Corrigé du DS5, version soft

EXERCICE 1 - d’apres CCP PC 2019

Etude d’une équation différentielle

Partie I - Solution particuliere de I’équation homogene

Q1. f est la somme d’une série entiere de rayon r > 0 donc f est C* sur | — r; 7|
et on peut dériver terme a terme a tout ordre; en particulier, elle est de classe
C? sur | — ryr| et, pour z €] —r; 7|,

+00 +00
f(z) = Znanaz”_l = Z(n + 1D)ap 2"
n=1 n=0
+00 +o0
() = Dapz" ™ = 2)(n +1 "
T) = Zn(n — Dapx" " = Z(n +2)(n + 1)ay4om
n=2 n=0

Par propriété des séries entieres, ces deux séries sont aussi de rayon r.

+00
Q2. On a donc, pour z €] — r;7[, 22f"(x) = Zn(n — Dayx"
n=1

+00
2 f(x) = Z(n —1)(n—2)a,_12"
oo
vf'(z) = Z na,z"
n=1
+00

2 f'(x) = Z(n — Da, 12"

n=1
+00
f(x) =ag+ E anx".
n=1
Par conséquent,

22 (1 —a)f"(x) —z(1+2)f(2) + f(x) = ag+ Z (n(n —1)a,

n=1

—(n—1)(n — 2)ap_1 — na, — (n — Va,_1 + a,)z"
+00
— aO+Z((n2 —2n+1)a, — (n* —=3n+2+n—1)a,) 2"

n=1

+00
= agp+ Z(n — D*(ay — ap_1)z"
n=1
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Pour n =1, (n — 1)? = 0 donc, si on pose, pourn>2 b, =(n—1)% on a

(1 - ) f"(x) — o1 +2)f'(z) + —ao+§jb — )2

Q3. La somme d’une série entiere est nulle sur | — 7; 7“[ (T > () si et seulement
si tous ses coefficients sont nuls (unicité d’un développement en série entiere)
donc, d’apres la question précédente, f est solution de (H) si et seulement si
ag = 0 et, pour tout n > 2, b,(a, — a,—1) = 0. Mais, pour n > 2, b, # 0 donc
an — ap—1 = 0.

En passant de n a n+ 1 on a finalement : f est solution de (H) sur | — r;r| si
et seulement si ag = 0 et, pour tout n € N*, a,,,1 = a,.

Q4. On suppose que f est solution de (H) sur | —r;r[. Alors, ag = 1 et, pour tout
n>1,a, =a.
La série géométrique Z z" est de rayon 1 donc r > 1 (r = +oo si a; = 0) et

en posant A = aq, pour x €] — 1; 1], f(x )\Zx

Il s’agit de la somme d’une série géométrique de raison x €] —1; 1] et de premier
terme x donc, pour x €] — 1;1],

AT
T) =
fla) = T2
AT
Q5. Soit A € R et g la fonction x +— ]

—x
Alors, d’apres le calcul précédent, pour z €] — 1;1], Z Ar" 1 g est la
somme d’une série entiere de rayon 1 > 0. De plus, pour x G] —1L; 1], g(z) =
+00
Z a,x" avec ag = 0 et, pour n > 1, a,, = \; par conséquent, pour tout n > 1,
n=0
Ap+1 = Q.
On peut donc utiliser la question Q2 (qui est une équivalence) pour conclure
que g est une solution de (H) sur | — 1; 1[, développable en série entiere.

Partie II - Solutions de (E) sur |0;1[ ou |1; +o0|

Q6. Par produit de fonctions de classe C? sur I, z est de classe C2 sur I et, pour
x €,

#) = (5 -1) V0 = Javte) 0 @) = (5 1) @) = S0+ o)

Q7. Pour x € 1,
(o) + () = (L= a)y () — 29/ () + (o) + (12— 1)~ —gy(e)

— — (21— 2y () — 2(1 + 2)y/ (z) + y(x))



donc y est solution de (E) sur I si et seulement si z est solution sur [ de
I’équation
v+ 2 =2
Q8. z est solution de (FEp) sur [ si et seulement si 2’ est solution sur (I) de
I’équation
(Eo) : xZ' + Z = 2u.
L’équation homogene associée a (Es) est (Hy) : xZ' + Z = 0, équivalente a
Z'"+ =7 = 0 (z ne s'annule pas sur ). a : x — — est continue sur [ ; une
T T
primitive de a est  — In(x) donc les solutions de (H») sont les fonctions de la
forme x — Ae” @)\ € R, ¢’est-a-dire z — .
T
x +— x est solution particuliere de (FEs) donc les solutions de (FEs) sont les fonc-

tions de la forme z — — + 2.
T

Finalement, z est solution de (FEj) sur [ si et seulement si il existe A € R tel

A
que, pour tout x € I, /() = — + x.
x

Q9. Ceci équivaut a I'existence de p € R tel que, pour tout = € I, z(z) = An(x)+
2

~ 4
o TH

1 1—
De plus, pour x € I, — — 1 = ‘
x

# 0 donc y est solution de (£) sur

x
I si et seulement si il existe (A, ) € R? tel que, pour tout z € I, y(z) =
2
x x
— (A1 — .
_— ( n(z) + 5 -|-,LL>
Les solutions de (£) sur I sont donc les fonctions de la forme

A 3
‘ In(z) + R

—>
v -z 2(1—a)

1—2x

lorsque (A, p) déerit R2.

Q10. Soit f une solution de (F) sur ]|0;+oc[. Alors f est solution sur ]0; 1] et
sur |1;+oo[. D’apres la question précédente il existe des constantes réelles
A1, 11, A2, 12 telles que

C hizln(z) 2z + a?
- 2(1 — )

Vo €]0; 1], f(x)

Mozln(z)  2uox + 23
Va €]1;+o0[, f(z) = 1_;(5 : 2(1 — )

1
f doit étre continue en 1 donc doit avoir une limite finie en 1. lin% 111(:13) =—1
r—11—2x
1
(limite usuelle) donc on doit avoir 2y +1 =2us +1=0: g = pg = —5



Az In(x) L +2°  Mzln(z) (1 +x)
-2 21—-2) 1-x 2
Pour obtenir le nombre dérivée de f a gauche a 1, on cherche le DL(1) de f :

1
Pour h au voisinage de 0, In(1 + h) = h — §h2 + o(h?) donc

Pour z €]0; 1], f(z) =

Fl+h) = _)\1(1 + h)(h _}?2/2+0(h2) - (1+h)2(2+h)

et, apres simplification,

A 3
fA+h)==-X\—1- (—?1—§> h+ o(h)
On en déduit que f,(1) = —— — .

Ay 3
De méme, f/(1) = =2

f est dérivable donc A\; = As.
_ Ardn(z)  z(1+ o)

Par conséquent, pour z € R™, f(x) = . 5 et f(1)=—X\—1.

Pour la réciproque, il suffit que montrer quune telle fonction est de classe C2

sur RT*,
FLh) = (1 plER) (L n)@+h)

h 2
In(1+ A
M est prolongeable en une fonction développable en série entiere

h —

de rayon 1 donc f est de classe C*™.

On peut alors conclure que les solutions de (E) sur R™ sont les fonctions f
1 Azl 1
définies par f(1) = —A; — 5 et, pour z # 1, f(x) = 11$ n(z) _ ol ;—x) avec
—x

A1 réel quelconque.

Exercice 2 - d’apres CCINP MP 2024

Q11. On sait déja que la famille (J),en- est sommable (puisque que la série > &
est convergente et a termes positifs). On note S sa somme.
On a donc, par sommation par paquets Z;{i‘i # = Z:i% m + Zﬁ? ﬁ
N 2 .
D’ou § =% + %S soit
7T

S=_
6

Partie 1

Q12. e z — sin" ™! x est dérivable par composée de fonctions dérivables et sa dérivée
est o +— (n + 1) coszsin” x.



e On fait une intégration par parties dans W, 5 :

Wi = fog sin™*! ¢t sin tdt
= [sin"™(#)(—cost)]g + (n+ 1) fog costsin" t cos tdt
(n+1) [ sin" ¢(1 — sin® ¢)dt
= (n+1)(Wy = W)

Finalement,

n+1
W,
n-+4 2
e On peut le vérifier en raisonnant par récurrence sur n.

e Ona W = fog sintdt = 1 d’une part et d’autre part, % = 1. La formule

est validée au rang 0.

e Soit n € N. Supposons qu’on a Wy, 1 = % Alors

. 2n+2
W2n+3 - 2n+3W2n+1

2n+2) 227 (n!)?
2n+3 (2n+1)!
(2n+2)222"(n!)?
2n+3)!
22n+2((p+1)1)2
(2n+3)!

ce qui valide la formule au rang n + 1.

Q13. e Soit x €] — 1, 1[. D’apres le cours

Yoo (2n)! n
P e e
_ Z+oo ﬂ 2n

n=0 22 (pNz L

e Par primitivation, on obtient que Arcsin est développable en série entiere sur
] — 1,1 et, comme Arcsin(0) = 0, on a pour z €] — 1, 1],

+00
: (271)' 2n+1
Arcsin(z) = g (2 (2n © 1)56
n=0

Q14. Soit # € [0,5[. On a # = Arcsin(sinz). Comme sinz € [0,1[, on a d’apres la
question précédente,

. — (2%)' . 2n+1
o HZO ()2 (2n + 1) o)

Q15. Nous allons appliquer le théoreme d’intégration terme a terme, pour cela, on
T 2n)! . T
note f, : x € [0, §[— W(smx)%ﬂ et frxel0, 5[ 2.

e D’apres la question 11, Y f,, converge simplement vers f.
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e Les f, et f sont continues par morceaux.

e Les f, sont intégrables sur [0, 2] et f02 | fu(t)|dt = fo fu(t) %Wgn 41 =
1

(2n+1)%"
o Z f()% ‘fn| converge (Car Z (2 _1'_1)2 COIlV'el"ge)
2n . n 00 E 2 | . n
Onadone Jf | 1% gty (sin )2 | do = 1% ¥ ffiamy (sin )1 d.

Q16. Le calcul précédent donne fog rdr = Z:ﬁ% ﬁ ie

D’apres la question 8,

+00 1 7_[_2
25
—~n 6
Partie 11
Q17. e Pour z €] — 1,1, on a 22 € [0, 1] donc = = — > 2"
e On applique le théoreme d’intégration terme a terme. Pour cela, pour n € N,
on pose f,, : x €]0,1[— —z*Inz et f:x €]0, 1[— BL.

e > f, converge simplement vers f d’apres le début de la question
e les f,, et f sont continues par morceaux

e les f, sont intégrables : car, pour n > 1, sont continues et ont une limite

finie en 0 et en 1 et fy = — In est intégrable sur |0, 1[ car continue, a une

limite finie en 1 et, en 0, Inz = o (%) avec r > 0 — \/LE intégrable en

0. De plus, fo | fn(t)|dt = fo fn(t)dt. Notons-la I,,. Pour la calculer, on
effectue une intégration par parties en posant u(t) = t*"™! et v(t) = Int.
Comme wv a une limite finie en 0 et en 1 (elles valent 0),on peut réaliser

une intégration par parties et on a fol —t* Intdt = 01 27’fildt (2n_1H)2.

o> fo | fu(t)|dt converge car Z )2 converge

On conclut que f est intégrable sur |0, 1[ et qu’on a

1 400 1 , +00 1
f(t)dt = /—t”lntdt: —
[ roa=3 | > G

Q18. Notons ¢ : (z,t) € Rt x RY Mclti—nﬂxt On applique le théoréme de conti-

nuité des intégrales a parametre :

e Pour t >0, z € R" — g(x,t) est continue

e Pour x € R, t > 0+ g(x,t) est continue (par morceaux)
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et p:t >0~

e Domination : soit (z,t) € R* x R%, on a |g(z,t)] < I

1+¢2
1%2 est continue et intégrable sur R? .

On conclut que f est continue sur R™.
Q19 . On applique le théoreme de dérivation des intégrales a parametre :
e Pour t > 0, x €]0,1] — g(x,t) est de classe C' et pour (z,t) €]0,1] x R*,

— t 1
ge(,t) = T+ (@) 142"
Arctan(xt)

e Pour z €]0,1},t > 0 — —— 5
(fait dans la question précédente)

est continue (par morceaux) et intégrable

e Pour z €]0,1], ¢ > 0 — 5 ( e i est continue (par morceaux)

e Domination : SOlt ]a 1] C]0,1], (z,t) €la, 1] x R, ( t) < mre et
Yit>0 5 2 77 +t2 est continue et intégrable sur ]R . en effet, 1 a une
limite finie en 0 et en 400, Y(t) ~ =5 qui est mtegrable en +00.

On conclut que f est de classe C! sur ]0, 1] et qu’'on a pour x €]0, 1],

, B +00 ¢
fz) _/0 Arenare ™

2t (1—22)t
Q20. 1+t2 o 1fz2t2 T (1+)(1+2282)
e Soit = €]0, 1].
_ 1 +too ¢t x2t
fl@) = =2y e tesd

s (1 + %) — SIn(1 + £222)]
I B N B roo
2(1- xz) 14222 0
1
2(1- x2) In (32)

x2_1 Inx

Q21. e Calculons f(1). On a f(1) = [ Arff;(t)dt. On réalise une intégration
par parties avec u = v = Arctan : le produit uv, a une limite finie en 0 et

en +o0o. L’intégration par parties donne

+00 +00
/ Arctan(t)dt _ [Arctan®(t))5™ — / Arctan(t)dt
0 1+ 2 0 1+ 2

2

et ainsi, f(1) = %

e Comme f est de classe C! sur ]0,1], on a f; f't)dt = f(1) — f(e). En
faisant tendre € vers 0, et en utilisant la continuité de f en 0, on obtient

[y mtdt = f(1) — £(0) = f(1). Ainsi, f(1) = > G = =, On

2
retrouve & nouveau quon a y % & = I,

Exercice 3

File d’attente
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Partie I - Temps d’arrivée du n-ieme client

Q22. Par définition, T} correspond au rang du premier succes dans une suite illimitée
d’épreuves de Bernoulli indépendantes et de méme parametre p.
Donc T} suit une loi géométrique de parametre p, ce qui correspond au résultat
attendu.
De maniere plus élémentaire, soit k& € N* fixé. Alors :

{Ti =k} = (H{XZ- = 0}) N {Xp=1}.

Donc, par indépendance des variables aléatoires (X,,),>1,

P(Th=k)= (h P(X; = 0)) xP(Xp=1)=1-pF'p.

Finalement, |Vk € N*, P(Ty = k) = (1 —p)F1p.

Q23. L’événement A est réalisé si et seulement si aucun des événements {77 = k}
n’est réalisé :

A= =k =\ (USH{ T = k).
Or, par o-additivité de P,

P <|_|{T1 k}) =S PMi=k=> (1-p"p= ﬁ - 1.

Donc |P(A) =0| et

presque surement, un nouveau client doit arriver dans la file.

Q24. Pour tout k£ € N*, on note a;, = P(T1 = k) = p (1 — p)* ! > 0. Alors :

Vk > 1, %:l—p — 1—p.
ag k—+o00
Donc, par le critere de d’Alembert appliqué aux séries entieres, | R = 1%}9 :
Soit t €] — R, R[. Alors
400 +o00 pt
Gr,(t) = 1—p) itk =pt 1—p)t)t = :
7, (t) ;p( p) p ;(( p)t) TR

Finalement, |Vt €| — R, R[, Gp,(t) = 1+(£t—1)t'

Q25. Par indépendance des variables (7}),

vt €] = R R[, G, () = T, Grt) = G, (1) = ()

Q26. Le développement en série entiere de (1 + z)* au voisinage de 0 est donné par :




VJTE]—l,l[, (1_|_$) _1_|_Z+ooaa 1). a—i—l k)xk.

Soit n € N* et soit t €] — R, R[. Alors, |(p—1)t| < 1 donc, par ce qui précede,

Gp,(t) =p"t"(L+ (p—)t) " =p"t" Y cx(p— 1)*t" = Z crp"(p — 1)k th
Finalement,

Vi€l - R R[, Gp,(t) = 205 (") e (1 = p)ktrth = 3000 (7)) p" (1 — p) e,

Alors, par unicité du développement en série entiere, sachant que Pp (1) =
+00 - k
o1 P(D,, = k)t¥,

V(k,n) € (N*)2, P(D, =k) = (k n) (1 —p)kn

avec, par convention, (;:_1) =0sik<n.
Partie II - Etude du comportement de la file

I1.1 - Une suite récurrente

Q27. La fonction f est strictement croissante sur R. De plus, f(0) = exp(—a) > 0 et
f(1) =exp(0) = 1. On en déduit que :
vt €]0,1[, f(t) € [f(0), F()[ < ]0,1[.
Autrement dit, I'intervalle ]0, 1] est stable par f.

On montre par récurrence sur n € N* la proposition
(Hp): (2, €]0,1] et z,41 — 2, est du méme signe que zy — 2z1) .

(a) Initialisation : Par hypothese, z; € |0, 1], donc (H;) est vérifiée.
(b) Hérédité : Soit n € N* tel que (H,,) est vraie,
Alors z, € ]0,1] donc par stabilité de ]0, 1] par f, z,4+1 = f(z,) € ]0, 1].
De plus, par croissance de f, z,4 0 — Zpy1 = f(2zne1) — f(2n) @ méme signe

que Zn+1 — Zn;,
donc 2,19 — 2,41 a méme signe que z — 2. Finalement, (H,,1) est vérifiée.

(¢) Conclusion : |Vn € N*, z, €]0,1[ et 2,11 — 2, est du méme signe que zo — 21.

Q28. La suite (z,) est une suite réelle monotone et bornée.
Donc, par le théoreme de la limite monotone, (z,) converge. On note ¢ =
lim,, o0 2p-
Par ce qui précede,
VneN, 0<z, <1

9



Q29.

Q30.

Q31.

donc, par passage a la limite, 0 < ¢ < 1. De plus, par définition de (z,),
Vn € N, 2,01 = f(zn) .
Alors, par passage a la limite et par continuité de f, on obtient :

(= lim z,11= lim f(z,)=f().

n—-+00 n—-+o00

Finalement, |la suite (z,) converge, et sa limite ¢ € [0, 1] est un point fixe de f.

Soit x € ]0, 1]. Alors, par croissance de exp,

0<Y(x) < a(lr—1) <In(zx) <= exp(a(r —1)) < exp(ln(z) <= f(x) < =x.

De méme, par bijectivité de exp : R — R%,

Y(zr) =0 <= a(x —1)=In(z) < exp(a(zx —1)) =exp(In(z) <= f(z) ==x.

(
La fonction 1 est dérivable sur ]0,1] et Vo € ]0,1[, ¢/(z) =1 —a>1—a > 0.

On en déduit que v est strictement croissante sur |0, 1] et Vo € ]0,1],
P(z) < (1) =0.

De plus, comme 1) est strictement croissante sur ]0, 1], [¢) ne s’annule qu’en 1.

Alors, par la question Q9, Vax € 10,1], f(z) =2 < () =0 < z=1.

Autrement dit, 1 est 'unique point fixe de f dans ]0, 1], et donc dans [0, 1] car
£(0) # 0.

Alors, par la question Q8., |lim,, 2, = 1.

Sachant que a > 1, les variations de v sont données par :

x 0 1/a 1

V() + -
Y(l/a

o ||y

Alors ¢¥(1/a) > 0 et lim, ,g¢(z) < 0 donc, par le théoreme des valeurs in-
termédiaires, il existe o € 0, 1/a] tel que ¥ () = 0. La stricte croissance de
sur ]0,1/a[ assure l'unicité de a.

Finalement, |il existe o € ]0, 1] tel que Vo € ]0,1], ¥(z) >0 < x> a.

La question Q9. entraine alors que

Ve €]0,1], f(z)=2 <= Y(r)=0 <= z=aouxz=1.

10



11.2
Q32.

Q33.

Q34.

ler cas : z; € ]0, a. Par croissance de f,
vz €0,a], f(z) < fla) =a.

On en déduit que ]0, o] est stable par f et Vn > 1, z, < a.

Par passage a la limite, on en déduit que ¢ < a. Or « est 'unique point fixe de
f sur [0, a].

Donc, par la question Q8, lim,, ., 2, = a.

2éme cas : 21 € |a, 1[. De méme, par stricte croissance de f,Vr € |a, 1, f(z) >
fla) = a.

Donc Ja, 1] est stable par fet Vn > 1, a < z, < 1.

De plus ¢ > 0 sur Ja, 1] donc, par la question Q9, Vz € |, 1], f(z) < x.

Cela entraine que la suite (z,) est décroissante, donc ¢ < z; < 1 et, comme
précédemment, ¢ = a.

Finalement, dans les deux cas, [lim,, . 2, = a.

- Groupes de clients

L’événement Z se réalise s’il existe un entier n > 1 tel que V,, = 0, c’est-a-dire
si un groupe est passé au guichet sans qu’aucun nouveau client n’arrive entre-
temps. Donc I'événement Z correspond a la situation ou

a un moment donné, le guichet s’est libéré sans aucun nouveau client a servir.

La variable aléatoire N,, correspond au nombre de succes lors de la succession
de n expériences de Bernoulli indépendantes et de méme parametre p. Donc
N,, suit une loi binomiale B(n,p) :

vk € [0.n], P(N, = k) = ()p(1 —p)"*.

Soit (k,n) € N2, Par définition, V; est le nombre de clients arrivés dans la file
d’attente dans I'intervalle de temps [1, S]. Donc, avec les notations précédentes,
Vi = Ng. On en déduit :

P(Vi = k|S =n) = P(N, = k) = (})p*(1 — p)"*.

Soit £ € N. Alors, par la formule des probabilités totales, en utilisant que
({S = n}),y forme un systeme complet d’événements,

P(Vi=k) =Y P(Vi=klS=n)P(S=n)=>»_ (Z)pk(l _p)nh A

n=0 n=0 n'
+00 n k +00 n—=k
E -\ n S (Ap)" .\ S
— 1— 2 = 1— SEAN—
pe ; (k;)( P Ko© ;( P

Finalement, apres simplification,

F k
VkeN, P(Vi =k) = (AIS) X (DA _ (Alg) |

11



donc | V; suit une loi de Poisson de parametre Ap.

Q35. Soit n € N*. Alors {V,, = 0} C {V,,41 = 0}. Donc, par continuité croissante de
P,

nl_lf_{loop({vn = O}) =P <Do{vn = 0}> - P(Z) :

Cela signifie que | (z,) converge et lim,, ., 2, = P(Z).
Q36. Soit j € N.
ler cas : j = 0. Alors, pour tout n > 1, P (V41 = 0|Vi = 0) = 1 = P(V,, = 0)".

2éme cas : j > 1. Supposons que Vi = j. Alors le premier groupe est composé
des clients de 1 a j.

Par analogie avec les groupes de clients définis dans 1’énoncé, pour tout client
d’indice 1 <7 < 7,

on note Ggl) I’ensemble des clients du deuxieme groupe qui sont arrivés pendant
que ¢ est servi. .

Puis, récursivement, pour tout &£ > 2, on note G,@ I’ensemble des clients du

(k + 1)-ieme groupe arrivés pendant que les clients de G,(Ql sont servis.
Alors, par construction, le (k+1)-iéme groupe est I'union disjointe des (Gg))lgig Js
donc

J
Vk+1 = Z ‘/k(l) )
1=1

ou Vk(i) représente le nombre de clients de G,(f).

Or, pour tout ¢, la variable Vk(i) suit un processus identique a celui de la va-
riable Vj. en ne considérant que les temps de passage des clients appartenant
aux groupes issus du client <.

On en déduit que Vk(l) suit la méme loi que V} et, faute de preuve rigoureuse,

il est intuitivement raisonnable de considérer que les variables (Vﬁ) sont
1<i<y

indépendantes.

Soit n € N*. Alors, par positivité des variables Vn(i) ,

(Viers =0} = (V9 = 0}

donc, par indépendance,
J
P (Vi = OVi = j) = [[P (v@ — o) — P(V, = 0.

1=1

Finalement, |Vj € N,Vn € N*, P (V.1 = 0|V} = j) = P(V,, = 0)’.
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Q37. Soit n € N*. Alors, par la formule des probabilités totales, en utilisant que
({Vi = j}) ey forme un systeme complet d’événements,

+00 400 ;

. . - (Ap)!

o = 3P (o = 0V =) PV =) = (1, = opfe » 2L
J=0 j=0 '

!

400 ;
= 6_/\17 Z (Apzn)J

J=0

Finalement, |Vn € N*, 2,1 = e " e = exp(A\p(z, — 1))

Q38. D’apres la question précédente, la suite (z,) vérifie toutes les hypotheses de la
partie II.1. avec a = Ap.

Donc, d’apres la question Q10, [si Ap < 1, alors lim,, s+ 2, = 1.

De plus, d’apres la question Q11,|si Ap > 1, alors (z,) converge vers un réel o < 1.

FIN
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