc choisir r tel que . On obtient

<1 & r > 3a, par exemple r =

alors

rC 2a \"

sup (o) = Puo)l < 5 () o
z€[—a,al r—a \r—a n—+00

donc une fois encore la suite de polynémes (P, ),en+ converge uniformément vers f sur

[—CL, (l]

I1.B.4) Interpolation aux points de Tchebychev

Cette section reprend l'étude des deux sections précédentes dans le cas de points d’inter-
polation particuliers, liés aux racines des polynomes de Tchebychev. On considere a > 0 et
I =[—a,al.

Pour tout n € N*| les points de Tchebychev d’ordre n dans I sont :

2k —1
ay, = a cos ((2—M> , pour k € [1,n].
’ n

On pose Wi (X) = [[(X —aj,.).
k=1
Si f est une fonction définie sur I et si n € N*, on définit comme au (I1.2) le polynéme
interpolateur P} = II* (f) de f aux points de Tchebychev d’ordre n.

Q27. Pour tout x € [—a,al, on a

n

i) = T o) = [T (7 - ama) =o' gm ()

k=1 k=1

n

avec 2 € [—1,1] et donc |W}(x)| < 2:_1 _9 (g)n

Q28. On adapte le raisonnement de Q17 mais en améliorant la majoration de |W(x)| :

Vo € [~a,al, |f(2) = Pr(@)] < —FIWi(@)] < = (5)




1
Dans le cas ou f est donnée par f(z) = T2 pour x € R, on a vu que M,, < (n+1)!
x
donc

Vz € [—a,a], |f(x) = Pi(x)] < 2(n+1) (%)n

et donc si a < 2, ce majorant tend vers 0 par croissances comparées et la suite (P),en =
(TT: (f) )nen= converge uniformément vers f sur [—a, a).

Q29. On reprend dans cette question la fonction f somme de série entiere étudiée dans la
2
section I1.B.3. On considere cette fois a < 35 et a nouveau r € |a, R (ce qui définit la

constante C'). En reprenant la majoration de M,, obtenue en Q26 et celle de |W;(z)|
obtenue en Q27, on obtient :

Vi € [_a’a]’ ’f(x)—P;(flfN gﬂ 2 <2>”_ 2rC ( a ))n

(r—a*nl \2) ~ r—a\20r—a

On aura donc prouvé la convergence uniforme si 'on peut choisir r < R tel que

a 3
——— <1 <& r > —a. Puisque l'on a bien —a < R, on peut par exemple poser
2(r —a) 2 2

1
r=s; (5(1 + R) et ainsi conclure sur la convergence uniforme de la suite (I (f))nen-

vers f sur [—a,al.

I11. Phénomene de Runge

III.A - Etude d’une intégrale généralisée
— 2
Pour tout réel a > 0, on considere la fonction hy it +— In| —— | .
a? + 2

2

30. La fonction k : t —» ——
Q a fonction peps

est bien définie et continue sur R (fonction rationnelle sans
1+ a?
TP
est de plus strictement positive sur [0, 1[, donc par composition la fonction h, = Inok
est continue et décroissante sur [0, 1[.

Pour tout ¢ € [0,1] on a h(t) = In(1 —¢) + In(1 + ¢) — In(a® + ¢?). Les deux derniers

termes définissent une fonciton continue sur le segment [0, 1] et donc intégrable. Par le
1

1
changement de variable décroissant u = 1—t on a / In(1—t)dt = / In(u) du et In est
0

pole réel) et pour tout t on a k(t) = — 1 donc k est décroissante sur R,. Elle

0
intégrable sur |0, 1] donc ¢ +— In(1 — t) est intégrable sur [0, 1] et ainsi h, est intégrable
sur [0, 1].

1
On pose J, = / he(t) dt.
0

Q31. En utilisant la décomposition précédente de h, on obtient que
1 1 1
J, = / ln(l—t)dt+/ ln(1+t)dt—/ In(a® + ) dt

0, 570 . 0

= / In(u) du+/ In(v) dv —/ In(a® + %) dt
0, 1 0

= / In(u) du —/ In(a? + %) dt.
0 0

9



en réutilisant le changement de variable u = 1 —t dans la premiere intégrale, et v = 1+1¢
dans la deuxieme.

Q32. Une primitive de In étant u +— wIn(u) — u, on obtient
2
/ In(u)du =21In(2) — 2 — hH(l)(’LL In(u) —u) =2In(2) — 2
0 u—
On utilise une intégration par partie pour la seconde intégrale, avec t +— t et t —
In(a? + %) de classe C' sur le segment [0,1] :

2t

1 1
/1n(a2+t2)dt = [t 1n(a2+t2)};—/ t———dt
0 0

o? + 2

) 1 042

AT
= In(1+a*) —2+2 {04 arctan (—)}

@/ 1o
1
= In(1+a?) — 2+ 2aarctan (—)
a
) 1
et finalement J, = 2In(2) — In(1 + a*) — 2a arctan | — .
a
1
Q33. La fonction J : o — J,, est continue sur RY et J, — 2In(2) car arctan —) —
a—0 o) a0 2

donc J est prolongeable par continuité sur R, en posant J(0) = 2In(2) > 0. Par
continuité en 0, il existe v > 0 tel que, pour tout « € ]0,~[, J, > 0.

III.B - Application a une somme de Riemann

Pour tout n € N*, on considere dans ]0, 1] les points ay, donnés, pour k € [0,n — 1], par
2k +1

et on pose

n—1
1 1 1 3 2n —1
Sp(he) ==Y holag,) = — | ha | — ha | — v+ he :
() nkz:% (@hn) n( (2n)+ (2n)+ * ( 2n ))
Q34. Soit n € N*, pour tout k£ € [1,n — 1] on a par décroissance de h,, :
2k—1 2 1 2 1 2k —1
vie |12 (D) < <na (2
2n 2n 2n 2n

et donc par croissance de 'intégrale
2k +1 (@k+1)/(2n) 2k — 1
m( +)</ m@<m( >
2n (2k—1)/(2n) 2n

(2K+3)/(2n) ok + 1 (2k+1)/(2n)
(/ m@<m( +)</ ha(t)
( (

2k+1)/(2n) 2n 2k—1)/(2n)
la premiere inégalité étant valable pour k € [0,n — 2] et la seconde pour k € [1,n — 1].
Par sommation on obtient

(2k+3)/(2n) o — 1 n—l ok 1 1 1 n—l e(2k+1)/(2n)
/ ) 4o (P ) < Xohe (Pt <o (57) + 2 [ ha(t)
(2k+1)/(2n) 2n — 2n 2n — J(2k-1)/(2n)

et donc, par relation de Chasles,

(2n—1)/2n 1 m—1 1 1 (2n—1)/2n
/ ha(t) dt + —hg ( n ) < Sp(ha) < ~ha (-) +/ ha(t) dt.
1/2n n 2n n 2n 1/2n
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et donc

[\

n—

e
i

0




Q35. Lorsque n tend vers +00 :

(2n—1)/2n 1
/ ha(t)dt—>/ ha(t) dt = J,.
1 0

/2n

1 1 1
Par ailleurs h, (—) — ha(0) =0 donc —h,, (2—> — 0. Enfin, pour tout n > 1 :
n

(20 - %(m(%)m(z_%)_1n<a2+(1_%)2))
tn(n) +— |—In(2) +1In (2 — %) —In (a2 + (1 — %)ZH

1
n
Le terme entre crochets est borné et le premier terme tend vers 0 par croissances com-

n
1 2n — 1
parées donc —h,, ( n ) — 0.
n 2n
Finalement, chaque membre de I’encadrement de Q34. tend vers J, donc par théoreme
des gendarmes la suite (S, (hq))nens converge vers J,.

Q36. Or pour tout a > 0 et n € N* on a

n—1 2 n—1 2
S,(hy) = — In [ ———2% | = 21 - R
(ha) nzn<a2+afm> nnlloﬂ—l—a{k

k=0 k= n
n—1 2
t donc HM = exp(n Sy (hy)). Pour a € ]0,v[ on a J, > 0 donc n S, (h,) tend

n—1 2
l1—a
vers +00 et finalement la suite <| | TZ”) (qui est positive) diverge vers +o0.
a

III.C - Le phénomeéne de Runge

Dans cette sous-partie [ = [—1, 1] et @ > 0. On considere
-1,1] — R
Ja 1
H S —
v a? + 22

On note, pour n € N* R, € Ry, _1[X] le polynéme interpolateur de f, aux 2n réels

{tar, €|k e[0,n—1]}.

On pose Q,(X) =1 — (X% + a®)R,(X).

Q37. Considérons le polynome S,(X) = R,(—X). La fonction f, étant paire, on a pour
tout k € [0,n — 1] : Sp(axn) = Ru(—arn) = fa(—arn) = falarn) et de méme
Sn(—akn) = fal—ak,) donc S,, qui est du méme degré que R, vérifie les mémes
conditions d’interpolation. Par unicité du polyndome interpolateur, on a S, = R, et
donc R,, est un polynome pair.

Par ailleurs on a Q,(ai) =1 — ((ai)? + a®)R,(ai) = 1.
Q38. Soit k € [0,n — 1] on a
Qu(ang) =1 = (an + 0*) Rulang) =1 = (a5 + ) falans) =1 -1 =0
et de méme @, (—a,x) = 0, on a donc obtenu 2n racines distinctes de @,,.

Or R, est de degré < 2n — 1 mais comme c’est un polynome pair il est en fait de
degré < 2n — 2 et donc deg(Q,) < 2n. Enfin, @, n’est pas le polynome nul puisque
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Q. (ai) = 1. Ainsi on a obtenu toutes les racines de @), et elles sont simples. En notant
Ay, son coefficient dominant on a la factorisation

Qn(X) = >\n f[(X — ak,n)(X + ak,n)

et ainsi )
Voe[-1,1],  Qu(@) =\ ][[G*—a},).
k=0
Q39. On en déduit que pour tout x € [—1,1],
Fa@) = Rule) = s (1= (02 + 0D R(2) = s 0ul) = =2 [0 = )
¢ " 22 + a? " 224+ a2 " 22 + o2 o kn/:

La factorisation obtenue & Q38 est en faite valable pour tout x € C (factorisation
polynomiale), en particulier la valeur ai donne

n—1 n—1

L= Qulad) = A [ J((d)? = ai,) = M(=1)" [ (o® + a3 )

k=0
(=1)"
n—1

H(QQ + a?z,k)

k=0

et ainsi A\, = d’ou 'on déduit finalement que

()" Ty L= in

2 2 2 2
T4+« kzooz —l—akm

Ve e [-1,1], fa(x) — R,(z) =

Q40. En particuler pour z = 1 on obtient pour tout a > 0 :

127 1—a?
() = Ry(D)| = =TT ="k
100~ Rl = T

Si 'on choisit a < 7 ce produit tend vers +o0o d’apres Q36 donc
i [fa(1) = Ry(1)] = +o0.
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