PC Lakanal - Mathématiques - DS N°5 sujet hard

4 heures Calculatrice interdites

Autour des fonctions hypergéométriques

Objectif

L’objectif du probléme est ’étude de suites, séries et fonctions dites hypergéométriques et d’en donner
quelques exemples en analyse et en probabilités.

La partie I introduit la notion de suites et séries hypergéométriques. La partie II, indépendante
de la partie I, définit la fonction I', permettant d’étendre la factorielle a des valeurs non entiéres.
La partie 11, qui s’appuie sur certains résultats des deux premiéres parties, introduit deux familles
de fonctions hypergéométriques. Les parties IV et V, indépendantes I'une de I'autre, donnent des
exemples de fonctions hypergéométriques, respectivement dans le cadre d’une famille de polynoémes
et dans un contexte probabiliste.

Notations
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Soit (n,p) € N%. On note (n
p

) le coefficient binomial p parmi n, égal a

0 sinon.

On note D = R\ {—n|n € N} 'ensemble des réels qui ne sont pas des entiers négatifs ou nuls.

d
Si f est une fonction de classe €, les deux notations ™ et d—f sont utilisées pour la dérivée n-iéme
xn
de f.

I Suites et séries hypergéométriques

Soit, (u)nen une suite a valeurs réelles. On dit que la suite (u,),en est hypergéométrique lorsqu’il
existe deux polynoémes non nuls P et () de R[X] tels que

VneN, P(n)u,=Q(n)upi1. (I.1)
On dit alors que P et @ sont des polynomes associés a la suite hypergéométrique (uy,)nen.

On dit également qu’une série entiére Z u, =" est une série hypergéomeétrique lorsque la suite (u,)nen
est hypergéométrique.

Q 1. Montrer qu'une suite géométrique est hypergéométrique.
Q 2. Soit p € N. Montrer que la suite de terme général u, = < ) est hypergéométrique.
p

Q 3. Démontrer que I'ensemble des suites vérifiant la relation (?7?), avec
PX)=X(X-1)(X-2) et QX)=X(X-2),
est un espace vectoriel dont on précisera une base et la dimension.

Q 4. Soit (uy)neny une suite hypergéométrique de polyndomes associés P et (). On suppose qu'il
existe un entier naturel ng tel que P(ng) = 0 et, Vn = ng, Q(n) # 0. Justifier que la suite (u,)nen
est nulle & partir d'un certain rang.



IT Extension de la factorielle

On pose, pour tout x € R**,
+0o0
[(x) = / t" e tdt.
0
Q 5. Justifier qu’on définit ainsi une fonction sur R**,
Q 6. Montrer que la fonction I" est continue et strictement positive sur R**.
Q 7. Montrer que, pour tout x € R**,

[(x+1) =al'(2). (IL.1)

Q 8. Déterminer la valeur de I'(n), pour n € N*.

On admet qu’on peut prolonger la fonction I' sur D par une fonction continue, toujours notée I', qui
vérifie la relation (??) pour tout = € D.
III Fonctions hypergéométriques

III.A — Symbole de Pochhammer

On définit le symbole de Pochhammer, pour tout nombre réel a et tout entier naturel n par

1 sin =0,
" a(a+1)---(a+n—1):H(a+k) sinon.
k=0

Q 9. Si a est un entier négatif ou nul, justifier que la suite ([a],)nen est nulle & partir d’un certain
rang.

Q 10. Soit a € R. vérifier que, pour tout entier naturel n, [al,11 = ala + 1],.

Q 11. Soit n € N. Donner une expression de [a,

— a laide de factorielles lorsque a € N*;

— a l'aide de deux valeurs de la fonction I', lorsque a € D.

III.B — Fonction hypergéométrique de Gauss

Etant donné trois nombres réels a, b et ¢, on appelle fonction hypergéométrique de Gauss associée
au triplet (a,b,c), la fonction, définie sur un sous-ensemble de R, par

[a]n [b]

[c]n

Q 12. Justifier que, si c € D, alors est bien défini pour tout entier naturel n.

On suppose cette condition vérifiée dans les questions suivantes.



[a],[b] x_n
[c],  n!

Q 13. Montrer que la série entiére Z

est hypergéométrique et préciser des polynomes
associés.

Q 14. Réciproquement, démontrer que I'ensemble des séries hypergéométriques associées aux polyndémes
obtenus a la question précédente est un espace vectoriel dont on donnera une base et dont on pré-
cisera la dimension.

[a],[b], "

[, n!

Q 15. Déterminer le rayon de convergence de la série entiére E

Q 16. Justifier que F, . est de classe €' sur | — 1, 1[. Calculer sa dérivée et 'exprimer a I'aide d’une
fonction hypergéométrique de Gauss.

Q 17. Justifier que F, ;. est de classe € sur | — 1, 1] et exprimer sa dérivée n-iéme a l'aide d’une
fonction hypergéométrique de Gauss.

Q 18. Exprimer la fonction x F%J%(—ﬁ) a l'aide de fonctions usuelles.

Q 19. Exprimer la fonction

. w size]— 1,10\ {0}

1 stz =0
a 'aide d’une fonction hypergéométrique de Gauss.

On admet, en cas d’existence de toutes les quantités présentes dans I'expression suivante, que
L(c)'(c—a—10)

I'(c—a)l'(c—0)

Q 20. Soient N € N, c € D, a € R tels que c—a € D. Justifier 'existence de F, _n (1) et démontrer

Fa,b,c(1> =

que
i(_l)km ali _ e~ alw
po k) [clk [c]

Q 21. Soit (u,v) € N? tels que N < min(u,v). En prenant @ = —u et ¢ = v — N + 1, montrer

I'identité de Vandermonde :

utuvy) i U v
N ) k) \N —k
k=0
On admet pour la suite que 'identité de Vandermonde reste valable pour tous entiers naturels u, v,

N.

Q 22. Donner une interprétation combinatoire de 1’'identité de Vandermonde.

IT1.C — Fonction hypergéométrique confluente

Soient deux nombre réels a et ¢ tels que ¢ € D.
Q 23. Déterminer les solutions développables en série entiére de ’équation différentielle
zy"(z) + (¢ — )y (z) — ay(x) = 0. (IIL.1)

On exprimera ces solutions a l'aide du symbole de Pochhammer et on précisera la structure al-
gébrique de leur ensemble.

On note M, . la solution de I'équation (??) vérifiant M, .(0) = 1. Cette fonction est appelée fonction
hyper-géométrique confluente associée au couple (a,c).



IV Les polynéomes de Laguerre

Soit n € N. On pose, pour tout nombre réel x,
Dp(z)=e 2" et Ly(z) = —0"(x).
Q 24. Déterminer Lgy, Ly, Ly et L.

Dans toute la suite, n est un entier naturel non nul.

Q 25. En utilisant la formule de Leibniz, démontrer que la fonction L, est polynomiale de degré n.

Déterminer les coefficients ¢, tels que L, (x) = Z cn,kxk.

k=0
Q 26. Pour tout nombre réel z, exprimer ®” (x) et (ID%"H)(QC) en fonction de L, (z) et L] (x).
" dn+1 q)n
Q 27. Utiliser 'égalité q)gljll)(x) = dxle(l‘)’ que I'on Justifiera, pour démontrer ’égalité

x x
L, =(1- L, L
) = (1= ) Lo+ o)
valable pour tout nombre réel x.
dmel (x)

Q 28. Utiliser I'égalité <I>£:f12)(x) pour démontrer 1'égalité

d anrl
Ly () = Ly, (7) — L (2)
valable pour tout nombre réel x.

Q 29. En déduire que L, est solution de 1’équation différentielle

zL!(z)+ (1 —2)L (x) +nL,(x) =0. (IV.1)

Q 30. Montrer que L, est une fonction hypergéométrique confluente.

V Loi hypergéométrique

On rappelle que, si U est une variable aléatoire & valeurs dans 0, ..., n, I'espérance et la variance de
U sont données par :

EU)=, kPU=k)et V(U)=>_k*PU=k)— (E(U))?
Q31 donner l'espérance d’une loi de Bernoulli B(p), d’une loi binomiale B(n, p).

On considére un espace probabilisé (€, o7, P).

Soient deux entiers naturels A et n tels que n < A et p un nombre réel compris entre 0 et 1. On
suppose pA € N et on note ¢ =1 — p.



Soit X une variable aléatoire réelle discréte sur (£2,.27,P). On dit que X suit la loi hypergéométrique
de paramétres n, p et A lorsque

(X(Q) c [0,n],

P(X = k) = (p;) <”q_Ak) pour tout k € [0,n].

| ()

On note alors X < H(n,p, A).

V.A — Premaiers résultats
Q32. Vérifier qu’on a bien défini une loi de probabilité.

Q33. Soit X une variable aléatoire telle que X — H(n,p, A). Calculer I'espérance de X.

N N -1
On rappelle que, pour tous entiers naturels non nuls £ et /V, k(k) = N(k; ] )

Q34 Montrer que la suite (P(X = k))ken est hypergéométrique. En déduire une expression de la
fonction génératrice de X a I'aide d’une fonction hypergéométrique.

V.B — Modélisation

On considére deux urnes contenant chacune A boules dont pA sont blanches et gA sont noires. On
tire simultanément, de maniére équiprobable, n boules dans la premiére urne. On note Y le nombre
de boules blanches obtenues. On tire également, de maniére équiprobable, n boules dans la deuxiéme
urne, mais successivement et avec remise. On note Z le nombre de boules blanches obtenues.

Q35. Quelle est la loi de la variable Z 7 Donner ’espérance de Z.

Q36. Démontrer que Y < H(n,p, A).

V.C — Calcul de l’éspérance

On se propose d’utiliser la modélisation du tirage dans la premiére urne pour retrouver la valeur de
I'espérance d’une variable aléatoire suivant la loi hypergéométrique H(n, p, A).

Pour cela, on numérote de 1 & pA chacune des boules blanches contenues dans la premiére urne et,
pour tout entier naturel i € [1, pA], on pose

v 1 sila boule numérotée ¢ a été tirée,
i = .
0 sinon.

Q37. Exprimer Y a l'aide des Y; et retrouver la valeur de 'espérance de Y. La comparer a celle de
Z.

Q38. Pour 1 < i < j < pA, démontrer que la variable aléatoire Y;Y; suit une loi de Bernoulli dont
on précisera le paramétre.



V.D — Résultats asymptotiques
Soit X une variable aléatoire suivant la loi H(n,p, A). On fixe n et p. Soit k € [0, n].

Q39. Montrer que lim P(X =k) = (n)pk (1—p)"*.
A—4o00 k

Q40. Interpréter ce résultat en lien avec celui obtenuspour I'espérance de Y.
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