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Autour des fonctions hypergéométriques

I Suites et séries hypergéométriques

Q 1. Si (un)n∈N est géométrique, alors il existe K ∈ R∗ (K non nul pour avoir P ̸= 0 conformément à
l'énoncé ?) tel que pour tout n ∈ N, un+1 = Kun, ou encore : P (n)un = Q(n)un+1 avec P = K et
Q = 1 (polynômes constants, non nuls puisque K ̸= 0). Ainsi,

toute suite géométrique est hypergéométrique.

Q 2. Soit n ∈ N.
� Si n ⩾ p alors un =

(
n
p

)
= n!

p!(n−p)! et un+1 =
(
n+1
p

)
= (n+1)!

p!(n+1−p)! . un est non nul donc

un+1

un
=

(n+1)!
p!(n+1−p)!

n!
p!(n−p)!

=
n+ 1

n+ 1− p
donc (n+ 1− p)un+1 = (n+ 1)un

� Si n < p − 1 alors un = un+1 = 0 (convention de l'énoncé) donc la relation précédente est
encore valable.

� Si n = p−1 alors un = 0 (convention de l'énoncé) et n+1−p = 0 donc la relation précédente
est encore valable.

Finalement, en posant P = X + 1 et Q = X + 1 − p, on a deux polynômes non nuls et pour tout
n ∈ N, P (n)un = Q(n)un+1 de sorte que

la suite
((

n
p

))
n∈N

est hypergéométrique.

Q 3. On note S l'ensemble des suites réelles u telles que pour tout n ∈ N,

n(n− 1)(n− 2)un = n(n− 2)un+1.

Remarquons tout de suite que si u ∈ S alors u2 = 0 (en évaluant la relation précédente en n = 1).
En évaluant en n = 0 et n = 2, on obtient 0 = 0 ce qui ne donne aucune information. Puis, si
n ⩾ 3, n(n− 2) ̸= 0 donc un+1 = (n− 1)un. Le terme u3 va donc donner tous les suivants.

Résumons : u0 et u1 sont quelconques, u2 = 0 et u3 est quelconque et détermine tous les termes
suivants.

Il est immédiat que S est un espace vectoriel (il contient la suite nulle et il est stable par combinaison
linéaire). On pose alors θ : u ∈ S 7→ (u0, u1, u3) ∈ R3 qui est évidemment linéaire.

� Elle est injective puisque si u0 = u1 = u3 = 0 alors u = 0 par les remarques précédentes.

� Elle est surjective puisque si l'on se donne a, b, c trois réels, on peut dé�nir la suite u par
u0 = a, u1 = b, u2 = 0, u3 = c puis un+1 = (n − 1)un pour tout n ⩾ 3. Cette suite est bien
dans S et véri�e φ(u) = (a, b, c).

Ainsi, φ est un isomorphisme donc

dim (S) = 3

Si l'on note (e1, e2, e3) la base canonique de R3, puisque φ est un isomorphisme, (φ−1(e1), φ
−1(e2), φ

−1(e3))
est une base de S.
� x = φ−1(e1) est la suite dé�nie par x0 = 1 et xn = 0 pour tout n ⩾ 1.

� y = φ−1(e2) est la suite dé�nie par y1 = 1 et yn = 0 pour tout n ̸= 1.
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� z = φ−1(e3) est la suite dé�nie par zn = 0 pour tout n ⩽ 2, z3 = 1 et pour tout n ⩾ 3,
zn+1 = (n − 1)zn. On véri�e facilement par récurrence que ceci donne zn = (n − 2)! pour
n ⩾ 3.

(x, y, z) est une base de S.

Q 4. Pour n ⩾ n0, un+1 = P (n)
Q(n)un puisque Q(n) ̸= 0. En évaluant en n0 on obtient un0+1 = 0 puisque

P (n0) = 0. En�n, par récurrence avec la relation un+1 = P (n)
Q(n)un on a facilement un = 0 pour tout

n ⩾ n0 + 1. Ainsi,

la suite (un)n∈N est nulle à partir d'un certain rang.

II Extension de la factorielle

Q 5. Soit x > 0. On pose fx : t > 0 7→ tx−1e−t = e−t+(x−1) ln(t). Elle est continue sur ]0,+∞[ et il s'agit
d'étudier son intégrabilité en 0 et +∞.

� En +∞ : par croissances comparées, t2tx−1e−t tend vers 0 quand t tend vers +∞ donc
fx(t) = o

(
1
t2

)
en +∞. Comme t 7→ 1

t2 est intégrable en +∞ (intégrales de Riemann en +∞
avec 2 > 1), fx aussi.

� En 0 : fx(t) ∼ tx−1 quand t tend vers 0 (puisque e−t → 1) et t 7→ tx−1 = 1
t1−x est intégrable

en 0 (intégrales de Riemann en 0 avec 1− x < 1 car x > 0) donc fx aussi.

Ainsi, fx est intégrable sur ]0,+∞[ donc

Γ est bien dé�nie sur ]0,+∞[.

Remarque : la positivité de fx permet de confondre la convergence de l'intégrale et l'intégrabilité de
la fonction. Cette dernière notion est plus simple à utiliser puisqu'elle est conservée par équivalent
et sera donc privilégiée dans la suite.

Q 6. Soit x > 0. fx est continue, strictement positive (donc positive et non nulle) et intégrable sur
]0,+∞[. On sait alors (cours) que son intégrale est strictement positive :

Γ est strictement positive.

On montre maintenant la continuité de Γ par le théorème de continuité des intégrales à paramètre.
Fondamentalement, (x, t) ∈]0,+∞[×]0,+∞[7→ tx−1e−t est continue, donc il s'agira de se concentrer
sur la domination. Appliquons tout de même à l'énoncé du programme !
On dé�nit pour cela f : (x, t) ∈]0,+∞[×]0,+∞[7→ tx−1e−t.

� Pour tout x > 0, t 7→ f(x, t) est continue (par morceaux) sur ]0,+∞[.

� Pour tout t > 0, x 7→ f(x, t) est continue sur ]0,+∞[.

� Pour la domination, on con�ne le paramètre dans un segment : soient a et b deux réels tels
que 0 < a < b. On suppose désormais x ∈ [a, b]. Soit t > 0.

� Si t ⩾ 1 alors 0 ⩽ tx−1e−t = e−t+(x−1) ln(t) ⩽ e−t+(b−1) ln(t) puisque ln(t) ⩾ 0, x−1 ⩽ b−1
et exp est croissante.

� Si t < 1 alors 0 ⩽ tx−1e−t = e−t+(x−1) ln(t) ⩽ e−t+(a−1) ln(t) puisque ln(t) < 0, x−1 ⩾ a−1
et exp est croissante.

Ainsi, en posant pour t > 0, θ(t) =

{
tb−1e−t si t ⩾ 1

ta−1e−t sinon
, on a pour tout t > 0, |f(x, t)| ⩽ θ(t)

θ est continue par morceaux, positive et intégrable sur ]0,+∞[ (mêmes arguments que pour
l'existence de Γ).

Ainsi, le théorème de continuité des intégrales à paramètre montre que Γ est continue sur [a, b].
Ceci étant valable pour tout segment de ]0,+∞[, on en déduit que
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Γ est continue sur ]0,+∞[.

Q 7. Soit x > 0. Comme x+1 > 0, Γ(x) et Γ(x+1) existent. On réalise alors une intégration par parties
sur Γ(x+ 1) en posant

u′(t) = e−t u(t) = −e−t

v(t) = tx v′(t) = xtx−1

u est v sont C1 sur ]0,+∞[, txe−t −→
t→+∞

0 (croissances comparées) et txe−t −→
t→0+

0 car x > 0 donc

l'existence des intégrales et du crochet donne

Γ(x+ 1) = xΓ(x).

Q 8. Γ(1) =

∫ +∞

0

e−tdt = [−e−t]+∞
0 = 1. Une récurrence avec la question précédente donne alors

∀n ∈ N∗, Γ(n) = (n− 1)!

Le prolongement évoqué par l'énoncé est sans mystère : il su�t de dé�nir Γ(x) =
Γ(x+ 1)

x
lorsque

x ∈]−1, 0[ de sorte que la relation II.1 reste vraie (malin, non ?) et le prolongement a la même régularité
sur ]− 1, 0[ que sur ]0, 1[. Pour ]− 2,−1[. . .

III Fonctions hypergéométriques

III.A Symbole de Pochhammer

Q 9. Soit a un entier négatif ou nul. Si n est un entier strictement supérieur à −a alors [a]n =
n−1∏
k=0

(a+k) =

0 car l'entier naturel k = −a apparaît comme indice dans ce produit. Ainsi,

la suite ([a]n)n∈N est nulle à partir d'un certain rang.

Q 10. Soit n ∈ N.

[a]n+1 =

n∏
k=0

(a+ k) = a

n∏
k=1

(a+ k) = a

n∏
k=1

(a+ 1 + k − 1) = a

n−1∏
i=0

(a+ 1 + i) = a[a+ 1]n

Q 11. � Si a ∈ N∗ alors pour n ∈ N,

[a]n = a(a+ 1) . . . (a+ n− 1) =
1.2. . . . .(a− 1).a(a+ 1) . . . (a+ n− 1)

1.2. . . . .(a− 1)
=

(a+ n− 1)!

(a− 1)!

� Si a ∈ D, on remplace dans l'expression précédente les factorielles par la fonction Γ. Ceci nous
incite à montrer par récurrence que

∀n ∈ N, ∀a ∈ D, [a]n =
Γ(a+ n)

Γ(a)

L'initialisation pour n = 0 est claire et si le résultat est acquis au rang n ∈ N alors [a]n+1 =

a[a + 1]n = aΓ(a+1+n)
Γ(a+1) = aΓ(a+1+n)

aΓ(a) = Γ(a+1+n)
Γ(a) où l'on a utilisé la question 7, la question 10 et

l'hypothèse de récurrence (légitime car a+ 1 ∈ D puisque a ∈ D).

On remarque que l'expression avec la fonction Γ est toujours valable. . .

3



III.B Fonction hypergéométrique de Gauss

Q 12. Puisque c n'est pas un entier négatif, chaque facteur de [c]n est non nul donc [c]n ̸= 0 donc

[a]n[b]n
[c]n

est bien dé�ni pour tout entier naturel

Q 13. La dé�nition des suites hypergéométriques montre facilement que le produit et le quotient de deux
telles suites est encore une telle suite.

� Pour a réel quelconque, la suite ([a]n) est hypergéométrique puisque pour tout n ∈ N, [a]n+1 =
(a+ n)[a]n.

� En particulier la suite (n!) = ([1]n) est donc hypergéométrique.

On en déduit donc par produit et quotient que
(

[a]n[b]n
[c]nn!

)
n∈N

est une suite hypergéométrique donc

la série entière
∑ [a]n[b]n

[c]n
xn

n! est hypergéométrique.

Mais on nous demande des polynômes associés donc il faut faire le calcul : pour n ∈ N, on note

un = [a]n[b]n
[c]nn!

. Alors

un+1 =
[a]n+1[b]n+1

[c]n+1(n+ 1)!
=

(a+ n)[a]n(b+ n)[b]n
(c+ n)[c]nn!

1

n+ 1
=

(a+ n)(b+ n)

(c+ n)(n+ 1)
un

d'où (n+ 1)(c+ n)un+1 = (a+ n)(b+ n)un

Il reste donc à poser P = (a +X)(b +X) et Q = (X + 1)(c +X) qui sont bien deux polynômes
non nuls.

Q 14. Puisque c n'est pas un entier négatif, on peut écrire pour tout n ∈ N,

un+1 =
(a+ n)(b+ n)

(c+ n)(n+ 1)
un

On a donc une récurrence linéaire d'ordre 1 donc (même type de preuve que pour la question
3, le programme ne donnant ce résultat que pour les suites récurrentes à coe�cients constants)
l'ensemble des solutions est une droite vectorielle et une base est donnée par la suite véri�ant cette

relation avec u0 = 1 et c'est exactement la suite précédente :
(

[a]n[b]n
[c]nn!

)
n∈N

L'ensemble cherché est la droite Vect

(∑
n

[a]n[b]n
[c]n

xn

n!

)
Q 15. Attention aux cas particuliers...

� Si a ou b est un entier négatif, la suite u =
(

[a]n[b]n
[c]n

xn

n!

)
n∈N

est nulle à partir d'un certain rang

donc le rayon est in�ni .

� Sinon, si x ̸= 0, la suite u ne s'annule par donc pour n ∈ N, la question 13 donne un+1

un
=

x (a+n)(b+n
(n+1)(c+n) −→

n→+∞
x.

� Si |x| < 1 alors le théorème de d'Alembert montre que
∑

un converge absolument.

� Si |x| > 1 alors
∑

un diverge.

On sait que le rayon de convergence est la borne supérieure de {r ∈ R+/
∑

anr
n converge}.

Comme on vient de montrer que cet ensemble est [0, 1[ ou [0, 1], c'est que

le rayon de convergence est 1.
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Q 16. Fa,b,c est la somme d'une série entière de rayon 1 ou in�ni donc par théorème de cours :

Fa,b,c est de classe C1 sur ]− 1, 1[ (au moins, peut-être plus).

On sait de plus que l'on peut dériver terme à terme donc pour x ∈]− 1, 1[,

F ′
a,b,c(x) =

+∞∑
n=1

[a]n[b]n
[c]n

xn−1

(n− 1)!
=

+∞∑
k=0

[a]k+1[b]k+1

[c]k+1

xk

k!
=

+∞∑
k=0

a[a+ 1]kb[b+ 1]k
c[c+ 1]k

xk

k!
=

ab

c
Fa+1,b+1,c+1(x)

où l'on a utilisé la question 10.

Q 17. On démontre facilement par récurrence avec la question précédente que pour tout n ∈ N,

F
(n)
a,b,c =

[a]n[b]n
[c]n

Fa+n,b+n,c+n

On aura pu se donner une idée de la formule en calculant F ′′
a,b,c grâce à la question précédente.

Q 18. Soit x ∈]− 1, 1[. −x2 ∈ [0, 1[ donc F 1
2 ,1,

3
2
(−x2) a bien un sens et

F 1
2 ,1,

3
2
(−x2) =

+∞∑
n=0

[ 12 ]n[1]n

[ 32 ]n

(−x2)n

n!
=

+∞∑
n=0

(−1)n
[ 12 ]n

[ 32 ]n
x2n puisque [1]n = n!

Puis pour n ⩾ 1, [ 12 ]n = 1
2 [

1
2 +1]n−1 d'après la question 10 donc

[ 12 ]n
[ 32 ]n

= 1
2

[ 32 ]n−1

[ 32 ]n
= 1

2
1

3
2+n−1

= 1
2n+1 .

Ainsi, pour x ̸= 0,

F 1
2 ,1,

3
2
(−x2) =

+∞∑
n=0

(−1)n

2n+ 1
x2n =

1

x

+∞∑
n=0

(−1)n

2n+ 1
x2n+1 =

arctan(x)

x
·

On peut noter que lorsque x tend vers 0+,
arctan(x)

x
tend vers 1 qui vaut bien F 1

2 ,1,
3
2
(0), ce qui

est rassurant.

Q 19. Pour x non nul dans ]− 1, 1[,

ln(1 + x)

x
=

1

x

+∞∑
n=1

(−1)n+1x
n

n
=

+∞∑
n=0

(−x)n

n+ 1

Pour n ∈ N, [1]n = n!, [2]n = (n+ 1)! donc [1]n[1]n
[2]n

(−x)n

n! = (−x)n

n+1 donc

ln(1 + x)

x
= F1,1,2(−x)

Q 20. Puisque −N est un entier négatif, [−N ]n est nul pour n > N de sorte que Fa,−N,c est polynomiale

donc Fa,−N,c(1) existe . Le résultat admis par l'énoncé donne alors

Fa,−N,c(1) =
Γ(c)Γ(c− a+N)

Γ(c− a)Γ(c+N)
=

[c− a]N
[c]N

d'après Q11

Par ailleurs, Fa,−N,c(1) =
N∑

k=0

[a]k[−N ]k
[c]k

1
k! et

[−N ]k = (−N)(−N + 1) . . . (−N + k − 1) = (−1)kN(N − 1) . . . (N + 1− k) = (−1)k
N !

(N − k)!

donc
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Fa,−N,c(1) =

N∑
k=0

[a]k
[c]k

(−1)k
N !

(N − k)!k!
=

N∑
k=0

(−1)k
(
N

k

)
[a]k
[c]k

ce qui donne bien le résultat :

N∑
k=0

(−1)k
(
N

k

)
[a]k
[c]k

=
[c− a]N
[c]N

·

Q 21. c = v −N + 1 est bien dans D puisque v ⩾ N . c− a = u+ v −N + 1 est également dans D, c'est
aussi un entier positif. Ainsi, on peut appliquer la question précédente qui donne, en notant S la
somme

S =
[u+ v −N + 1]N
[v −N + 1]N

=
(u+ v −N + 1) . . . (u+ v)

(v −N + 1) . . . v
=

(u+ v)!(v −N)!

(u+ v −N)!v!
=

(
u+v
N

)(
v
N

)
et pour k entre 0 et n,

[−u]k
[v −N + 1]k

=
(−1)ku(u− 1) . . . (u+ 1− k)

(v −N + 1) . . . (v −N + k)
=

(−1)ku!(v −N)!

(u− k)!(v −N + k)!

donc S =

N∑
k=0

(−1)k
N !

k!(N − k)!

(−1)ku!(v −N)!

(u− k)!(v −N + k)!
=

N !(v −N)!

v!

N∑
k=0

u!

k!(u− k)!

v!

(v −N + k)!(N − k)!

=
1(
v
N

) N∑
k=0

(
u

k

)(
v

N − k

)
ce qui donne bien

(
u+ v

N

)
=

N∑
k=0

(
u

k

)(
v

N − k

)
Q 22. On se donne une urne contenant u boules blanches et v boules noires. Quel est le nombre de

manières d'en choisir une poignée de N ?

C'est déjà bien entendu
(
u+v
N

)
. Mais choisir N boules parmi toutes les u+ v boules c'est aussi

� choisir combien de blanches on prend : un entier k entre 0 et N ;

� choisir ces k boules blanches parmi les u :
(
u
k

)
choix ;

� et choisir en�n les N − k boules noires parmi les v :
(

v
N−k

)
choix.

Au total, on a donc
N∑

k=0

(
u
k

)(
v

N−k

)
choix.

On a dénombré de deux manières di�érentes la même situation combinatoire donc les deux résultats
sont identiques ce qui redonne bien

(
u+ v

N

)
=

N∑
k=0

(
u

k

)(
v

N − k

)

III.C Fonction hypergéométrique con�uente

Q 23. Soit (un) une suite réelle. On suppose que le rayon de convergence de la série entière
∑

unx
n est

R > 0. On note alors pour tout x ∈ I =] − R,R[, y(x) =
+∞∑
n=0

unx
n. On sait que y est deux fois

dérivable sur I et pour tout x ∈ I,

y(x) =

+∞∑
n=0

unx
n y′(x) =

+∞∑
n=1

nunx
n−1 y′′(x) =

+∞∑
n=2

n(n− 1)unx
n−2
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de sorte que : y est solution de (III.1) sur I si et seulement si pour tout x ∈ I,

x

+∞∑
n=2

n(n− 1)unx
n−2 + (c− x)

+∞∑
n=1

nunx
n−1 − a

+∞∑
n=0

unx
n = 0,

ou encore
+∞∑
n=2

n(n− 1)unx
n−1 +

+∞∑
n=1

cnunx
n−1 −

+∞∑
n=1

nunx
n −

+∞∑
n=0

aunx
n = 0

c'est-à-dire (changements d'indice et ajout des termes pour n = 0 mais qui sont nuls donc ne
changent pas la somme) :

+∞∑
n=0

(n+ 1)nun+1x
n +

+∞∑
n=0

c(n+ 1)un+1x
n −

+∞∑
n=0

(n+ a)unx
n = 0

Soit encore
+∞∑
n=0

((n+ 1)(n+ c)un+1 − (n+ a)un)x
n = 0

Or une somme de série entière est nulle sur un intervalle non réduit à {0} si et seulement si tous ses
coe�cients sont nuls (unicité du développement en série entière pour le sens non trivial). Ainsi :

y est solution de III.1 sur I ⇐⇒ ∀n ∈ N, (n+ 1)(n+ c)un+1 = (n+ a)un

Il reste à valider l'hypothèse R > 0 mais c'est similaire à ce qui a été fait dans la question 15 avec la
règle de d'Alembert. Ainsi, les solutions de (III.1) développables en série entière sont exactement

les x 7→
+∞∑
n=0

unx
n avec u véri�ant pour tout n ∈ N, un+1 = n+a

(n+1)(n+c)un. Il s'agit donc (comme on

l'a fait précédemment)

d'un espace vectoriel de dimension 1.

On obtient par récurrence qu'une telle suite véri�e pour tout n ∈ N, un = [a]n
[1]n[c]n

u0. Ainsi, les

solutions de (III.1) développables en série entière sont exactement les

x 7→ α

+∞∑
n=0

[a]n
[c]n

xn

n!
avec α décrivant R

Il est donc clair que l'on aurait dû chercher les solutions sous la forme
∑

un
xn

n! plutôt que
∑

unx
n.

Ceci nous aurait permis d'appliquer directement les résultats de la partie III.B. Mais qui y pen-
serait ? En�n, remarquons que

Ma,c(x) =

+∞∑
n=0

[a]n
[c]n

xn

n!

puisque cette fonction est solution et vaut 1 en 0 (x0 = 0! = [a]0 = [c]0 = 1).

IV Les polynômes de Laguerre

Q 24. On trouvera sans génie excessif (mais L2 et a fortiori L3 nous incitent à ré�échir et commencent à
nous guider vers Leibniz) : pour tout x ∈ R,

L0(x) = 1, L1(x) = −x+ 1, L2(x) =
1

2
(x2 − 4x+ 2) et L3(x) =

1

6
(−x3 + 9x2 − 18x+ 6)
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Q 25. Tout d'abord, les dérivations successives de (x 7→)e−x (nous ferons la confusion entre fonction et ex-
pression) maintiendront en facteur l'expression e−x (qui se simpli�era donc grâce à la multiplication

�nale) ; ensuite (xn)(k) =
n!

(n− k)!
xn−k ou encore (mieux) : (xn)(n−k) =

n!

k!
xk. Ainsi :

Ln(x) =
n∑

k=0

(
n

k

)
(−1)k

k!
xk

Et Ln est bien polynomiale de degré n !

Q 26. C'est assez direct (dé�nition, puis une dérivation) :

pour tout x ∈ R, Φ(n)
n (x) = n!Ln(x)e

−x et Φ
(n+1)
n (x) = n! (L′

n(x)− Ln(x)) e
−x.

Q 27. Puisque Φn+1(x) = xΦn(x), dériver n + 1 fois ce produit à la Leibniz ne fera intervenir que deux
termes ; ensuite on utilise la question précédente et on fait un peu de ménage. La quanti�cation
(pour tout x ∈ R) est ici implicite, puisqu'il s'agit de travailler sur des fonctions polynomiales
plutôt que des polynômes. . .

� D'une part Φ
(n+1)
n+1 (x) = (n+ 1)!Ln+1(x)e

−x.

� D'autre part

Φ
(n+1)
n+1 (x) = (xΦn(x))

(n+1)
= xΦ(n+1)

n (x) + (n+ 1)Φ(n)
n (x)

= xn! (L′
n(x)− Ln(x)) e

−x + (n+ 1)!Ln(x)e
−x.

On égalise puis divise par (n+ 1)!e−x pour obtenir �nalement la relation souhaitée :

Ln+1(x) =
x

n+ 1
L′
n(x) +

(
1− x

n+ 1

)
Ln(x)

Q 28. On calcule à nouveau de deux façons Φn+2
n+1 :

� D'une part cela vaut
(
Φ

(n+1)
n+1

)′
= (n+ 1)!

(
L′
n+1(x)− Ln+1(x)

)
e−x.

� D'autre part c'est la dérivée n+ 1-ème de e−x
(
−xn+1 + (n+ 1)xn

)
, c'est-à-dire

−(n+ 1)!Ln+1(x)e
−x + (n+ 1)(n!Ln(x)e

−x)′

On égale ces deux expressions, divise par (n+ 1)!e−x, et on tombe sur la relation attendue :

pour tout x ∈ R, L′
n+1(x) = L′

n(x)− Ln(x)

Q 29. On combine les deux questions précédentes, en dérivant l'expression obtenue à la question 27 et en
égalisant avec celle établie à la question 28 (puis en multipliant par n+ 1) :

pour tout x ∈ R, xL′′
n(x) + (1− x)L′

n(x) + nLn(x) = 0.

Q 30. Ln est solution de l'équation (III.1) avec a = −n et c = 1, et est bien entendu développable en
série entière puisque polynomiale. Or l'ensemble des solutions est d'après la question 23 une droite
vectorielle engendrée par M−n,1.
Il reste à déterminer le coe�cient multiplicatif, en considérant Ln(0) qui vaut 1 (question 25) alors
que M−n,1(0) = 1.

Ln = M−n,1 est une fonction hypergémométrique con�uente.

V Loi hypergéométrique

Q31. cf le cours.

8



V.A Premiers résultats

Q 32. On n'a pas vraiment 1 dé�ni P. Faisons le pari (raisonnable) que l'énoncé veut plutôt nous faire
démontrer qu'on est dans le cadre d'application du théorème qui nous raconte que :
Si X est à valeurs dans {xn |n ∈,N} et (pn)n∈N est une suite de réels positifs telle que

∑
pn est

convergente et de somme égale à 1, alors il existe une probabilité P sur Ω telle que P(X = xn) = pn
pour tout n ∈ N.
Bon, ici il s'agit donc de véri�er (puisque la positivité est claire) que

n∑
k=0

P(X = k) = 1... ce qui est

une conséquence directe (puisque pA et qA sont deux entiers de somme égale à A) de l'identité de
Vandermonde établie à la question 21.

On a bien � dé�ni �une loi de probabilité.

Q 33. La variable X est à valeurs dans un ensemble �ni, donc possède une espérance, et il s'agit de

calculer
n∑

k=0

k

(
pA
k

)(
qA
n−k

)(
A
n

) ·

On factorise bien entendu le dénominateur, on utilise la relation k

(
pA

k

)
= pA

(
pA− 1

k − 1

)
et ensuite

(après un changement d'indice) on voit apparaître à nouveau l'identité de Vandermonde :

E(X) =
pA(
A
n

) n∑
k=1

(
pA− 1

k − 1

)(
qA

n− k

)
=

pA(
A
n

) n−1∑
i=0

(
pA− 1

i

)(
qA

n− 1− i

)
︸ ︷︷ ︸

=(pA+qA−1
n−1 )=(A−1

n−1)

= pA

(A−1)!
(n−1)!(A−n)!

A!
n!(A−n)!

soit après simpli�cations :

E(X) = np

Q 34. On s'intéresse (pour t ∈]− 1, 1[ � au moins !) à

GX(t) =

∞∑
k=0

P(X = k)tk =

n∑
k=0

(
pA
k

)(
qA
n−k

)(
A
n

) tk

Pour relier P (X = k+ 1) et P (X = k), on va utiliser les relations i

(
j

i

)
= (j − i− 1)

(
j

i− 1

)
pour

écrire d'une part (k+1)

(
pA

k + 1

)
= (pA−k)

(
pA

k

)
et d'autre part (qA−n+k+1)

(
qa

n− (k + 1)

)
=

(n− k)

(
qA

n− q

)
, ce qui donne :

(k + 1)(qA− n+ k + 1)P(X = k + 1) = (pA− k)(n− k)P(X = k)

Il reste à poser P = (pA − X)(n − X) = (X − n)(X − pA) et Q = (X + 1)(X + 1 + qA − n) et
revenir aux questions 13 et 14 (avec a = −n, b = −pA et c = 1 + qA− n) : GX est dans la droite
vectorielle engendrée par F−n,−pA,1+qA−n, et on détermine ce qui nous manque en évaluant en 0.

GX est hypergéométrique, avec plus précisément GX =

(
qA
n

)(
A
n

) F−n,−pA,1+qA−n.

V.B Modélisation

Q 35. La variable Z compte le nombre de succès dans n expériences de Bernoulli indépendantes de

même paramètre
pA

A
= p, donc :

1. Pas du tout en fait !
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Z suit une loi binomiale B(n, p) ; en particulier E(Z) = np et Var(Z) = npq.

Q 36. Bien entendu, P (Y = k) = 0 si k ̸∈ [[0, n]]. On �xe maintenant k ∈ [[0, n]] et on veut évaluer
P(Y = k).

Il s'agit ici de probabilités � à l'ancienne �, où on dénombre d'une part le cardinal de l'univers

Ω constitué des parties à n éléments d'un ensemble de cardinal A � c'est

(
A

n

)
� et d'autre part

les con�gurations gagnantes : pour constituer une partie à exactement k boules blanches on peut
choisir d'une part une partie à k éléments parmi les pA boules blanches et de façon indépendante

une partie à n − k éléments parmi les A − pA = qA boules noires, ce qui donne

(
pA

k

)(
qA

n− k

)
possibilités, et �nalement : P(Y = k) =

(
pA
k

)(
qA
n−k

)(
A
n

)
Y suit la loi hypergéométrique H(n, p,A).

V.C Calcul de l'espérance

Q 37. Bien entendu (situation standard où on calcule un cardinal en plaçant 1 sur chaque habitant de
l'ensemble...) :

Y =
pA∑
i=1

Yn

Par linéarité de la somme, il su�t de calculer l'espérance de chaque Yi, c'est-à-dire (pour ces

variables de Bernoulli) évaluer P(Yi = 1). Mais cette probabilité vaut

(
A−1
n−1

)(
A
n

) (construire une partie

à n éléments contenant i revient à construire la partie des n − 1 autres éléments que i, parmi les

n− 1 qui restent) ; ainsi E(Yi) =
n

A
, et donc :

E(Y ) =
pA∑
i=1

E(Yi) = pA
n

A
= np = E(Z)

Il n'est pas déraisonnable que ces deux espérances soient égales... sans que ce soit évident avant
calcul !

Q 38. Fixons i et j tels que 0 ⩽ i < j ⩽ pA : la variable aléatoire YiYj est à valeurs dans {0, 1}, donc suit
une loi de Bernoulli de paramètre P(YiYj = 1), qu'on évalue à nouveau par dénombrement : avec

encore |Ω| =
(
A

n

)
, on cherche maintenant à dénombrer les parties à n éléments d'un ensemble à A

éléments contenant deux éléments imposés, ce qui revient à choisir les n− 2 autres parmi les A− 2
qui restent :

Le paramètre de la Bernoulli YiYj vaut P(YiYj = 1) =

(
A−2
n−2

)(
A
n

) =
n(n− 1)

A(A− 1)
·

V.D Résultats asymptotiques

Q 39. On nous fait montrer quelque chose qui ressemble à l'approximation des lois binomiales par des lois

de Poisson... et la technique sera la même : il s'agit de noter que quand A tend vers +∞,
pA!

(pA− k)!

peut être vu comme un polynôme en A, équivalent à (pA)k ; et de même
(qA)!

(qA− n+ k)!
∼ (qA)n−k
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et
(A)!

(A− n)!
∼ An, de sorte que :

P(X = k) =

(
pA
k

)(
qA
n−k

)(
A
n

) =
(pA)!

k!(pA− k)!

(qA)!

(n− k)!(qA− n+ k)!

n!(A− n)!

A!

∼ n!

k!(n− k)!

(pA)k(qA)n−k

An
=

(
n

k

)
pkqn−k,

et ainsi (l'équivalent étant une constante) :

P(X = k) −→
A→+∞

(
n

k

)
pkqn−k = P(Z = k)

On dit que la suite de variables (YA)A∈N converge en loi vers Z. En�n, en faisant comme si tous
les pA et qA étaient entiers, ce qui est une hypothèse audacieuse !

Q 40. Puisque les (YA) convergent en loi (� simplement �) vers Z, on peut raisonnablement espérer que
l'espérance et la variance des YA convergent respectivement vers l'espérance et la variance de Z,
et c'est bien ce qu'on a établi par les di�érents calculs e�ectués.

Ce résultat est faux en général, mais est vrai sous des conditions raisonnables concernant les lois
en jeu. Ici, les lois sont toutes à valeurs dans [[0, n]], avec n �xé, et on prouve donc la convergence
des moments par une simple linéarité de limites (les sommes sont �nies).
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