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CORRIGE

Partie I - Endomorphismes

Q1. Pour tout k ∈ J1;nK , ∆(Xk) = XkXk−1 = kXk. Et pour k = 0, ∆(X0) = X × 0 = 0 = 0X0.

Donc pour tout k ∈ J0;nK :
∆(Xk) = kXk.

Q2. Soit P ∈ R[X]. En dérivant XP ′ comme un produit, on obtient :

∆ ◦ (∆− Id)(P ) = ∆(XP ′ − P ) = X(P ′ +XP ′′ − P ′) = X2P ′′.

Q3. Soit P ∈ Rn[X]. Alors P ′ ∈ Rn−1[X] et XP ′ ∈ Rn[X]. Donc :

∆(P ) ∈ Rn[X].

Q4. D’après Q1., on complète les colonnes de la matrice avec les coordonnées, pour k ∈ J0;nK, de
∆(Xk) sur la base canonique. On obtient la matrice diagonale de Mn+1(R) :

0 0 . . . 0

0 1
. . .

...
...

. . .
. . . 0

0 . . . 0 n

 .

Q5. Soit P ∈ R[X]. D’après Q2., (∆2 −∆)(P ) = X2P ′′.

Donc (∆2 + (a− 1)∆)(P ) = (∆2 −∆)(P ) + a∆(P ) = X2P ′′ + aXP ′ = Φ(P ). D’où :

Φ = ∆2 + (a− 1)∆.

∆ est un endomorphisme de R[X] donc ∆2 également. Par combinaison linéaire :

Φ est un endomorphisme de R[X].

Q6. Avec le même raisonnement, en remplaçant R[X] par Rn[X] :

Φ induit un endomorphisme Φn de Rn[X] et Φn = ∆2
n + (a− 1)∆n.

Q7. Dans la base canonique de Rn[X], la matrice de ∆n est diagonale. Ce qui est donc le cas de la
matrice de ∆2

n. D’après l’égalité Φn = ∆2
n + (a − 1)∆n, la matrice de Φn dans la base canonique

est diagonale par combinaison linéaire et :

Φn est diagonalisable.

Q8. On remarque que φ = Φ+ b Id. Φ et Id induisent des endomorphismes de Rn[X]. Par combinaison
linéaire :

φ induit un endomorphisme de Rn[X].

D’après les égalités précédentes (Q5.), on obtient :

φn = ∆2
n + (a− 1)∆n + b Id,

où Id désigne ici l’endomorphisme identité sur Rn[X].

Q9. D’après Q4., la matrice de ∆n dans la base canonique de Rn[X] est la matrice diagonale de
coefficient diagonal δk = k pour k ∈ J0;nK, souvent notée diag(0, 1, 2, . . . , n).

D’après Q9., φn = ∆2
n + (a − 1)∆n + b Id, donc la matrice de φn dans la base canonique de

Rn[X] est la matrice diagonale de coefficients diagonaux δ2k +(a− 1)δk + b = k2+(a− 1)k+ b pour
k ∈ J0;nK, soit diag(b, 12 + (a− 1)× 1 + b, 22 + (a− 1)2 + b, . . . , n2 + (a− 1)n+ b).
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Q10. Soit P =
n∑

k=0

akX
k ∈ Rn[X].

P ∈ ker(φn) ⇐⇒ φn(P ) = 0

⇐⇒
n∑

k=0

akφn(X
k) = 0

⇐⇒
n∑

k=0

ak
(
k2 + (a− 1)k + b

)
Xk = 0 d’après Q9.

⇐⇒ ∀ k ∈ J0;nK , ak(k
2 + (a− 1)k + b) = 0

⇐⇒ ∀ k ∈ J0;nK ∖ {m1,m2} , ak = 0

⇐⇒ P = am1X
m1 + am2X

m2

D’où ker(φn) = Vect(Xm1 , Xm2).

Remarque : on pouvait également déterminer le noyau de la matrice de φn et revenir aux
polynômes à partir des coordonnées trouvées.

Q11. De même, on obtient :
ker(φn) = Vect(Xm)

Q12. De même, si l’équation (1) n’admet pas de racine entière, ker(φn) = {0}.

Si P ∈ ker(φ)∖ {0}, notons n = deg(P ). Ainsi φ(P ) = φn(P ) = 0 et P ∈ ker(φn).

Ainsi ker(φ) =
⋃
n∈N

ker(φn). D’où :

dimker(φ) ∈ J0; 2K et est égale au nombre de racines entières de l’équation (1).

Partie II - Une équation différentielle

Q13. (2) est une équation différentielle linéaire homogène d’ordre 2 à coefficients continus. Comme la
fonction x 7−→ x2 ne s’annule pas sur I :

l’ensemble des solutions de (2) sur I est un espace vectoriel de dimension 2.

De même sur J .

Q14. Soit y une solution de (2) sur I. Posons g = y ◦ exp. g est définie et deux fois dérivable sur R par
composition de exp, définie et deux fois dérivable sur R et à valeurs dans I, et de y, définie et deux
fois dérivable sur I. On a alors :

g′ = y′ ◦ exp× exp et g′′ = y′′ ◦ exp× exp2+y′ ◦ exp× exp. Pour tout x ∈ R :

g′′(x) + (a− 1)g′(x) + bg(x) = y′′(exp(x))× exp2(x) + a y′(exp(x))× exp(x) + b y(exp(x))

= y′′(t)t2 + ay′(t)t+ by(t) en posant exp(x) = t ∈ I

= 0 car y est solution de (2).

Ainsi g = y ◦ exp est solution sur R de l’équation (3).

Q15. Posons h = g ◦ ln. h est définie et deux fois dérivable sur I par composition de ln, définie et deux
fois dérivable sur I et à valeurs dans R, et de g, définie et deux fois dérivable sur R.

Pour tout x ∈ I :

h′(x) = g′(ln(x))
1

x
et h′′(x) = g′′(ln(x))

1

x2
− 1

x2
g′(ln(x)).

D’où : x2h′′(x) + axh′(x) + bh(x) = g′′(t) + (a− 1)g′(t) + bg(t) en posant ln(x) = t

= 0 car g est solution de (3).

2



Ainsi g ◦ ln est solution sur I de l’équation (2).

Q16. ▶ On commence par résoudre (3), équation différentielle linéaire homogène d’ordre 2 à coefficients
constants. On associe l’équation caractéristique r2 + 2r + 1 = 0 de racine double −1.

Ainsi les solutions de (3) sur R sont u : t 7−→ (λt+ µ)e−t où λ, µ ∈ R.
D’après Q15. et Q16., les solutions de (2) sur I sont

y : x 7−→ u(ln(x)) = (λ ln(x) + µ)
1

x
, λ, µ ∈ R.

▶ De même, avec 2i et −2i comme racines de l’équation caractéristique, les solutions de (3) sont
u : t 7−→ λ cos(2t) + µ sin(2t) où λ, µ ∈ R.

Les solutions de (2) sur I sont

y : x 7−→ u(ln(x)) = λ cos(2 ln(x)) + µ sin(2 ln(x)) , λ, µ ∈ R.

Q17. On procède de même qu’en Q14. avec :

h′ = −y′ ◦ (− exp)× exp et h′′ = y′′ ◦ (− exp)× exp2− exp×y′ ◦ (− exp).

On obtient alors h′′ − 4h = 0 car y est solution de (2).

Donc si y est solution de (2) sur J , alors h = y ◦ (− exp) est solution de (3) sur R.

Q18. L’équation caractéristique associée à (3) est r2 − 4 = 0, de racines 2 et −2.

Les solutions de (3) sont donc u : t 7−→ λe2t + µe−2t.

D’après Q14. et Q15., les solutions de (2) sur I sont donc yI : x 7−→ λx2 +
µ

x2
.

De même que Q15., on prouve que si g est solution de (3) sur R, alors x 7−→ g(ln(−x)) est

solution de (2) sur I. Ainsi, les solutions de (2) sur J sont yJ : x 7−→ αx2 +
β

x2
.

On procède alors à un recollement des solutions : on cherche les conditions sur λ, µ, α, β pour

avoir


lim

x→0−
yJ(x) = lim

x→0+
yI(x)

lim
x→0−

y′J(x) = lim
x→0+

y′I(x)

lim
x→0−

y′′J(x) = lim
x→0+

y′′I (x)

avec des limites finies.

Pour des limites finies pour yI et yJ , on obtient β = 0 et µ = 0. Dans ce cas, ces limites sont
alors égales à 0.

Ainsi yI : x 7−→ λx2 et yJ : x 7−→ αx2.

D’où y′I(x) = 2λx et y′J(x) = 2αx et lim
x→0−

y′J(x) = lim
x→0+

y′I(x) = 0.

Enfin, y′′I (x) = 2λ et y′′J(x) = 2α et lim
x→0−

y′′J(x) = lim
x→0+

y′′I (x) ⇐⇒ λ = α.

Les fonctions y définies sur I ∪ J par x 7−→ λx2 où λ ∈ R et y(0) = 0, y′(0) = 0 et y′′(0) = 2λ,
qui consiste à prendre

y : x 7−→ λx2 définie sur R,

est alors de classe C2 sur R et on vérifie qu’elle est bien solution de (2) sur R.

Partie III - Une équation de Bessel

Q19. Le rayon de convergence de la série entière
∑

anx
n est

R = sup
{
r ⩾ 0 / (anr

n)n est bornée
}

et R ∈ R+ ∪ {+∞}.
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Q20. J0 est de classe C∞ sur ]−R,R[ et se dérive terme à terme.

∀x ∈]−R,R[, J0(x) =
+∞∑
k=0

ckx
k

J ′
0(x) =

+∞∑
k=1

kckx
k−1

J ′′
0 (x) =

+∞∑
k=2

k(k − 1)ckx
k−2

x2J ′′
0 (x) + xJ ′

0(x) + x2J0(x) =
+∞∑
k=2

k(k − 1)ckx
k +

+∞∑
k=1

kckx
k +

+∞∑
k=2

ck−2x
k

x2J ′′
0 (x) + xJ ′

0(x) + x2J0(x) = c1x+
+∞∑
k=2

(k2ck + ck−2)x
k.

Par unicité du développement en série entière (sous réserve que R > 0), comme J0 est solution de
(4), on en déduit :

c1 = 0 et ∀ k ⩾ 2, ck = −ck−2

k2
.

Comme, de plus, c0 = 1 par hypothèse, on montre facilement par récurrence que

∀ k ∈ N, c2k+1 = 0 et c2k =
(−1)k

4k (k!)2
.

Q21. On s’intéresse à la série entière
∑

c2kx
2k. Une série entière converge toujours pour x = 0.

Prenons x dans R∗ et notons, pour k ∈ N, uk(x) = c2kx
2k. Ainsi, uk(x) ̸= 0 et

lim
k→+∞

∣∣∣∣uk+1(x)

uk(x)

∣∣∣∣ = lim
k→+∞

∣∣∣∣ x2

4(k + 1)2

∣∣∣∣ = 0 < 1.

Donc le critère de d’Alembert permet de conclure que cette série entière converge pour tout réel x
et que son rayon de convergence est donc R = +∞.

On a donc prouvé que la somme de cette série entière, appelée J0 dans l’énoncé, est une solution
de (4) sur R.

Q22. J0 est continue sur R, donc continue sur le segment [0, r] et donc bornée sur ce segment.
J0 n’est pas la fonction nulle (par unicité du développement en série entière), donc si (J0, f) est
une famille liée de l’espace vectoriel des fonctions de classe C2 sur ]0, r[, il existe a ∈ R tel que
f = aJ0 et f est ainsi bornée sur ]0, r[ et donc au voisinage de 0.

Q23. Par produit de Cauchy, appliqué aux séries entières (absolument convergentes dans l’intervalle
ouvert de convergence) :

∀x ∈]−Rα, Rα[∩]−Rβ, Rβ[,

(
+∞∑
k=0

αkx
k

) (
+∞∑
k=0

βkx
k

)
=

+∞∑
n=0

(
n∑

k=0

αkβn−k

)
xn.

Or, cette somme vaut 1 par hypothèse donc, par unicité d’écriture d’une série entière, on a :

α0β0 = 1 et ∀n ∈ N∗,
n∑

k=0

αkβn−k = 0.

Comme α0 = 1 par hypothèse, on obtient :

β0 = 1 et ∀n ∈ N∗,

n∑
k=0

αkβn−k = 0.
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Q24. Puisque 0 < r < Rα, par définition du rayon de convergence, la suite (αkr
k)k est bornée, donc :

∃M > 0 / ∀ k ∈ N, |αkr
k| ⩽ M i.e. |αk| ⩽

M

rk
.

Q25. Notons, pour k ∈ N∗, Hk l’assertion : ≪ |βk| ⩽
M(M + 1)k−1

rk
≫.

— Initialisation : a relation (5) fournit α0β1+α1β0 = 0. Donc β1 = −α1 et |β1| = |α1| ⩽
M

r
. Cela

montre H1.
— Hérédité : Prenons k dans N∗ tel que H1, ..., Hk soient vraies et montrons que Hk+1 est vraie.

|βk+1| =

∣∣∣∣∣∣−
k∑

j=0

αk+1−j βj

∣∣∣∣∣∣ (car α0 = 1)

⩽
k∑

j=0

|αk+1−j | |βj |

⩽
M

rk+1
+

k∑
j=1

M

rk+1−j
× M(M + 1)j−1

rj
(d’après Q.24 et l’hyp. de récurrence)

⩽
M

rk+1
+

M2

rk+1

∣∣∣∣(M + 1)k − 1

(M + 1)− 1

∣∣∣∣
⩽

M(M + 1)k

rk+1

Ainsi, Hk+1 est vraie et l’on a établi le résultat souhaité par récurrence.

Q26. On déduit de la question précédente :

∀x ∈ R, ∀ k ∈ N∗, |βkxk| ⩽
M

M + 1

∣∣∣∣(M + 1)x

r

∣∣∣∣k .
Les théorèmes de comparaison sur les séries permettent d’affirmer que si

∣∣∣∣(M + 1)x

r

∣∣∣∣ < 1, la série

géométrique de terme général

(
(M + 1)x

r

)k

converge et donc que la série
∑

βkx
k est absolument

convergente. La série
∑

βkx
k est donc absolument convergente pourvu que |x| ⩽ r

M + 1
; son

rayon de convergence vérifie donc Rβ ⩾
r

M + 1
> 0.

Q27. On note : ∀x ∈]0, r[, y(x) = λ(x)J0(x)avec λ fonction de classe C2 sur ]0, r[. Ainsi, y est aussi de
classe C2 sur ]0, r[. Comme J0 est solution de (4), on obtient

∀x ∈]0, r[ : x2y′′(x) + xy′(x) + x2y(x) = x2λ′′(x)J0(x) + 2x2λ′(x)J ′
0(x) + xλ′(x)J0(x).

De plus , en notant ∀x ∈]0, r[, h(x) = xλ′(x)J2
0 (x), on a

∀x ∈]0, r[ : h′(x) = λ′(x)J2
0 (x) + xλ′′(x)J2

0 (x) + xλ′(x) 2J0(x)J
′
0(x)

=
J0(x)

x

(
x2y′′(x) + xy′(x) + x2y(x)

)
.

• Il est donc clair que si y est solution de (4) sur ]0, r[ alors h est de dérivée nulle sur ]0, r[.
• Réciproquement, supposons que h′(x) = 0 pour tout x ∈]0, r[. Notons g : x 7−→ x2y′′(x) +
xy′(x) + x2y(x).
Supposons qu’il existe x0 ∈]0, r[ tel que g(x0) ̸= 0. Par continuité, g serait non nulle sur un
sous-intervalle de ]0, r[ centré en x0 et J0 serait donc nulle sur cet intervalle. Comme J0 est
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solution de u′′+
1

x
u′+u = 0 sur ]0, r[, J0 serait identiquement nulle sur ]0, r[ d’après le théorème

de Cauchy-Lipschitz comme unique solution de (4) s’annulant ainsi que sa dérivée en x0. Elle
serait donc nulle en 0 par continuité. Cela contredirait la définition de J0 (c0 = 1). Donc g est
nulle et y est solution de (4) sur ]0, r[.

Q28. Par théorème sur le produit de Cauchy des séries entières, J2
0 est somme d’une série entière de

rayon +∞. De plus, J2
0 (0) = 1.

Q29. Cherchons une fonction λ et un réel r > 0 tels que ∀x ∈]0, r[ : xJ2
0 (x)λ

′(x) = 1.
La question Q27. nous assurera alors que (x 7−→ λ(x)J0(x)) est solution de (4) sur ]0, r[.
La question Q28. permet d’appliquer le paragraphe sur l’inverse d’une série entière non nulle en 0
à J2

0 .

Il existe donc une série entière
∑

βkx
k de rayon r > 0 et telle que β0 = 1 qui vérifie

∀x ∈]0, r[ : J2
0 (x)

(
+∞∑
k=0

βkx
k

)
= 1, ∴ xJ2

0 (x)

(
1

x
+

+∞∑
k=1

βkx
k−1

)
= 1.

En prenant

∀x ∈]0, r[ : λ(x) = ln(x) +
+∞∑
k=1

βk
xk

k
,

on obtient bien
∀x ∈]0, r[ : xJ2

0 (x)λ
′(x) = 1.

Notons

∀x ∈]0, r[ : η(x) =

(
+∞∑
k=1

βk
xk

k

)
× J0(x).

Par produit de Cauchy, η est la somme d’une série entière de rayon Rη > 0 et, d’après la question
Q27., (

J1 : x 7−→ η(x) + ln(x) J0(x)
)
est solution de (4) sur ]0, Rη[.

Q30. Puisque J0(0) = 1, la fonction J1 = η + J0 × ln n’est pas bornée sur ]0, Rη[. D’après la question
Q22., la famille (J0, J1) est donc libre dans l’espace vectoriel des fonctions de classe C2 sur ]0, Rη[
et l’on a une base de solutions de (4). On en déduit que l’ensemble des solutions de (4) sur ]0, Rη[
est {

aJ0 + b(η + J0 × ln) / (a, b) ∈ R2
}
= Vect(J0, η + J0 × ln).
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