
Corrigé du DS5, version soft

EXERCICE 1 - d’après CCP PC 2019

Etude d’une équation différentielle

Partie I - Solution particulière de l’équation homogène

Q1. f est la somme d’une série entière de rayon r > 0 donc f est C∞ sur ]− r; r[
et on peut dériver terme à terme à tout ordre ; en particulier, elle est de classe
C2 sur ]− r; r[ et, pour x ∈]− r; r[,

f ′(x) =
+∞∑
n=1

nanx
n−1 =

+∞∑
n=0

(n+ 1)an+1x
n

f ′′(x) =
+∞∑
n=2

n(n− 1)anx
n−2 =

+∞∑
n=0

(n+ 2)(n+ 1)an+2x
n

Par propriété des séries entières, ces deux séries sont aussi de rayon r.

Q2. On a donc, pour x ∈]− r; r[, x2f ′′(x) =
+∞∑
n=1

n(n− 1)anx
n

x3f ′′(x) =
+∞∑
n=1

(n− 1)(n− 2)an−1x
n

xf ′(x) =
+∞∑
n=1

nanx
n

x2f ′(x) =
+∞∑
n=1

(n− 1)an−1x
n

f(x) = a0 +
+∞∑
n=1

anx
n.

Par conséquent,

x2(1− x)f ′′(x)− x(1 + x)f ′(x) + f(x) = a0 +
+∞∑
n=1

(
n(n− 1)an

−(n− 1)(n− 2)an−1 − nan − (n− 1)an−1 + an
)
xn

= a0 +
+∞∑
n=1

(
(n2 − 2n+ 1)an − (n2 − 3n+ 2 + n− 1)an−1

)
xn

= a0 +
+∞∑
n=1

(n− 1)2(an − an−1)x
n
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Pour n = 1, (n− 1)2 = 0 donc, si on pose, pour n ≥ 2, bn = (n− 1)2, on a

x2(1− x)f ′′(x)− x(1 + x)f ′(x) + f(x) = a0 +
+∞∑
n=2

bn(an − an−1)x
n

Q3. La somme d’une série entière est nulle sur ] − r; r[ (r > 0) si et seulement
si tous ses coefficients sont nuls (unicité d’un développement en série entière)
donc, d’après la question précédente, f est solution de (H) si et seulement si
a0 = 0 et, pour tout n ≥ 2, bn(an − an−1) = 0. Mais, pour n ≥ 2, bn ̸= 0 donc
an − an−1 = 0.
En passant de n à n+ 1 on a finalement : f est solution de (H) sur ]− r; r[ si
et seulement si a0 = 0 et, pour tout n ∈ N∗, an+1 = an.

Q4. On suppose que f est solution de (H) sur ]− r; r[. Alors, a0 = 1 et, pour tout
n ≥ 1, an = a1.
La série géométrique

∑
xn est de rayon 1 donc r ≥ 1 (r = +∞ si a1 = 0) et,

en posant λ = a1, pour x ∈]− 1; 1[, f(x) = λ
+∞∑
n=1

xn.

Il s’agit de la somme d’une série géométrique de raison x ∈]−1; 1[ et de premier
terme x donc, pour x ∈]− 1; 1[,

f(x) =
λx

1− x

Q5. Soit λ ∈ R et g la fonction x 7→ λx

1− x
.

Alors, d’après le calcul précédent, pour x ∈] − 1; 1[, g(x) =
+∞∑
n=1

λxn : g est la

somme d’une série entière de rayon 1 > 0. De plus, pour x ∈] − 1; 1[, g(x) =
+∞∑
n=0

anx
n avec a0 = 0 et, pour n ≥ 1, an = λ ; par conséquent, pour tout n ≥ 1,

an+1 = an.
On peut donc utiliser la question Q2 (qui est une équivalence) pour conclure
que g est une solution de (H) sur ]− 1; 1[, développable en série entière.

Partie II - Solutions de (E) sur ]0; 1[ ou ]1; +∞[

Q6. Par produit de fonctions de classe C2 sur I, z est de classe C2 sur I et, pour
x ∈ I,

z′(x) =

(
1

x
− 1

)
y′(x)− 1

x2
y(x) et z′′(x) =

(
1

x
− 1

)
y′′(x)− 2

x2
y′(x) +

2

x3
y(x).

Q7. Pour x ∈ I,

xz′′(x) + z′(x) = (1− x)y′′(x)− 2

x
y′(x) +

2

x2
y(x) + (1/x− 1)y′(x)− 1

x2
y(x)

=
1

x2
(
x2(1− x)y′′(x)− x(1 + x)y′(x) + y(x)

)
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donc y est solution de (E) sur I si et seulement si z est solution sur I de
l’équation

xz′′ + z′ = 2x

Q8. z est solution de (E1) sur I si et seulement si z′ est solution sur (I) de
l’équation
(E2) : xZ

′ + Z = 2x.
L’équation homogène associée à (E2) est (H2) : xZ ′ + Z = 0, équivalente à

Z ′ +
1

x
Z = 0 (x ne s’annule pas sur I). a : x 7→ 1

x
est continue sur I ; une

primitive de a est x 7→ ln(x) donc les solutions de (H2) sont les fonctions de la

forme x 7→ λe− ln(x), λ ∈ R, c’est-à-dire x 7→ λ

x
.

x 7→ x est solution particulière de (E2) donc les solutions de (E2) sont les fonc-

tions de la forme x 7→ λ

x
+ x.

Finalement, z est solution de (E1) sur I si et seulement si il existe λ ∈ R tel

que, pour tout x ∈ I, z′(x) =
λ

x
+ x.

Q9. Ceci équivaut à l’existence de µ ∈ R tel que, pour tout x ∈ I, z(x) = λ ln(x)+
x2

2
+ µ.

De plus, pour x ∈ I,
1

x
− 1 =

1− x

x
̸= 0 donc y est solution de (E) sur

I si et seulement si il existe (λ, µ) ∈ R2 tel que, pour tout x ∈ I, y(x) =
x

1− x

(
λ ln(x) +

x2

2
+ µ

)
.

Les solutions de (E) sur I sont donc les fonctions de la forme

x 7→ λx

1− x
ln(x) +

µx

1− x
+

x3

2(1− x)

lorsque (λ, µ) décrit R2.

Q10. Soit f une solution de (E) sur ]0; +∞[. Alors f est solution sur ]0; 1[ et
sur ]1; +∞[. D’après la question précédente il existe des constantes réelles
λ1, µ1, λ2, µ2 telles que

∀x ∈]0; 1[, f(x) = λ1x ln(x)

1− x
+

2µ1x+ x3

2(1− x)

∀x ∈]1; +∞[, f(x) =
λ2x ln(x)

1− x
+

2µ2x+ x3

2(1− x)

f doit être continue en 1 donc doit avoir une limite finie en 1. lim
x→1

ln(x)

1− x
= −1

(limite usuelle) donc on doit avoir 2µ1 + 1 = 2µ2 + 1 = 0 : µ1 = µ2 = −1

2
.
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Pour x ∈]0; 1[, f(x) = λ1x ln(x)

1− x
+

−x+ x3

2(1− x)
=
λ1x ln(x)

1− x
− x(1 + x)

2
Pour obtenir le nombre dérivée de f à gauche à 1, on cherche le DL1(1) de f :

Pour h au voisinage de 0, ln(1 + h) = h− 1

2
h2 + o(h2) donc

f(1 + h) = −λ1
(1 + h)(h− h2/2 + o(h2)

h
− (1 + h)(2 + h)

2

et, après simplification,

f(1 + h) = −λ1 − 1−
(
−λ1

2
− 3

2

)
h+ o(h)

On en déduit que f ′g(1) = −λ1
2

− 3

2
.

De même, f ′d(1) = −λ2
2

− 3

2
f est dérivable donc λ1 = λ2.

Par conséquent, pour x ∈ R+∗, f(x) =
λ1x ln(x)

1− x
− x(1 + x)

2
et f(1) = −λ1− 1.

Pour la réciproque, il suffit que montrer qu’une telle fonction est de classe C2

sur R+∗.

f(1 + h) = −λ1(1 + h)
ln(1 + h)

h
− (1 + h)(2 + h)

2
.

h 7→ ln(1 + h)

h
est prolongeable en une fonction développable en série entière

de rayon 1 donc f est de classe C∞.
On peut alors conclure que les solutions de (E) sur R+∗ sont les fonctions f

définies par f(1) = −λ1 −
1

2
et, pour x ̸= 1, f(x) =

λ1x ln(x)

1− x
− x(1 + x)

2
avec

λ1 réel quelconque.

Exercice 2 - d’après CCINP MP 2024

Q11. On sait déjà que la famille ( 1
n2 )n∈N∗ est sommable (puisque que la série

∑
1
n2

est convergente et à termes positifs). On note S sa somme.

On a donc, par sommation par paquets
∑+∞

n=1
1
n2 =

∑+∞
n=0

1
(2n+1)2 +

∑+∞
n=1

1
(2n)2 .

D’où S = π2

8 + 1
4S soit

S =
π2

6

Partie I

Q12. • x 7→ sinn+1 x est dérivable par composée de fonctions dérivables et sa dérivée
est x 7→ (n+ 1) cosx sinn x.
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• On fait une intégration par parties dans Wn+2 :

Wn+2 =
∫ π

2

0 sinn+1 t sin tdt

= [sinn+1(t)(− cos t)]
π
2
0 + (n+ 1)

∫ π
2

0 cos t sinn t cos tdt

= (n+ 1)
∫ π

2

0 sinn t(1− sin2 t)dt
= (n+ 1)(Wn −Wn+2)

Finalement,

Wn+2 =
n+ 1

n+ 2
Wn

• On peut le vérifier en raisonnant par récurrence sur n.

• On a W1 =
∫ π

2

0 sin tdt = 1 d’une part et d’autre part, 200!2

1! = 1. La formule
est validée au rang 0.

• Soit n ∈ N. Supposons qu’on a W2n+1 =
22n(n!)2

(2n+1)! . Alors

W2n+3 = 2n+2
2n+3W2n+1

= 2n+2)
2n+3

22n(n!)2

(2n+1)!

= (2n+2)222n(n!)2

(2n+3)!

= 22n+2((n+1)!)2

(2n+3)!

ce qui valide la formule au rang n+ 1.

Q13. • Soit x ∈]− 1, 1[. D’après le cours

1√
1−x2

=
∑+∞

n=0

− 1
2(−

1
2−1)...((− 1

2−n+1)
n! (−1)nx2n

=
∑+∞

n=0

1
2(

1
2+1)...( 1

2+n−1)
n! x2n

=
∑+∞

n=0
1.3.....(2n−1)

2nn! x2n

=
∑+∞

n=0
(2n)!

2nn!2.4....(2n)x
2n

=
∑+∞

n=0
(2n)!

22n(n!)2x
2n

• Par primitivation, on obtient que Arcsin est développable en série entière sur
]− 1, 1[ et, comme Arcsin(0) = 0, on a pour x ∈]− 1, 1[,

Arcsin(x) =
+∞∑
n=0

(2n)!

22n(n!)2(2n+ 1)
x2n+1

Q14. Soit x ∈ [0, π2 [. On a x = Arcsin(sinx). Comme sinx ∈ [0, 1[, on a d’après la
question précédente,

x =
+∞∑
n=0

(2n)!

22n(n!)2(2n+ 1)
(sinx)2n+1

Q15. Nous allons appliquer le théorème d’intégration terme à terme, pour cela, on
note fn : x ∈ [0, π2 [7→

(2n)!
22n(n!)2(2n+1)(sinx)

2n+1 et f : x ∈ [0, π2 [7→ x.

• D’après la question 11,
∑
fn converge simplement vers f .
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• Les fn et f sont continues par morceaux.

• Les fn sont intégrables sur [0,
π
2 [ et

∫ π
2

0 |fn(t)|dt =
∫ π

2

0 fn(t)dt =
(2n)!

22n(n!)2(2n+1)W2n+1 =
1

(2n+1)2 .

•
∑∫ π

2

0 |fn| converge (car
∑

1
(2n+1)2 converge)

On a donc
∫ π

2

0

[∑+∞
n=0

(2n)!
22n(n!)2(2n+1)(sinx)

2n+1
]
dx =

∑+∞
n=0

∫ π
2

0
(2n)!

22n(n!)2(2n+1)(sinx)
2n+1 dx.

Q16. Le calcul précédent donne
∫ π

2

0 xdx =
∑+∞

n=0
1

(2n+1)2 ie

+∞∑
n=0

1

(2n+ 1)2
=
π2

8

D’après la question 8,
+∞∑
n=1

1

n2
=
π2

6

Partie II

Q17. • Pour x ∈]− 1, 1[, on a x2 ∈ [0, 1[ donc 1
x2−1 = −

∑+∞
n=0 x

2n.

• On applique le théorème d’intégration terme à terme. Pour cela, pour n ∈ N,
on pose fn : x ∈]0, 1[7→ −x2n lnx et f : x ∈]0, 1[7→ lnx

x2−1 .

•
∑
fn converge simplement vers f d’après le début de la question

• les fn et f sont continues par morceaux

• les fn sont intégrables : car, pour n ≥ 1, sont continues et ont une limite
finie en 0 et en 1 et f0 = − ln est intégrable sur ]0, 1[ car continue, a une

limite finie en 1 et, en 0, lnx = o
(

1√
x

)
avec x > 0 7→ 1√

x
intégrable en

0. De plus,
∫ 1

0 |fn(t)|dt = −
∫ 1

0 fn(t)dt. Notons-la In. Pour la calculer, on
effectue une intégration par parties en posant u(t) = t2n+1 et v(t) = ln t.
Comme uv a une limite finie en 0 et en 1 (elles valent 0),on peut réaliser
une intégration par parties et on a

∫ 1

0 −t2n ln tdt =
∫ 1

0
t2n

2n+1dt =
1

(2n+1)2 .

•
∑∫ 1

0 |fn(t)|dt converge car
∑

1
(2n+1)2 converge

On conclut que f est intégrable sur ]0, 1[ et qu’on a∫ 1

0

f(t)dt =
+∞∑
n=0

∫ 1

0

−t2n ln tdt =
+∞∑
n=0

1

(2n+ 1)2

Q18. Notons g : (x, t) ∈ R+ × R∗
+ 7→ Arctan(xt)

1+t2 . On applique le théorème de conti-
nuité des intégrales à paramètre :

• Pour t > 0, x ∈ R+ 7→ g(x, t) est continue

• Pour x ∈ R+, t > 0 7→ g(x, t) est continue (par morceaux)
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• Domination : soit (x, t) ∈ R+ × R∗
+, on a |g(x, t)| ≤ π

2
1

1+t2 et ϕ : t > 0 7→
1

1+t2 est continue et intégrable sur R∗
+.

On conclut que f est continue sur R+.

Q19 . On applique le théorème de dérivation des intégrales à paramètre :

• Pour t > 0, x ∈]0, 1] 7→ g(x, t) est de classe C1 et pour (x, t) ∈]0, 1]× R∗
+,

∂g
∂x(x, t) =

t
1+(xt)2

1
1+t2 .

• Pour x ∈]0, 1], t > 0 7→ Arctan(xt)
1+t2 est continue (par morceaux) et intégrable

(fait dans la question précédente)

• Pour x ∈]0, 1], t > 0 7→ t
1+(xt)2

1
1+t2 est continue (par morceaux)

• Domination : soit ]a, 1] ⊂]0, 1], (x, t) ∈]a, 1]×R∗
+, |

∂g
∂x(x, t)| ≤

t
1+a2t2

1
1+t2 et

ψ : t > 0 7→ t
1+a2t2

1
1+t2 est continue et intégrable sur R∗

+ : en effet, ψ a une
limite finie en 0 et en +∞, ψ(t) ∼ 1

a2t3 qui est intégrable en +∞.

On conclut que f est de classe C1 sur ]0, 1] et qu’on a pour x ∈]0, 1],

f ′(x) =

∫ +∞

0

t

(1 + t2x2)(1 + t2)
dt

Q20. • t
1+t2 −

x2t
1+x2t2 =

(1−x2)t
(1+t2)(1+x2t2)

• Soit x ∈]0, 1[.

f ′(x) = 1
1−x2

∫ +∞
0

t
1+t2 −

x2t
1+t2x2dt

= 1
1−x2

[
1
2 ln(1 + t2)− 1

2 ln(1 + t2x2)
]+∞
0

= 1
2(1−x2)

[
ln 1+t2

1+t2x2

]+∞

0

= 1
2(1−x2) ln

(
1
x2

)
= 1

x2−1 lnx

Q21. • Calculons f(1). On a f(1) =
∫ +∞
0

Arctan(t)
1+t2 dt. On réalise une intégration

par parties avec u = v = Arctan : le produit uv, a une limite finie en 0 et
en +∞. L’intégration par parties donne∫ +∞

0

Arctan(t)

1 + t2
dt = [Arctan2(t)]+∞

0 −
∫ +∞

0

Arctan(t)

1 + t2
dt

et ainsi, f(1) = π2

8 .

• Comme f est de classe C1 sur ]0, 1], on a
∫ 1

ε f
′(t)dt = f(1) − f(ε). En

faisant tendre ε vers 0, et en utilisant la continuité de f en 0, on obtient∫ 1

0
ln t
t2−1dt = f(1) − f(0) = f(1). Ainsi, f(1) =

∑+∞
n=0

1
(2n+1)2 = π2

8 . On

retrouve à nouveau qu’on a
∑+∞

n=1
1
n2 =

π2

6 .

Exercice 3

File d’attente
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Partie I - Temps d’arrivée du n-ième client

Q22. Par définition, T1 correspond au rang du premier succès dans une suite illimitée
d’épreuves de Bernoulli indépendantes et de même paramètre p.
Donc T1 suit une loi géométrique de paramètre p, ce qui correspond au résultat
attendu.
De manière plus élémentaire, soit k ∈ N∗ fixé. Alors :

{T1 = k} =

(
n−1⋂
i=1

{Xi = 0}

)
∩ {Xk = 1} .

Donc, par indépendance des variables aléatoires (Xn)n≥1,

P(T1 = k) =

(
n−1∏
i=1

P(Xi = 0)

)
×P(Xk = 1) = (1− p)k−1 p .

Finalement, ∀k ∈ N∗, P(T1 = k) = (1− p)k−1 p .

Q23. L’événement A est réalisé si et seulement si aucun des événements {T1 = k}
n’est réalisé :

A =
⋂+∞

k=1 {T1 = k} = Ω \
(⊔+∞

k=0{T1 = k}
)
.

Or, par σ-additivité de P,

P

(
+∞⊔
k=0

{T1 = k}

)
=

+∞∑
k=1

P (T1 = k) =
+∞∑
k=1

(1− p)k−1 p =
p

1− (1− p)
= 1.

Donc P(A) = 0 et

presque sûrement, un nouveau client doit arriver dans la file.

Q24. Pour tout k ∈ N∗, on note ak = P(T1 = k) = p (1− p)k−1 > 0. Alors :

∀k ≥ 1,
ak+1

ak
= 1− p −→

k→+∞
1− p .

Donc, par le critère de d’Alembert appliqué aux séries entières, R = 1
1−p .

Soit t ∈ ]−R,R [ . Alors

GT1
(t) =

+∞∑
k=1

p(1− p)k−1tk = pt
+∞∑
k=1

((1− p)t)k−1 =
pt

1− (1− p)t
.

Finalement, ∀t ∈ ]−R,R [ , GT1
(t) = pt

1+(p−1)t .

Q25. Par indépendance des variables (Tk),

∀t ∈ ]−R,R [ , GDn
(t) =

∏n
k=1GTk

(t) = Gn
T1
(t) =

(
pt

1+(p−1)t

)n
.

Q26. Le développement en série entière de (1+x)α au voisinage de 0 est donné par :
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∀x ∈]− 1, 1 [ , (1 + x)α = 1 +
∑+∞

k=1
α(α−1)...(α+1−k)

k! xk .

Soit n ∈ N∗, et soit t ∈ ]−R,R [ . Alors, |(p− 1)t| < 1 donc, par ce qui précède,

GDn
(t) = pntn(1 + (p− 1)t)−n = pntn

+∞∑
k=0

ck(p− 1)ktk =
+∞∑
k=0

ck p
n(p− 1)ktn+k

où ck =
−n(−n−1)...(−n+1−k)

k! = (−1)k
(
k+n−1

k

)
.

Finalement,

∀t ∈ ]−R,R [ , GDn
(t) =

∑+∞
k=0

(
k+n−1

k

)
pn(1− p)ktn+k =

∑+∞
j=n

(
j−1
j−n

)
pn(1− p)j−ntj.

Alors, par unicité du développement en série entière, sachant que PDn
(t) =∑+∞

k=1P(Dn = k)tk,

∀(k, n) ∈ (N∗)2, P(Dn = k) =
(
k−1
k−n

)
pn(1− p)k−n

avec, par convention,
(
k−1
k−n

)
= 0 si k < n.

Partie II - Étude du comportement de la file

II.1 - Une suite récurrente

Q27. La fonction f est strictement croissante sur R. De plus, f(0) = exp(−a) > 0 et
f(1) = exp(0) = 1. On en déduit que :

∀t ∈]0, 1[, f(t) ∈ ]f(0), f(1)[ ⊂ ]0, 1[ .

Autrement dit, l’intervalle ]0, 1[ est stable par f .

On montre par récurrence sur n ∈ N∗ la proposition

(Hn) : (zn ∈ ]0, 1[ et zn+1 − zn est du même signe que z2 − z1) .

(a) Initialisation : Par hypothèse, z1 ∈ ]0, 1[ , donc (H1) est vérifiée.

(b) Hérédité : Soit n ∈ N∗ tel que (Hn) est vraie.
Alors zn ∈ ]0, 1[ donc par stabilité de ]0, 1[ par f , zn+1 = f(zn) ∈ ]0, 1[ .
De plus, par croissance de f , zn+2 − zn+1 = f(zn+1) − f(zn) a même signe
que zn+1 − zn,
donc zn+2 − zn+1 a même signe que z2 − z1. Finalement, (Hn+1) est vérifiée.

(c) Conclusion : ∀n ∈ N∗, zn ∈ ]0, 1[ et zn+1 − zn est du même signe que z2 − z1.

Q28. La suite (zn) est une suite réelle monotone et bornée.
Donc, par le théorème de la limite monotone, (zn) converge. On note ℓ =
limn→+∞ zn.
Par ce qui précède,

∀n ∈ N∗, 0 < zn < 1

9



donc, par passage à la limite, 0 ≤ ℓ ≤ 1. De plus, par définition de (zn),

∀n ∈ N∗, zn+1 = f(zn) .

Alors, par passage à la limite et par continuité de f , on obtient :

ℓ = lim
n→+∞

zn+1 = lim
n→+∞

f(zn) = f(ℓ) .

Finalement, la suite (zn) converge, et sa limite ℓ ∈ [0, 1] est un point fixe de f .

Q29. Soit x ∈ ]0, 1]. Alors, par croissance de exp,

0 ≤ ψ(x) ⇐⇒ a(x− 1) ≤ ln(x) ⇐⇒ exp(a(x− 1)) ≤ exp(ln(x) ⇐⇒ f(x) ≤ x.

De même, par bijectivité de exp : R → R∗
+,

ψ(x) = 0 ⇐⇒ a(x− 1) = ln(x) ⇐⇒ exp(a(x− 1)) = exp(ln(x) ⇐⇒ f(x) = x.

Q30. La fonction ψ est dérivable sur ]0, 1] et ∀x ∈ ]0, 1[ , ψ′(x) = 1
x − a > 1− a ≥ 0.

On en déduit que ψ est strictement croissante sur ]0, 1] et ∀x ∈ ]0, 1] ,
ψ(x) ≤ ψ(1) = 0.

De plus, comme ψ est strictement croissante sur ]0, 1], ψ ne s’annule qu’en 1.

Alors, par la question Q9, ∀x ∈ ]0, 1] , f(x) = x ⇐⇒ ψ(x) = 0 ⇐⇒ x = 1 .

Autrement dit, 1 est l’unique point fixe de f dans ]0, 1], et donc dans [0, 1] car
f(0) ̸= 0.

Alors, par la question Q8., limn→+∞ zn = 1.

Q31. Sachant que a > 1, les variations de ψ sont données par :

x 0 1/a 1

ψ′(x) + 0 −

ψ(x)
−∞

ψ(1/a)
0

Alors ψ(1/a) > 0 et limx→0 ψ(x) < 0 donc, par le théorème des valeurs in-
termédiaires, il existe α ∈ ]0, 1/a[ tel que ψ(α) = 0. La stricte croissance de ψ
sur ]0, 1/a[ assure l’unicité de α.
Finalement, il existe α ∈ ]0, 1] tel que ∀x ∈ ]0, 1], ψ(x) ≥ 0 ⇐⇒ x ≥ α.

La question Q9. entraine alors que

∀x ∈ ]0, 1], f(x) = x ⇐⇒ ψ(x) = 0 ⇐⇒ x = α ou x = 1.

10



1er cas : z1 ∈ ]0, α]. Par croissance de f ,

∀x ∈ ]0, α], f(x) ≤ f(α) = α.

On en déduit que ]0, α] est stable par f et ∀n ≥ 1, zn ≤ α.
Par passage à la limite, on en déduit que ℓ ≤ α. Or α est l’unique point fixe de
f sur [0, α].
Donc, par la question Q8, limn→+∞ zn = α.

2ème cas : z1 ∈ ]α, 1[. De même, par stricte croissance de f , ∀x ∈ ]α, 1[ , f(x) >
f(α) = α.
Donc ]α, 1[ est stable par f et ∀n ≥ 1, α < zn < 1.
De plus ψ ≥ 0 sur ]α, 1] donc, par la question Q9, ∀x ∈ ]α, 1], f(x) ≤ x.
Cela entraine que la suite (zn) est décroissante, donc ℓ ≤ z1 < 1 et, comme
précédemment, ℓ = α.

Finalement, dans les deux cas, limn→+∞ zn = α.

II.2 - Groupes de clients

Q32. L’événement Z se réalise s’il existe un entier n ≥ 1 tel que Vn = 0, c’est-à-dire
si un groupe est passé au guichet sans qu’aucun nouveau client n’arrive entre-
temps. Donc l’événement Z correspond à la situation où
à un moment donné, le guichet s’est libéré sans aucun nouveau client à servir.

Q33. La variable aléatoire Nn correspond au nombre de succès lors de la succession
de n expériences de Bernoulli indépendantes et de même paramètre p. Donc
Nn suit une loi binomiale B(n, p) :

∀k ∈ [[0, n]], P(Nn = k) =
(
n
k

)
pk(1− p)n−k .

Q34. Soit (k, n) ∈ N2. Par définition, V1 est le nombre de clients arrivés dans la file
d’attente dans l’intervalle de temps [[1, S]]. Donc, avec les notations précédentes,
V1 = NS. On en déduit :

P(V1 = k|S = n) = P(Nn = k) =
(
n
k

)
pk(1− p)n−k.

Soit k ∈ N. Alors, par la formule des probabilités totales, en utilisant que
({S = n})n∈N forme un système complet d’événements,

P(V1 = k) =
+∞∑
n=0

P(V1 = k|S = n)P(S = n) =
+∞∑
n=0

(
n

k

)
pk(1− p)n−k e−λλ

n

n!

= pke−λ
+∞∑
n=k

(
n

k

)
(1− p)n−kλ

n

n!
=

(λp)k

k!
e−λ

+∞∑
n=k

(1− p)n−k λn−k

(n− k)!
.

Finalement, après simplification,

∀k ∈ N, P(V1 = k) =
(λp)k

k!
e−λ e(1−p)λ = e−λp (λp)

k

k!
,
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donc V1 suit une loi de Poisson de paramètre λp.

Q35. Soit n ∈ N∗. Alors {Vn = 0} ⊂ {Vn+1 = 0}. Donc, par continuité croissante de
P,

lim
n→+∞

P({Vn = 0}) = P

(
+∞⋃
n=1

{Vn = 0}

)
= P (Z) .

Cela signifie que (zn) converge et limn→+∞ zn = P (Z).

Q36. Soit j ∈ N.
1er cas : j = 0. Alors, pour tout n ≥ 1, P (Vn+1 = 0|V1 = 0) = 1 = P(Vn = 0)0.

2ème cas : j ≥ 1. Supposons que V1 = j. Alors le premier groupe est composé
des clients de 1 à j.
Par analogie avec les groupes de clients définis dans l’énoncé, pour tout client
d’indice 1 ≤ i ≤ j,
on note G

(i)
1 l’ensemble des clients du deuxième groupe qui sont arrivés pendant

que i est servi.
Puis, récursivement, pour tout k ≥ 2, on note G

(i)
k l’ensemble des clients du

(k + 1)-ième groupe arrivés pendant que les clients de G
(i)
k−1 sont servis.

Alors, par construction, le (k+1)-ième groupe est l’union disjointe des (G
(i)
k )1≤i≤j ,

donc

Vk+1 =

j∑
i=1

V
(i)
k ,

où V
(i)
k représente le nombre de clients de G

(i)
k .

Or, pour tout i, la variable V
(i)
k suit un processus identique à celui de la va-

riable Vk en ne considérant que les temps de passage des clients appartenant
aux groupes issus du client i.
On en déduit que V

(i)
k suit la même loi que Vk et, faute de preuve rigoureuse,

il est intuitivement raisonnable de considérer que les variables
(
V

(i)
k

)
1≤i≤j

sont

indépendantes.

Soit n ∈ N∗. Alors, par positivité des variables V
(i)
n ,

{Vn+1 = 0} =
n⋂

i=1

{V (i)
n = 0}

donc, par indépendance,

P (Vn+1 = 0|V1 = j) =

j∏
i=1

P
(
V (i)
n = 0

)
= P(Vn = 0)j.

Finalement, ∀j ∈ N,∀n ∈ N∗, P (Vn+1 = 0|V1 = j) = P(Vn = 0)j.
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Q37. Soit n ∈ N∗. Alors, par la formule des probabilités totales, en utilisant que
({V1 = j})j∈N forme un système complet d’événements,

zn+1 =
+∞∑
j=0

P (Vn+1 = 0|V1 = j) P (V1 = j) =
+∞∑
j=0

P(Vn = 0)je−λp (λp)
j

j!

= e−λp
+∞∑
j=0

(λpzn)
j

j!
.

Finalement, ∀n ∈ N∗, zn+1 = e−λp eλpzn = exp(λp(zn − 1)) .

Q38. D’après la question précédente, la suite (zn) vérifie toutes les hypothèses de la
partie II.1. avec a = λp.

Donc, d’après la question Q10, si λp ≤ 1, alors limn→+∞ zn = 1.

De plus, d’après la questionQ11, si λp > 1, alors (zn) converge vers un réel α < 1.

FIN
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