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Autour des fonctions hypergéométriques

I Suites et séries hypergéométriques

Q 1. Si (up)nen est géométrique, alors il existe K € R* (K non nul pour avoir P # 0 conformément &
I’énoncé ?) tel que pour tout n € N, u,11 = Kuy,, ou encore : P(n)u, = Q(n)u,y1 avec P = K et
Q@ = 1 (polynomes constants, non nuls puisque K # 0). Ainsi,

’toute suite géométrique est hypergéométrique. ‘

Q 2. Soit n € N.

— Sin >palors u, = (Z) = ﬁip)! et Upi1 = (";1) = %. u, est non nul donc
u _ (D! —
n (n+1—p)!
+1:p(+% Pt donc’(n—l—l—p)unﬂ:(n—i-l)un‘
Un ! n+l-p
p!(n—p)!

— Sin < p—1 alors u, = u,r1 = 0 (convention de I’énoncé) donc la relation précédente est
encore valable.
— Sin =p-—1 alors u, = 0 (convention de I’énoncé) et n+ 1 —p = 0 donc la relation précédente
est encore valable.
Finalement, en posant P = X +1et Q = X + 1 — p, on a deux polynémes non nuls et pour tout
n €N, P(n)u, = Q(n)u,s1 de sorte que

la suite ((g)) est hypergéométrique.
neN

Q 3. On note S 'ensemble des suites réelles u telles que pour tout n € N,
n(n—1)(n — 2)u, = n(n — 2)unq1.

Remarquons tout de suite que si v € S alors ugs = 0 (en évaluant la relation précédente en n = 1).
En évaluant en n = 0 et n = 2, on obtient 0 = 0 ce qui ne donne aucune information. Puis, si
n > 3, n(n —2) # 0 donc up+1 = (n — 1)u,. Le terme us va donc donner tous les suivants.
Résumons : ug et u; sont quelconques, us = 0 et ug est quelconque et détermine tous les termes
suivants.

Il est immeédiat que S est un espace vectoriel (il contient la suite nulle et il est stable par combinaison
linéaire). On pose alors 0 : u € S + (ug, ur,uz) € R? qui est évidemment linéaire.
— Elle est injective puisque si ug = u; = ug = 0 alors u = 0 par les remarques précédentes.
— Elle est surjective puisque si 'on se donne a,b, ¢ trois réels, on peut définir la suite u par
ug = a, up = b, ug = 0, uzg = ¢ puis u,1 = (n — 1)u, pour tout n > 3. Cette suite est bien
dans S et vérifie p(u) = (a, b, c).

Ainsi, ¢ est un isomorphisme donc
dim (§) =3

SiI’on note (e1, €2, €3) la base canonique de R3, puisque ¢ est un isomorphisme, (¢~ *(e1), "1 (e2), o1 (e3))
est une base de S.

— x = ¢ (e1) est la suite définie par zo = 1 et z,, = 0 pour tout n > 1.

— y = ¢ Y(ez) est la suite définie par y; = 1 et y,, = 0 pour tout n # 1.



— 2z = ¢ !(e3) est la suite définie par z, = 0 pour tout n < 2, 23 = 1 et pour tout n > 3,
Znt1 = (n — 1)z,. On vérifie facilement par récurrence que ceci donne z, = (n — 2)! pour
n > 3.

’ (z,y, z) est une base de S.

P(n)

o) Un puisque Q(n) # 0. En évaluant en ng on obtient u,,+1; = 0 puisque
P(n)

P(ng) = 0. Enfin, par récurrence avec la relation wu,+; = Q(n) Un ON A facilement u,, = 0 pour tout
n = ng + 1. Ainsi,

Q 4. Pour n = ng, upy1 =

’1& suite (up)nen est nulle & partir d’un certain rang. ‘

IT Extension de la factorielle

Q 5. Soit z > 0. On pose f, : t > 0 — t* o=t = ¢~t+H(@=D ) Elle est continue sur |0, +oo et il s’agit
d’étudier son intégrabilité en 0 et +o0.

— En +oo : par croissances comparées, tt*“le~! tend vers 0 quand ¢ tend vers +oo donc
fo(t) = 0(%) en +oo. Comme ¢ — % est intégrable en +oo (intégrales de Riemann en +oo
avec 2 > 1), f, aussi.

— En 0 : f,(t) ~t*~! quand ¢ tend vers 0 (puisque e~* — 1) et ¢ — t"~! = +L est intégrable
en 0 (intégrales de Riemann en 0 avec 1 —x < 1 car & > 0) donc f, aussi.

Ainsi, f, est intégrable sur |0, +oo[ donc

’I‘ est bien définie sur ]0, +oo]. ‘

Remarque : la positivité de f, permet de confondre la convergence de l'intégrale et 'intégrabilité de
la fonction. Cette derniére notion est plus simple & utiliser puisqu’elle est conservée par équivalent
et sera donc privilégiée dans la suite.

Q 6. Soit « > 0. f, est continue, strictement positive (donc positive et non nulle) et intégrable sur
10, +0c[. On sait alors (cours) que son intégrale est strictement positive :

’F est strictement positive.

On montre maintenant la continuité de I' par le théoréme de continuité des intégrales & parameétre.
Fondamentalement, (z,t) €]0, +00[x]0, +-00[—~ t*~le~t est continue, donc il s’agira de se concentrer
sur la domination. Appliquons tout de méme a ’énoncé du programme !
On définit pour cela f : (z,t) €]0, +00[x]0, 400 t*~le~t,
— Pour tout = > 0, t — f(x,t) est continue (par morceaux) sur |0, +oo].
— Pour tout ¢ > 0, x — f(x,t) est continue sur ]0, +oo].
— Pour la domination, on confine le paramétre dans un segment : soient a et b deux réels tels
que 0 < a < b. On suppose désormais z € [a, b]. Soit ¢ > 0.
— Sit>1lalors0 < t*le7t = e~ tHE-1In(t) ¢ o=t+(b=1)I@) pyuisque In(t) > 0, z—1 < b—1
et exp est croissante.
— Sit < lalors0 < t* lemt = e~ tHE—DIn®) ¢ e=t+@=DIn(®) pyisque In(t) < 0, 2—1 > a—1
et exp est croissante.
t=lemt sit>1

Ainsi, en posant pour t > 0, 6(¢t) = L
t*"*e”" sinon

,on a pour tout t > 0, |f(z,t)] < 6(t)
0 est continue par morceaux, positive et intégrable sur |0, +oo[ (mémes arguments que pour
Pexistence de T).

Ainsi, le théoréme de continuité des intégrales a paramétre montre que I' est continue sur [a, b].
Ceci étant valable pour tout segment de |0, 4+o00[, on en déduit que



’ T" est continue sur ]0, +o0. ‘

Q 7. Soit > 0. Comme z+1 > 0, I'(z) et T'(x+ 1) existent. On réalise alors une intégration par parties
sur I'(z + 1) en posant

u'(t) =e? u(t) = —e*
v(t) =t V(t) =2t !

u est v sont C! sur ]0, +oc[, t*¢~* — 0 (croissances comparées) et te~* — 0 car > 0 donc
t—4o0 t—0t+
I’existence des intégrales et du crochet donne

D(z+1) =2l (x). |

—+oo
Q8. I(1) = / e~ 'dt = [-e7"]$°° = 1. Une récurrence avec la question précédente donne alors
0

’Vn eN* T'(n) = (n— 1)!‘

I(z+1)

Le prolongement évoqué par l’énoncé est sans mysteére : il suffit de définir T'(x) = lorsque

x €] —1,0] de sorte que la relation II.1 reste vraie (malin, non ?) et le prolongement a la méme régularité
sur] —1,0[ que sur]0,1[. Pour|—2,—1[...

IIT Fonctions hypergéométriques

ITI.A Symbole de Pochhammer

n—1
Q 9. Soit a un entier négatif ou nul. Sin est un entier strictement supérieur & —a alors [a], = [] (a+k) =
k=0
0 car ’entier naturel k = —a apparait comme indice dans ce produit. Ainsi,

’1& suite ([a]n)nen est nulle & partir d’un certain rang. ‘

Q 10. Soit n € N.

:H(a+k):aH(a+k):aH(a+1+k—1):aﬁ(a+1+i): ala + 1],
k=0 k=1 k=1 =0

Q 11. — Si a € N* alors pour n € N,

T =

—Si a € D, on remplace dans I’expression précédente les factorielles par la fonction I'. Ceci nous
incite & montrer par récurrence que

VYn € N, Va € D, [a], =

L’initialisation pour n = 0 est claire et si le résultat est acquis au rang n € N alors [a],4+1 =

ala + 1], = aF%"(Jg}rJ{;L) = aF(ZJFr(lgg") = F(“lf(i)*") ou l'on a utilisé la question 7, la question 10 et

Ihypothése de récurrence (légitime car a + 1 € D puisque a € D).

On remarque que ’expression avec la fonction I' est toujours valable. ..



III.B Fonction hypergéométrique de Gauss

Q 12.

Q 13.

Q 14.

Q 15.

Puisque ¢ n’est pas un entier négatif, chaque facteur de [c],, est non nul donc [¢],, # 0 donc

% est bien défini pour tout entier naturel

La définition des suites hypergéométriques montre facilement que le produit et le quotient de deux
telles suites est encore une telle suite.

— Pour a réel quelconque, la suite ([al,,) est hypergéométrique puisque pour tout n € N, [a],+1 =
(a+n)aln-
— En particulier la suite (n!) = ([1],,) est donc hypergéométrique.

[a]n[b]n
lc]lnn!

On en déduit donc par produit et quotient que ( ) . est une suite hypergéométrique donc
ne

la série entiére > %% est hypergéométrique.

Mais on nous demande des polyndmes associés donc il faut faire le calcul : pour n € N, on note

Up = [([li]"ﬁl]," . Alors

[@nt1blnts _ (atn)laln(0+n)[bln 1 _ (a+n)(b+n)
clpt1(n+1)! (¢ +n)c],n! n+1l (c+n)(n+1

Un41 = [ Un

d’ou ’ (n+1)(c+n)ups1 = (a+n)b+n)uy, ‘

Il reste donc & poser P = (a+ X)(b+ X) et @ = (X 4+ 1)(¢+ X) qui sont bien deux polyndémes
non nuls.

Puisque ¢ n’est pas un entier négatif, on peut écrire pour tout n € N,

" _(a+n)(b+n)u
Y PANED T D

On a donc une récurrence linéaire d’ordre 1 donc (méme type de preuve que pour la question

3, le programme ne donnant ce résultat que pour les suites récurrentes a coefficients constants)
I’ensemble des solutions est une droite vectorielle et une base est donnée par la suite vérifiant cette

relation avec ug = 1 et c’est exactement la suite précédente : (%)
n / neN

lcln p)

L’ensemble cherché est la droite Vect (Z [a]"[b]"x>

Attention aux cas particuliers...

— Si a ou b est un entier négatif, la suite u = (% %) est nulle & partir d’un certain rang
" ‘/ neN

donc ’1e rayon est infini |

— Sinon, si « # 0, la suite v ne s’annule par donc pour n € N, la question 13 donne % =
n

(a+n)(b+n
(n+1)(c+n) n—>_+>oo Z.

x
— Si |z|] < 1 alors le théoréme de d’Alembert montre que » u,, converge absolument.

— Si |z| > 1 alors ) u,, diverge.

On sait que le rayon de convergence est la borne supérieure de {r € R*/ > a,r" converge}.
Comme on vient de montrer que cet ensemble est [0, 1] ou [0, 1], c’est que

’1e rayon de convergence est 1. ‘




Q 16. F, ;. est la somme d’une série entiére de rayon 1 ou infini donc par théoréme de cours :

’Fa,b,c est de classe C! sur | — 1, 1[ (au moins, peut-étre plus). ‘

On sait de plus que ’on peut dériver terme a terme donc pour = €] — 1, 1],

“+o0 _ “+o00 “+o0
; B [a]n[b], 2"t [alpg1[blsr ala + 1]xblb+ 1], 2% | ab
avel®) | = []n (n—1)! _kzzo [Z}k+1+ k! =2 ce+1r K 7 Fartbrien(o)

k=0

ou ’on a utilisé la question 10.

Q 17. On démontre facilement par récurrence avec la question précédente que pour tout n € N,

(n) [a}n[b]n
ab,e WFa+n,b+n,c+n

On aura pu se donner une idée de la formule en calculant F!, . grace G la question précédente.

Q 18. Soit « €] — 1,1[. 2 € [0,1[ donc Fy ; s(—2?) a bien un sens et

too 1 2\n +oo 1
111 . 1
F%,LQ (_x2) _ [2]?[ ]n ( xl) _ Z(_l)n[gﬁxQ’n puisque []-}n —p!
n=0 [§}n n: n=0 [5]”
Puis pour n > 1, [1],, = 1[1 +1],,_1 d’aprés la question 10 donc E” = %[%}*1 = %§+1L—1 — anﬂ_
2in 2in )
Ainsi, pour z # 0,
+oo n +o0 n
Fl 1 3(—I2) = 7(71) 1,271 = 1 Z 7(71) x2n+1 = M
2072 n:02n+1 xn:02n+1 x
t
On peut noter que lorsque = tend vers 0%, M tend vers 1 qui vaut bien F%J,%(O), ce qui
est rassurant.
Q 19. Pour z non nul dans | — 1, 1],
In(1+z) 1 2" X (=)
N 7 1 n+1% —
T T ;( ) n 7;) n+1

Pour n € N, [1],, = nl, [2],, = (n + 1)! donc [1][’2‘][7{]” (_73)“, = (;i)ln donc

In(1 + z)

p— F _—
- 1,1,2(—)

Q 20. Puisque —N est un entier négatif, [-N],, est nul pour n > N de sorte que F,, _y . est polynomiale

donc ’ Fo _n(1) existe ‘ Le résultat admis par ’énoncé donne alors

Fo_ne(l) = ll:E?F(;);(Zi]]Q = le [;]i]N d’aprés Q11

- N
Par ailleurs, F, _n.(1) = %% ot
k=0

Nk = (NN +D (N k= 1) = (CDNV =1 (N + 1= 8) = (D

donc



N N
Fa,fN,c(l) = Z [a]k(_l)k(]\[ivl'g)lkl - Z(_l)k (f) [(z}}k

ce qui donne bien le résultat :

i(_l)k(];]> @ — w.

pors Jk [c]n

Q 21. ¢c=v— N + 1 est bien dans D puisque v > N. c—a =u+v — N + 1 est également dans D, c’est
aussi un entier positif. Ainsi, on peut appliquer la question précédente qui donne, en notant S la
somme

S_[u+v—N+1]N_(u+v—N+1)...(u+v)_(u—i—v)!(v—N)!_(U;U)
 [w-N+1y (v—N+1)...v C (wtv—N)w! o (F)

et pour k entre 0 et n,

[l (=DFu(u—1)...(u+1—k) (—1)kul(v — N)!

—N+1p (W—N+1)...(o-N+k)  (u—k)(v—N+Ek)

al NI (—DFul(v = N)!I  Nlo—N)l =  ul vl
doncs:/;)(_l)kk!(N—k)!(u—k)!(v—N+k)!: ol kzzok!(u—k)!(v—N+k)!(N—k)!

= (;V) kg:_o <Z> (Nv_ k) ce qui donne bien <u;v> = ,ﬁ% <Z) (NU_ l<;>

Q 22. On se donne une urne contenant w boules blanches et v boules noires. Quel est le nombre de
maniéres d’en choisir une poignée de N7

C’est déja bien entendu (“]4\;”). Mais choisir N boules parmi toutes les u + v boules c’est aussi

— choisir combien de blanches on prend : un entier k entre 0 et IV ;

— choisir ces k boules blanches parmi les u : (Z) choix ;

— et choisir enfin les N — k boules noires parmi les v : ( N“_k) choix.

N
Au total, on a donc Y (1) (4" ) choix.
k=0

On a dénombré de deux maniéres différentes la méme situation combinatoire donc les deux résultats
sont identiques ce qui redonne bien

<UJ+VU> - ,ﬁg <Z) (NU— k)

IT1.C Fonction hypergéométrique confluente

Q 23. Soit (u,) une suite réelle. On suppose que le rayon de convergence de la série entiére > u,x" est
pp q y g

+oo
R > 0. On note alors pour tout € I =] — R, R[, y(z) = > u,a™. On sait que y est deux fois
n=0
dérivable sur I et pour tout = € I,
+oo “+oo “+oo
y(z) = Z upz” Y (x) = Z nupz™ ! y'(z) = Z n(n — 1u,az™ >
n=0 n=1 n=2



IV

Q 24.

de sorte que : y est solution de (I1I.1) sur I si et seulement si pour tout x € I,

—+oo —+oo +oo
x E n(n — Dupz" 2 + (¢ — x) E nupz" "t —a E upz™ =0,
n=2 n=1 n=0

ou encore
+oo +oo —+oo “+o0
n(n — 1)unx”*1 + g cnupz” "t — E nu,T" — E aupx”™ =0
n=2 n=1 n=1 n=0

c’est-a-dire (changements d’indice et ajout des termes pour n = 0 mais qui sont nuls donc ne
changent pas la somme) :

+00 iy =
Z(n + Dnuperz™ + Z ce(n+ Duppa”™ — Z(n + a)upz” =0
n=0 n=0 n=0
Soit encore
—+oo
Z (n+1D)(n+c)upt1 — (n+ a)uy)z™ =0
n=0

Or une somme de série entiére est nulle sur un intervalle non réduit a {0} si et seulement si tous ses
coefficients sont nuls (unicité du développement en série entiére pour le sens non trivial). Ainsi :

y est solution de IIL.1 sur I <= VneN,|(n+1)(n+ c)upt1 = (n+ a)uy,

Il reste a valider ’hypothése R > 0 mais c¢’est similaire & ce qui a été fait dans la question 15 avec la
régle de d’Alembert. Ainsi, les solutions de (I11.1) développables en série entiére sont exactement

+oo
les z — > upz™ avec u vérifiant pour tout n € N, uy, 41 = %un 1l s’agit donc (comme on
n=0

la fait précédemment)

’ d’un espace vectoriel de dimension 1.

On obtient par récurrence qu’une telle suite vérifie pour tout n € N, u,, = %uo. Ainsi, les

solutions de (I7I.1) développables en série entiére sont exactement les

T o Z —— — | avec « décrivant R

Il est donc clair que I’on aurait dia chercher les solutions sous la forme > un% plutot que > u,z™.
Ceci nous aurait permis d’appliquer directement les résultats de la partie I171.B. Mais qui y pen-
serait 7 Enfin, remarquons que

Les polynomes de Laguerre

On trouvera sans génie excessif (mais Ly et a fortiori Ls nous incitent a réfléchir et commencent a
nous guider vers Leibniz) : pour tout z € R,

1 1
Lo(z) =1, Li(z) = —z + 1, La(x) = 5(:52 —4x +2) et Ly(z) = 6(—333 + 922 — 18z + 6)




Q 25.

Q 26.

Q 27.

Q 28.

Q 29.

Q 30.

Q31.

Tout d’abord, les dérivations successives de (z —)e™ (nous ferons la confusion entre fonction et ex-
pression) maintiendront en facteur ’expression e (qui se simplifiera donc grace a la multiplication

| |
B o= ™ in—k oy encore (mieux) : (z")(F) = k. Ainsi :

(n—k)! k!

Lo(z) = éo (Z) (_kll)kxk

Et L, est bien polynomiale de degré n!

finale) ; ensuite (2")(

C’est assez direct (définition, puis une dérivation) :

pour tout z € R, @gl)(x) =nlL,(x)e™" et <I>£Ln+1)(x) =n! (L), (z) — L,(x))e "

Puisque ®,,41(z) = z®,(z), dériver n + 1 fois ce produit a la Leibniz ne fera intervenir que deux
termes; ensuite on utilise la question précédente et on fait un peu de ménage. La quantification
(pour tout z € R) est ici implicite, puisqu’il s’agit de travailler sur des fonctions polynomiales
plutot que des polynomes. . .

— D’une part @;ﬂﬁl)(x) =+ )Ly (x)e ",
— D’autre part

(2@, (2)) " = 20D (2) + (n + 1) 2 (2)

n

= an! (L (z) — Ly(z))e™™ + (n+ 1)L, (z)e".

n+1
o\ ()

On égalise puis divise par (n + 1)le”* pour obtenir finalement la relation souhaitée :

T
n+1

Ln+1 (m) =

L’n(x)+(1— a )Ln(:c)

n+1

On calcule a nouveau de deux facons @17 :

"= (4 D! (L (1) — Lo () e

— D’autre part c’est la dérivée n + 1-éme de e™® (—2" " + (n + 1)), c’est-a-dire

— D’une part cela vaut (@5::3”)

—(n+ D1 (x)e™™ + (n+ 1)(n!L,(x)e™ ")

On égale ces deux expressions, divise par (n + 1)le™®, et on tombe sur la relation attendue :

’pour tout v € R, L, (z) = L) (x) — Lnp(x) ‘

On combine les deux questions précédentes, en dérivant I’expression obtenue & la question 27 et en
égalisant avec celle établie a la question 28 (puis en multipliant par n + 1) :

’pour tout z € R, L (z) + (1 — z)L} () + nL,(z) = 0. ‘

L, est solution de ’équation (III.1) avec a = —n et ¢ = 1, et est bien entendu développable en
série entiére puisque polynomiale. Or 'ensemble des solutions est d’aprés la question 23 une droite
vectorielle engendrée par M_,, ;.

Il reste & déterminer le coefficient multiplicatif, en considérant L, (0) qui vaut 1 (question 25) alors
que M_, 1(0) = 1.

’Ln = M_,, 1 est une fonction hypergémométrique confluente. ‘

Loi hypergéométrique

cf le cours.



V.A Premiers résultats

Q 32.

Q 33.

Q 34.

On n’a pas vraiment ! défini P. Faisons le pari (raisonnable) que I’énoncé veut plutot nous faire
démontrer qu’on est dans le cadre d’application du théoréme qui nous raconte que :
Si X est a valeurs dans {z, |n €,N} et (pn)nen est une suite de réels positifs telle que > p, est
convergente et de somme égale a 1, alors il existe une probabilité P sur Q telle que P(X = x,,) = p,,
pour tout n € N.
n

Bon, ici il s’agit donc de vérifier (puisque la positivité est claire) que Y P(X = k) = 1... ce qui est

k=0
une conséquence directe (puisque pA et ¢A sont deux entiers de somme égale & A) de identité de
Vandermonde établie & la question 21.

| On a bien « défini »une loi de probabilité. |

La variable X est & valeurs dans un ensemble fini, donc posséde une espérance, et il s’agit de

n pA qA
calculer > W~
= ()

n

A—1
On factorise bien entendu le dénominateur, on utilise la relation k <pk =pA (pk 1 ) et ensuite

(aprés un changement d’indice) on voit apparaitre & nouveau 'identité de Vandermonde :

-1 (A-1)!
PA ~ (PA-1) [ ¢A PA ¢ (PA-1 A G- DIGA—n)!
(X) (A)Z<k—1)<n—k (A),Z i n—1-i) PO __ar_
n/ k=1 n/) i=0 n!(A—n)!
—( 4=
soit aprés simplifications :
E(X)=mnp
On s’intéresse (pour ¢ €] — 1,1 — au moins!) a
oo n (pA)( qA )
Gx(t) =Y P(X =k)th =) ~An=brh
k=0 k=0 (n)
Pour relier P(X =k + 1) et P(X = k), on va utiliser les relations z(‘]) ={—-i— 1)( J 1> pour
i i—
A A
écrire d’une part (k—+1) (kar 1) = (pA—k) (pk ) et d’autre part (gA—n+k+1) (n B (qk(:l+ 1)) =

A
(n— k)( 1 ), ce qui donne :
n—q

(k+1)(gA—n+k+1D)P(X =k+1) = (pA—k)(n— k)P(X = k)

Ilreste aposer P= pA—X)(n—X)=(X—-n)(X —pl)etQ=(X+1D(X+1+gA—n) et
revenir aux questions 13 et 14 (avec a = —n, b= —pA et ¢ =1+ gA — n) : Gx est dans la droite
vectorielle engendrée par F_,, _p4 1+9A—n, €t on détermine ce qui nous manque en évaluant en 0.

(%)
()

Gx est hypergéométrique, avec plus précisément Gy =

Fon pai+qa—n-

V.B Modélisation

Q 35.

La variable Z compte le nombre de succés dans n expériences de Bernoulli indépendantes de

. .. pA
méme parameétre T = p, donc :

1. Pas du tout en fait !



Q 36.

’ Z suit une loi binomiale B(n, p); en particulier E(Z) = np et Var(Z) = npq. ‘

Bien entendu, P(Y = k) = 0 si k£ ¢ [0,n]. On fixe maintenant & € [0,n] et on veut évaluer
P(Y = k).
Il s’agit ici de probabilités « a l'ancienne », oit on dénombre d’une part le cardinal de 'univers

A
Q constitué des parties & n éléments d’un ensemble de cardinal A — c’est ( ) — et d’autre part
n

les configurations gagnantes : pour constituer une partie & exactement k boules blanches on peut
choisir d’une part une partie a k éléments parmi les pA boules blanches et de facon indépendante

A A
une partie & n — k éléments parmi les A — pA = A boules noires, ce qui donne (pk ) (nq_ k)
A\ ([ qA
(") ()

()

’ Y suit la loi hypergéométrique H(n,p, A). ‘

possibilités, et finalement : P(Y = k) =

V.C Calcul de ’espérance

Q 37. Bien entendu (situation standard ou on calcule un cardinal en placant 1 sur chaque habitant de

Q 38.

Pensemble...) :

Par linéarité de la somme, il suffit de calculer I'espérance de chaque Y;, c’est-a-dire (pour ces

A-1
variables de Bernoulli) évaluer P(Y; = 1). Mais cette probabilité vaut ("Zl) (construire une partie

n
a n éléments contenant ¢ revient & construire la partie des n — 1 autres éléments que ¢, parmi les
n

n — 1 qui restent) ; ainsi E(Y;) = T et donc :
pA n
E(Y) = Z:IE(Yi) =pA7 =np=E(2)
1=

1l n’est pas déraisonnable que ces deux espérances soitent égales... sans que ce soit évident avant
calcul !

Fixons i et j tels que 0 < ¢ < j < pA : la variable aléatoire Y;Y; est & valeurs dans {0, 1}, donc suit
une loi de Bernoulli de paramétre P(Y;Y; = 1), qu’on évalue & nouveau par dénombrement : avec

A
encore || = ( ), on cherche maintenant & dénombrer les parties & n éléments d’un ensemble & A
n

éléments contenant deux éléments imposés, ce qui revient & choisir les n — 2 autres parmi les A — 2
qui restent :

Le paramétre de la Bernoulli Y;Y; vaut P(Y;Y; =1) = =

V.D Résultats asymptotiques

Q 39.

On nous fait montrer quelque chose qui ressemble & I’approximation des lois binomiales par des lois

Al
de Poisson... et la technique sera la méme : il s’agit de noter que quand A tend vers +oo, ﬁ
pA —k)!
R R L. N ~ qA)! —k
eut étre vu comme un polynome en A, équivalent & (pA)* ; et de méme (7 ~ (qgA)"
p poly q (pA) GA—n1h) (q4)
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Q 4o0.

(4)!

et m ~ A", de sorte que :
T 0 1 s I %) (A)! nl(A —n)!
PX =k) = k(ﬁ) : TRHpA-—K) (n—k)l(gA—n+k)! Al
nl  (pAF(qA) T g
T Bn-k)! Ar - (k)pkq "

et ainsi (I’équivalent étant une constante) :

n _

On dit que la suite de variables (Ya)aen converge en loi vers Z. Enfin, en faisant comme si tous
les pA et qA étaient entiers, ce qui est une hypothése audacieuse !

Puisque les (Y4) convergent en loi (« simplement ») vers Z, on peut raisonnablement espérer que
I’espérance et la variance des Y4 convergent respectivement vers ’espérance et la variance de Z,
et c’est bien ce qu’on a établi par les différents calculs effectués.

Ce résultat est faux en général, mais est vrai sous des conditions raisonnables concernant les lois
en jeu. Ici, les lois sont toutes & valeurs dans [0, n], avec n fixé, et on prouve donc la convergence
des moments par une simple linéarité de limites (les sommes sont finies).
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