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CORRIGE

Partie I - Endomorphismes

Pour tout k € [1;n], A(X®) = XEX* ! = kX* Et pour k=0, A(X") =X x0=0=0X".
Donc pour tout k € [0;n] :
A(X"?) = kX"

Soit P € R[X]. En dérivant X P’ comme un produit, on obtient :
Ao(A—-Id)(P)=A(XP —P)=X(P +XP"-P)=X?P"
Soit P € R,[X]. Alors P’ € R,_1[X] et XP' € R,,[X]. Donc :
A(P) € Ry[X].

D’apres Q1., on complete les colonnes de la matrice avec les coordonnées, pour k € [0;n], de
A(X*) sur la base canonique. On obtient la matrice diagonale de M, 11 (R) :

0 O 0
0 1

-
0 0 n

Soit P € R[X]. D’apres Q2., (A% — A)(P) = X?P".
Donc (A% 4 (a — 1)A)(P) = (A% — A)(P) + aA(P) = X*P" + aXP' = ®&(P). D’ou :

d =A%+ (a—1)A.

A est un endomorphisme de R[X] donc A? également. Par combinaison linéaire :
® est un endomorphisme de R[X].
Avec le méme raisonnement, en remplacant R[X] par R, [X] :
® induit un endomorphisme ®,, de R,[X] et &, = A2 4 (a — 1)A,,.

Dans la base canonique de R, [X], la matrice de A,, est diagonale. Ce qui est donc le cas de la
matrice de A2, D’apres 'égalité @, = A2 + (a — 1)A,,, la matrice de ®,, dans la base canonique
est diagonale par combinaison linéaire et :

®,, est diagonalisable.
On remarque que ¢ = ® + bId. ® et Id induisent des endomorphismes de R, [X]. Par combinaison
linéaire :
¢ induit un endomorphisme de R,,[X].

D’apres les égalités précédentes (Q5.), on obtient :
on =A%+ (a—1)A, +b1d,

ou Id désigne ici 'endomorphisme identité sur R,,[X].
D’apres Q4., la matrice de A, dans la base canonique de R,[X] est la matrice diagonale de
coefficient diagonal oy = k pour k € [0; n], souvent notée diag(0,1,2,...,n).

D’apres Q9., ¢, = Ai + (a — 1)A,, 4+ bId, donc la matrice de ¢, dans la base canonique de
R,,[X] est la matrice diagonale de coefficients diagonaux 67 + (a —1)0y +b = k* + (a — 1)k + b pour
k € [0;n], soit diag(b,12 + (a —1) x 1 +b,2% 4+ (a — 1)2+b,...,n* + (a — 1)n + b).



n
Q10. Soit P = aX* € R,[X].
k=0

P € ker(py,) <= ¢n(P)=0

= Zakgon(Xk) =0
k=0

n
— Zak (k2 + (a— 1)k +b) Xk =0 d’apres Q9.
k=0
— VYEke[0;n] , ap(k*+(a—1k+b) =0
< Vkel[0;n]~{mi,ma}, ar=0
<= P =ap, X"™ + apy X2
D’ou ker(py) = Vect( X, X™2).
Remarque : on pouvait également déterminer le noyau de la matrice de ¢, et revenir aux
polynomes a partir des coordonnées trouvées.
Q11. De méme, on obtient :
ker(pp) = Vect(X™)
Q12. De méme, si I’équation (1) n’admet pas de racine entiere, ker(p,) = {0}.

Si P € ker(p) \ {0}, notons n = deg(P). Ainsi p(P) = ¢n(P) =0 et P € ker(p,).

Ainsi ker(yp) = U ker(ypy,). D’ou :
neN

dimker(yp) € [0;2] et est égale au nombre de racines entieres de I’équation (1).

Partie II - Une équation différentielle

Q13. (2) est une équation différentielle linéaire homogene d’ordre 2 a coefficients continus. Comme la
fonction z — 2 ne s’annule pas sur I :

Pensemble des solutions de (2) sur I est un espace vectoriel de dimension 2.

De méme sur J.

Q14. Soit y une solution de (2) sur I. Posons g = y o exp. g est définie et deux fois dérivable sur R par
composition de exp, définie et deux fois dérivable sur R et a valeurs dans I, et de y, définie et deux
fois dérivable sur I. On a alors :

¢ =1y oexpxexp et g’ = y" oexp x exp? +y o exp X exp. Pour tout z € R :

g"(x) + (a = 1)g'(z) + bg(x) = y"(exp(x)) x exp®(z) + a y'(exp(x)) x exp(x) + b y(exp(z))
= 9/ (t)t> + ay' (t)t + by(t) en posant exp(z) =t € I

= 0 car y est solution de (2).

Ainsi g = y o exp est solution sur R de I’équation (3).

Q15. Posons h = goln. h est définie et deux fois dérivable sur I par composition de In, définie et deux
fois dérivable sur I et a valeurs dans R, et de g, définie et deux fois dérivable sur R.

Pour tout z € I :
1 1

W (@) = g/ (In(e) et 1" (x) = o' (In(x) — 5/ (In(a))

Dot : 220" (z) + axh/(x) 4+ bh(x) = ¢"(t) + (a — 1)g'(t) + bg(t) en posant In(z) =t

= 0 car g est solution de (3).



Ainsi g o In est solution sur I de I’équation (2).

Q16. » On commence par résoudre (3), équation différentielle linéaire homogene d’ordre 2 a coefficients
constants. On associe 1’équation caractéristique r2 + 2r + 1 = 0 de racine double —1.

Ainsi les solutions de (3) sur R sont u : t — (At + p)e™" ot A\, u € R.
D’apres Q15. et Q16., les solutions de (2) sur I sont

y:xr— u(ln(z)) = (Nn(z) + u)i , A e R

» De méme, avec 2i et —2i comme racines de I'équation caractéristique, les solutions de (3) sont
u:t— Acos(2t) + psin(2t) ou A\, p € R.
Les solutions de (2) sur I sont

y:x— u(ln(z)) = Acos(2In(z)) + psin(2In(z)) , A\, u € R.
Q17. On procede de méme qu’en Q14. avec :
h' = —y' o (—exp) x exp et R =4y o (—exp) x exp® —exp x¥y o (—exp).
On obtient alors h” — 4h = 0 car y est solution de (2).

Donc si y est solution de (2) sur J, alors h = y o (—exp) est solution de (3) sur R.

Q18. L’équation caractéristique associée a (3) est r?2 — 4 =0, de racines 2 et —2.

Les solutions de (3) sont donc u : t — Ae* + pe™ 2.
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D’apres Q14. et Q15., les solutions de (2) sur I sont donc y; : & — Az? + pot

De méme que Q15., on prouve que si g est solution de (3) sur R, alors z — g(In(—=x)) est

solution de (2) sur I. Ainsi, les solutions de (2) sur J sont vy : & — az® + ot

On procede alors & un recollement des solutions : on cherche les conditions sur A, u, o, 8 pour

lim z) = lim T
S y;]( ) o, y,[( )
avoir hm7 yy(z) = lim y7(%) avec des limites finies.
z—0 z—0t
lim y(z) = lim yj(z)
z—0— z—0t

Pour des limites finies pour y; et v, on obtient 8 = 0 et = 0. Dans ce cas, ces limites sont

alors égales a 0.

Ainsi yr : 2 —> A2 et J:x»—>a:v2.
Yy Y

Dot yj(z) = 2\x et y;(z) = 20z et lim 3;(x) = lim y;(x) = 0.
z—0~ z—0t+
Enfin, yf(z) = 2\ et ¢j(z) = 2a et lim yj(z) = lim yf(z) <= A =a.
x—0~ z—0t

Les fonctions y définies sur I U J par z — Az ott A € R et y(0) = 0, /(0) = 0 et 3(0) = 2,
qui consiste a prendre

y: x — Az? définie sur R,
est alors de classe C? sur R et on vérifie qu'elle est bien solution de (2) sur R.
Partie III - Une équation de Bessel

Q19. Le rayon de convergence de la série entiere E anx” est

R=sup{r >0/ (anr"), est bornée} et R € R4 U {+oo}.



Q20.

Q21.

Q22.

Q23.

Jo est de classe C™ sur | — R, R[ et se dérive terme a terme.

+o0o
Ve el - R,R[, Jo(x)= chxk

k=0
+o0

Jo(z) = chkxk_l
k=1
+o0

Jo () = k(k — 1)cpa
k=2

+o00 +o00 ~+o00
22T () + xJf(x) + 22 Jo(x) = Z k(k — 1)cpz® + Z kepz® + Z Chox”
k=2 k=1 k=2

+oo
2 Jg () + zJy(x) + 27 Jo(z) = 1z + Z(kQCk + cp2)a”.
k=2

Par unicité du développement en série entieére (sous réserve que R > 0), comme Jy est solution de
(4), on en déduit :

c1=0 e VE=2, c,=——5.
Comme, de plus, ¢y = 1 par hypothese, on montre facilement par récurrence que

VkeN =0 _ D
e N, cCop+1 = et C2k—m-

On s’intéresse a la série entiere Z copz®®. Une série entidre converge toujours pour a = 0.
Prenons x dans R* et notons, pour k € N,  uy(z) = copa®*. Ainsi, up(x) # 0 et

upg1(z)| 22

= 1 — | = 1.
u (@) k—1>rfoo'4(k—l—1)2 0<

lim
k—+o00

Donc le critere de d’Alembert permet de conclure que cette série entiere converge pour tout réel x
et que son rayon de convergence est donc R = +o0.

On a donc prouvé que la somme de cette série entiere, appelée Jy dans ’énoncé, est une solution
de (4) sur R.

Jo est continue sur R, donc continue sur le segment [0, 7] et donc bornée sur ce segment.

Jo n’est pas la fonction nulle (par unicité du développement en série entiere), donc si (Jp, f) est
une famille liée de Pespace vectoriel des fonctions de classe C? sur 10,7, il existe a € R tel que
f =aJy et f est ainsi bornée sur |0, 7] et donc au voisinage de 0.

Par produit de Cauchy, appliqué aux séries entieres (absolument convergentes dans l'intervalle
ouvert de convergence) :

“+00 “+00 o0 n
Vi €] — Ra, Ra[N] — Rg, Rgl, <Z ozkxk) (Z ,kak> => <Z akﬁn_k> z".
k=0 k=0

k=0

Or, cette somme vaut 1 par hypothese donc, par unicité d’écriture d’une série entiere, on a :
n
Oéoﬁ() =1 et Vne N*, Zakﬂn_k =0.
k=0
Comme ag = 1 par hypothese, on obtient :

Bo=1 et VneN', > apByp=0.
k=0
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Q24. Puisque 0 < r < Ry, par définition du rayon de convergence, la suite (ayr") i est bornée, donc :

M
IM >0 /VEkeN, |aprf|<M e lok| < —-
T

M (M + 1)k

Q25. Notons, pour k € N*, Hj, P'assertion : < [fg| < ———F—— >.
r
— Initialisation : a relation (5) fournit agf1 + a1y = 0. Donc 81 = —a; et |f1] = |aa] < —. Cela
r
montre Hj.
— Hérédité : Prenons k dans N* tel que Hy, ..., H soient vraies et montrons que Hj ;1 est vraie.

|Brt1] = Zak“ —j Bj| (car ag =1)

k
Z |akr1-5] 185
7=0
k .
M M M(M +1)i-1 . , ,
< ) + Z s X ( ;i ) (d’apres Q.24 et 'hyp. de récurrence)
j=1
M M? |[(M4+1)F -1
<
rk+1 rk+1 (M + 1) —
M(M + 1)k
< - 7
rk+1

Ainsi, Hy,1 est vraie et I'on a établi le résultat souhaité par récurrence.

Q26. On déduit de la question précédente :

VeeR, VkeN, Bk <

M |(M+1)z|*
M+1

r

M+ 1)z

Les théoremes de comparaison sur les séries permettent d’affirmer que si < 1, la série

(M +1)x

géométrique de terme général (
r

> converge et donc que la série Z kak est absolument

r
M+1

convergente. La série E Brz® est donc absolument convergente pourvu que lz| < ; son

> 0.

r
d Srifie d Rg >

rayon de convergence vérifie donc Rg M1

Q27. On note : Yz €]0,7[, y(x) = A(z)Jo(x)avec X\ fonction de classe C? sur 10, 7[. Ainsi, y est aussi de
classe C? sur ]0,7[. Comme Jy est solution de (4), on obtient

Va €)0,7[: 2%y (x) + 2y (x) + 2%y (z) = 2° N () Jo(x) + 222N (2) J)(x) + 2N (z) Jo(z).
De plus , en notant V. €]0,r[, h(z) = zX (z)JZ(z), on a
Va €)0,r[: B(z) = N(2)Jg(x) + 2\ (2) J3(x) + a2 N (z) 2Jo(z) J§(z)

) (2 0) + /() + ().

e Il est donc clair que si y est solution de (4) sur |0, ] alors h est de dérivée nulle sur |0, r|.

e Réciproquement, supposons que h'(z) = 0 pour tout z €]0,r[. Notons g : z — z2y"(x) +
zy' () + 2y(x).
Supposons qu'’il existe zg €]0,7[ tel que g(zg) # 0. Par continuité, g serait non nulle sur un
sous-intervalle de ]0, [ centré en xo et Jy serait donc nulle sur cet intervalle. Comme Jy est



Q2s.

Q29.

Q30.

1
solution de u” +=u'+wu = 0 sur |0, r[, Jy serait identiquement nulle sur |0, r[ d’apres le théoréme
T

de Cauchy-Lipschitz comme unique solution de (4) s’annulant ainsi que sa dérivée en z¢. Elle
serait donc nulle en 0 par continuité. Cela contredirait la définition de Jy (cop = 1). Donc g est
nulle et y est solution de (4) sur |0, r|.

Par théoreme sur le produit de Cauchy des séries entieres, Jg est somme d’une série entiere de
rayon +oo. De plus, JZ(0) = 1.

Cherchons une fonction A et un réel r > 0 tels que Va €]0,7[: zJZ(z)N (z) = 1.

La question Q27. nous assurera alors que (z — A(z)Jy(x)) est solution de (4) sur |0, r[.

La question Q28. permet d’appliquer le paragraphe sur 'inverse d’une série entiere non nulle en 0
aJg.

Il existe donc une série entiere Z Brz® de rayon r > 0 et telle que By = 1 qui vérifie

+o0 oo
Yz €]0,r[: Jg(x) (Z kak> =1, .. ng(x) (i + Z,Bka:k_1> =1.
k=0 k=1

En prenant
+00 xk
v 0,7: AMx) =1 —
> €0.rl: Me) =Infe) + 3 A

on obtient bien
Va €)0,r[: zJi(x)N(z) =1

Notons

400 xk
Va €], r[: n(x) = (Zﬁkk> x Jo(x).
k=1

Par produit de Cauchy, n est la somme d’une série entiere de rayon R, > 0 et, d’apres la question

Q27.,
(J1:2 — n(z) +In(z) Jo(z)) est solution de (4) sur ]0, Ry|.

Puisque Jy(0) = 1, la fonction J; = 1+ Jy x In n’est pas bornée sur |0, R,[. D’apres la question
Q22., la famille (Jy, J;) est donc libre dans 1’espace vectoriel des fonctions de classe C? sur |0, R,
et 'on a une base de solutions de (4). On en déduit que 'ensemble des solutions de (4) sur |0, B[

est
{aJo +b(n+ Jo x In) / (a,b) € R?} = Vect(Jo,n + Jo x In).



