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MATHEMATIQUES

DS N°5
———————————————————–

Sujet Soft

Durée : 4 heures
——————————–

N.B. : Le candidat attachera la plus grande importance à la clarté, à la précision et la concision
de la rédaction. Si un candidat est amené à repérer ce qui lui semble être une erreur d’énoncé, il
le signalera sur sa copie et devra poursuivre sa composition en expliquant les raisons des initiatives
qu’il a été amené à prendre.

Les calculatrices sont interdites

Le sujet est composé de trois exercices indépendants.

Lorsqu’un raisonnement utilise le résultat d’une question précédente, il est demandé au
candidat d’indiquer précisément le numéro de la question utilisée.
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EXERCICE 1
Étude d’une équation différentielle

On considère l’équation différentielle suivante :

x2(1 − x)y′′ − x(1 + x)y′ + y = 2x3. (E)

Partie I - Solution particulière de l’équation homogène

Dans cette première partie, on souhaite déterminer les solutions développables en série entière de
l’équation différentielle homogène associée à (E) :

x2(1 − x)y′′ − x(1 + x)y′ + y = 0. (H)

On fixe une suite de nombres réels (an)n∈N telle que la série entière
∑

anx
n ait un rayon de conver-

gence r > 0. On définit la fonction f : ] − r, r[→ R par :

∀x ∈] − r, r[, f(x) =
+∞∑
n=0

anx
n.

Q1. Justifier que la fonction f est de classe C2 et que les fonctions f ′ et f ′′ sont développables en
série entière. Exprimer avec la suite (an)n∈N les développements en série entière respectifs des
fonctions f ′ et f ′′ en précisant leur rayon de convergence.

Q2. Montrer qu’il existe une suite (bn)n≥2 de nombres réels non nuls telle que pour tout x ∈]−r, r[,
on a :

x2(1 − x)f ′′(x) − x(1 + x)f ′(x) + f(x) = a0 +
+∞∑
n=2

bn(an − an−1)xn.

Q3. Montrer que f est solution de (H) sur l’intervalle ]−r, r[ si et seulement si a0 = 0 et an+1 = an

pour tout n ∈ N∗.

Q4. En déduire que si f est solution de (H) sur ] − r, r[, alors r ≥ 1 et il existe λ ∈ R tel que :

∀x ∈] − 1, 1[, f(x) = λx

1 − x
.

Q5. Réciproquement, montrer que si λ ∈ R, alors la fonction

g : ] − 1, 1[→ R, x 7→ λx

1 − x

est une solution de (H) sur ] − 1, 1[ développable en série entière.
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Partie II - Solution de (E) sur ]0, 1[ ou ]1,+∞[

On désigne par I l’un des intervalles ]0, 1[ ou ]1,+∞[. Soit y : I → R une fonction de classe C2. On
définit la fonction z : I → R par la relation :

∀x ∈ I, z(x) =
(1
x

− 1
)
y(x).

Q6. Justifier que z est de classe C2 sur l’intervalle I, puis exprimer z′ et z′′ avec y, y′ et y′′.

Q7. Montrer que y est solution de (E) sur I si et seulement si z est solution sur I de l’équation
différentielle :

xz′′ + z′ = 2x. (E1)

Q8. Montrer que si z est solution de (E1) sur I, alors il existe λ ∈ R tel que :

∀x ∈ I, z′(x) = λ

x
+ x.

Q9. En déduire l’ensemble des solutions de l’équation différentielle (E) sur I.

Partie III - Solution de (E) sur ]0,+∞[

Q10. Déterminer l’ensemble des solutions de l’équation différentielle (E) sur ]0,+∞[.

EXERCICE 2
II existe de nombreuses méthodes pour déterminer la valeur de ∑+∞

n=1
1

n2 .
Ce problème propose deux méthodes différentes de recherche de la valeur de cette somme.

Q11. Question préliminaire
Si on admet que ∑+∞

n=0
1

(2n+1)2 = π2

8 , que vaut la somme ∑+∞
n=1

1
n2 ?

Partie I

Q12. On note, pour tout entier naturel n,Wn =
∫ π

2
0 (sin x)n dx.

Calculer la dérivée de la fonction x 7→ (sin x)n+1, puis déterminer une relation entre Wn+2 et
Wn.
En déduire, pour tout entier naturel n, que W2n+1 = 22n(n!)2

(2n+1)! .

Q13. Déterminer sur l’intervalle ] − 1, 1[ le développement en série entière des fonctions x 7→ 1√
1−x2

et x 7→ Arcsin x.
Q14. En déduire que pour tout x ∈

[
0, π

2

[
, x = ∑+∞

n=0
(2n)!

22n(n!)2(2n+1)(sin x)2n+1.

Q15. Justifier que
∫ π

2
0

[∑+∞
n=0

(2n)!
22n(n!)2(2n+1)(sin x)2n+1

]
dx = ∑+∞

n=0
∫ π

2
0

(2n)!
22n(n!)2(2n+1)(sin x)2n+1 dx.

Q16. En déduire la valeur de ∑+∞
n=1

1
n2 .
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Partie II

Q17. Donner sur l’intervalle ] − 1, 1[ le développement en série entière de la fonction x 7→ 1
x2−1 , puis

calculer l’intégrale
∫ 1

0
ln x

x2−1 dx.
On donnera le résultat sous la forme de la somme d’une série numérique.

Q18. On pose pour x ∈ [0,+∞[, f(x) =
∫+∞

0
Arctan(xt)

1+t2 dt.
Démontrer que la fonction f est bien définie et est continue sur l’intervalle [0,+∞[.

Q19. Établir que cette fonction f est de classe C1 sur l’intervalle ]0, 1] et exprimer f ′(x) comme une
intégrale.

Q20. Réduire au même dénominateur l’expression t
1+t2 − x2t

1+t2x2 et en déduire que pour tout x ∈
]0, 1[, f ′(x) = ln x

x2−1 .
Q21. Calculer f(1), puis en déduire la valeur de ∑+∞

n=1
1

n2 .
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EXERCICE 3
Files d’attente

Toutes les variables aléatoires sont définies sur un même espace probabilisé (Ω,A,P).

On s’intéresse à une file d’attente à un guichet. À l’instant 0, la file contient un client. On suppose
qu’à chaque instant k ∈ N∗ il peut arriver au plus un nouveau client dans la file.

Pour tout k ∈ N∗, on note Xk la variable aléatoire qui vaut 1 si un nouveau client arrive à l’instant
k et 0 sinon.

On suppose que (Xk)k∈N∗ est une suite de variables aléatoires indépendantes et identiquement dis-
tribuées selon une loi de Bernoulli de paramètre p ∈ ]0, 1[.

On repère chaque client par un indice qui donne son ordre d’arrivée dans la file : par définition, le
client initialement présent a pour indice n = 0, le premier nouvellement arrivé a pour indice n = 1,
etc.

On rappelle que la fonction génératrice d’une variable aléatoire X à valeurs dans N est la fonction
notée GX définie par :

GX(t) =
+∞∑
j=0

P(X = j)tj.

Partie I - Temps d’arrivée du n-ième client

Q22. On note T1 la variable aléatoire égale au temps écoulé entre le temps 0 et le temps où arrive le
client d’indice 1.
Justifier que pour tout k ∈ N∗, P(T1 = k) = (1 − p)k−1 p .

Q23. On note A l’événement « aucun nouveau client n’arrive dans la file ».
Exprimer A en fonction des événements {T1 = k}, k ∈ N∗. En déduire P(A). Interpréter.

Q24. Déterminer le rayon de convergence R de la fonction génératrice de T1, puis calculer sa somme.
Q25. Pour tout n ∈ N∗, on note Tn la variable aléatoire égale au temps écoulé entre l’arrivée du client

d’indice n−1 et le client d’indice n. On admet que les variables aléatoires Tn sont indépendantes
de même loi.
On note Dn = T1 + · · · +Tn la variable aléatoire qui donne le temps d’arrivée du client d’indice
n.
Calculer la fonction génératrice GDn de Dn.

Q26. Rappeler le développement en série entière de (1 + x)α au voisinage de x = 0 pour α ∈ R.
En déduire le développement en série entière de GDn en 0 et montrer que pour tout (k, n) ∈
(N∗)2 :

P(Dn = k) =


0 si k < n,(

k − 1
k − n

)
pn(1 − p)k−n sinon.
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Partie II - Étude du comportement de la file

II.1 - Une suite récurrente

Soient a > 0 et f :
{

R → R
x 7→ exp(a(x− 1)) .

On s’intéresse au comportement de la suite (zn)n∈N∗ définie par :

z1 ∈ ]0, 1[ et ∀n ∈ N∗, zn+1 = f(zn).

Q27. Montrer que pour tout n ∈ N∗, zn ∈ ]0, 1[ et zn+1 − zn est du même signe que z2 − z1.
Q28. En déduire que (zn)n∈N∗ converge vers une limite ℓ ∈ [0, 1] vérifiant f(ℓ) = ℓ.

Q29. Soit la fonction ψ :
{

]0, 1] → R
x 7→ ln(x) − a(x− 1) .

Montrer que pour tout x > 0, on a : 0 ≤ ψ(x) ⇔ f(x) ≤ x et ψ(x) = 0 ⇔ f(x) = x.
Q30. On suppose dans cette question que a ≤ 1.

Étudier le signe de ψ et montrer qu’elle ne s’annule qu’en x = 1.
En déduire que zn −→

n→+∞
1.

Q31. On suppose dans cette question que a > 1.
Étudier le signe de ψ et montrer que l’équation f(x) = x d’inconnue x ∈ [0, 1] admet exactement
deux solutions α et 1 avec α ∈ ]0, 1[ qu’on ne cherchera pas à expliciter.
En distinguant les cas z1 ∈ ]0, α] et z1 ∈ ]α, 1[, montrer que zn −→

n→+∞
α.

II.2 - Groupes de clients

On suppose que les clients de la file d’attente sont servis suivant leur ordre d’arrivée par un unique
serveur et que la durée de service de chaque client est une variable aléatoire qui suit la loi de Poisson
de paramètre λ > 0 : pour tout k ∈ N, le service a une durée k avec la probabilité e−λ λk

k! .

On rappelle qu’initialement, la file contient un unique client : le client d’indice 0.

On note S la variable aléatoire égale à la durée de service de ce client : comme à chaque instant il
arrive au plus un nouveau client, il peut arriver entre 0 et S nouveaux clients pendant le temps de
passage au guichet du client d’indice 0. Les variables S et (Xn)n∈N∗ sont supposées indépendantes.

On appelle « clients du premier groupe » les clients qui sont arrivés pendant que le client d’indice 0
était servi.
Par récurrence, pour tout k ≥ 2, on définit les clients du k-ième groupe comme étant les clients qui
sont arrivés pendant que ceux du (k − 1)-ième groupe étaient servis.

Pour tout k ≥ 1, on note Vk la variable aléatoire égale au nombre de clients du k-ième groupe.

Par construction, pour n ∈ N∗, si le n-ième groupe est vide, alors l’événement {Vk = 0} est réalisé
pour tout k ≥ n.
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Q32. Quelle est la situation concrète décrite par l’événement Z =
⋃

n∈N∗
{Vn = 0} ?

Q33. Quelle est la loi du nombre Nn de clients qui sont arrivés dans la file d’attente dans l’intervalle
de temps [[1, n]] ?

Q34. Pour tout (n, k) ∈ N2, calculer P(V1 = k|S = n).
En déduire que V1 suit une loi de Poisson dont on précisera le paramètre.

Q35. On note zn = P(Vn = 0). Montrer que (zn)n∈N∗ converge et que P(Z) = lim
n→+∞

zn.

Q36. Justifier que pour tout (j, n) ∈ N2, P (Vn+1 = 0|V1 = j) = P(Vn = 0)j. On distinguera le cas
j = 0.

Q37. Montrer que pour tout n ∈ N∗, zn+1 = exp(λp(zn − 1)).
Q38. Déterminer, suivant les valeurs de λp, la limite de la suite (zn)n∈N∗ . Interpréter.

FIN
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