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Autour des fonctions hypergéométriques

Objectif

L'objectif du problème est l'étude de suites, séries et fonctions dites hypergéométriques et d'en donner
quelques exemples en analyse et en probabilités.

La partie I introduit la notion de suites et séries hypergéométriques. La partie II, indépendante
de la partie I, dé�nit la fonction Γ, permettant d'étendre la factorielle à des valeurs non entières.
La partie III, qui s'appuie sur certains résultats des deux premières parties, introduit deux familles
de fonctions hypergéométriques. Les parties IV et V, indépendantes l'une de l'autre, donnent des
exemples de fonctions hypergéométriques, respectivement dans le cadre d'une famille de polynômes
et dans un contexte probabiliste.

Notations

Soit (n, p) ∈ N2. On note

(
n

p

)
le coe�cient binomial p parmi n, égal à

n!

p!(n− p)!
si p ⩽ n et égal à

0 sinon.

On note D = R \ {−n|n ∈ N} l'ensemble des réels qui ne sont pas des entiers négatifs ou nuls.

Si f est une fonction de classe C n, les deux notations f (n) et
dnf

dxn
sont utilisées pour la dérivée n-ième

de f .

I Suites et séries hypergéométriques

Soit (un)n∈N une suite à valeurs réelles. On dit que la suite (un)n∈N est hypergéométrique lorsqu'il
existe deux polynômes non nuls P et Q de R[X] tels que

∀n ∈ N, P (n)un = Q(n)un+1. (I.1)

On dit alors que P et Q sont des polynômes associés à la suite hypergéométrique (un)n∈N.

On dit également qu'une série entière
∑

un x
n est une série hypergéométrique lorsque la suite (un)n∈N

est hypergéométrique.

Q 1. Montrer qu'une suite géométrique est hypergéométrique.

Q 2. Soit p ∈ N. Montrer que la suite de terme général un =

(
n

p

)
est hypergéométrique.

Q 3. Démontrer que l'ensemble des suites véri�ant la relation (??), avec

P (X) = X(X − 1)(X − 2) et Q(X) = X(X − 2),

est un espace vectoriel dont on précisera une base et la dimension.

Q 4. Soit (un)n∈N une suite hypergéométrique de polynômes associés P et Q. On suppose qu'il
existe un entier naturel n0 tel que P (n0) = 0 et, ∀n ⩾ n0, Q(n) ̸= 0. Justi�er que la suite (un)n∈N
est nulle à partir d'un certain rang.
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II Extension de la factorielle

On pose, pour tout x ∈ R+∗,

Γ(x) =

∫ +∞

0

tx−1 e−t dt.

Q 5. Justi�er qu'on dé�nit ainsi une fonction sur R+∗.

Q 6. Montrer que la fonction Γ est continue et strictement positive sur R+∗.

Q 7. Montrer que, pour tout x ∈ R+∗,

Γ(x+ 1) = xΓ(x). (II.1)

Q 8. Déterminer la valeur de Γ(n), pour n ∈ N∗.

On admet qu'on peut prolonger la fonction Γ sur D par une fonction continue, toujours notée Γ, qui
véri�e la relation (??) pour tout x ∈ D.

III Fonctions hypergéométriques

III.A − Symbole de Pochhammer

On dé�nit le symbole de Pochhammer, pour tout nombre réel a et tout entier naturel n par

[a]n =


1 si n = 0,

a(a+ 1) · · · (a+ n− 1) =
n−1∏
k=0

(a+ k) sinon.

Q 9. Si a est un entier négatif ou nul, justi�er que la suite ([a]n)n∈N est nulle à partir d'un certain
rang.

Q 10. Soit a ∈ R. véri�er que, pour tout entier naturel n, [a]n+1 = a[a+ 1]n.

Q 11. Soit n ∈ N. Donner une expression de [a]n

− à l'aide de factorielles lorsque a ∈ N∗;

− à l'aide de deux valeurs de la fonction Γ, lorsque a ∈ D.

III.B − Fonction hypergéométrique de Gauss

Étant donné trois nombres réels a, b et c, on appelle fonction hypergéométrique de Gauss associée
au triplet (a, b, c), la fonction, dé�nie sur un sous-ensemble de R, par

Fa,b,c(x) =
+∞∑
n=0

[a]n[b]n
[c]n

xn

n!
.

Q 12. Justi�er que, si c ∈ D, alors
[a]n[b]n
[c]n

est bien dé�ni pour tout entier naturel n.

On suppose cette condition véri�ée dans les questions suivantes.
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Q 13. Montrer que la série entière
∑ [a]n[b]n

[c]n

xn

n!
est hypergéométrique et préciser des polynômes

associés.

Q 14. Réciproquement, démontrer que l'ensemble des séries hypergéométriques associées aux polynômes
obtenus à la question précédente est un espace vectoriel dont on donnera une base et dont on pré-
cisera la dimension.

Q 15. Déterminer le rayon de convergence de la série entière
∑ [a]n[b]n

[c]n

xn

n!
.

Q 16. Justi�er que Fa,b,c est de classe C 1 sur ]−1, 1[. Calculer sa dérivée et l'exprimer à l'aide d'une
fonction hypergéométrique de Gauss.

Q 17. Justi�er que Fa,b,c est de classe C ∞ sur ] − 1, 1[ et exprimer sa dérivée n-ième à l'aide d'une
fonction hypergéométrique de Gauss.

Q 18. Exprimer la fonction x 7→ F 1
2
,1, 3

2
(−x2) à l'aide de fonctions usuelles.

Q 19. Exprimer la fonction

x 7→


ln(1 + x)

x
si x ∈ ]− 1, 1[ \ {0}

1 si x = 0

à l'aide d'une fonction hypergéométrique de Gauss.

On admet, en cas d'existence de toutes les quantités présentes dans l'expression suivante, que

Fa,b,c(1) =
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
.

Q 20. Soient N ∈ N, c ∈ D, a ∈ R tels que c−a ∈ D. Justi�er l'existence de Fa,−N,c(1) et démontrer
que

N∑
k=0

(−1)k
(
N

k

)
[a]k
[c]k

=
[c− a]N
[c]N

Q 21. Soit (u, v) ∈ N2 tels que N ⩽ min(u, v). En prenant a = −u et c = v − N + 1, montrer
l'identité de Vandermonde : (

u+ v

N

)
=

N∑
k=0

(
u

k

)(
v

N − k

)
On admet pour la suite que l'identité de Vandermonde reste valable pour tous entiers naturels u, v,
N .

Q 22. Donner une interprétation combinatoire de l'identité de Vandermonde.

III.C − Fonction hypergéométrique con�uente

Soient deux nombre réels a et c tels que c ∈ D.

Q 23. Déterminer les solutions développables en série entière de l'équation di�érentielle

xy′′(x) + (c− x)y′(x)− ay(x) = 0. (III.1)

On exprimera ces solutions à l'aide du symbole de Pochhammer et on précisera la structure al-
gébrique de leur ensemble.

On note Ma,c la solution de l'équation (??) véri�ant Ma,c(0) = 1. Cette fonction est appelée fonction

hyper-géométrique con�uente associée au couple (a, c).
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IV Les polynômes de Laguerre

Soit n ∈ N. On pose, pour tout nombre réel x,

Φn(x) = e−x xn et Ln(x) =
ex

n!
Φ(n)

n (x).

Q 24. Déterminer L0, L1, L2 et L3.

Dans toute la suite, n est un entier naturel non nul.

Q 25. En utilisant la formule de Leibniz, démontrer que la fonction Ln est polynomiale de degré n.

Déterminer les coe�cients cn,k tels que Ln(x) =
n∑

k=0

cn,kx
k.

Q 26. Pour tout nombre réel x, exprimer Φ(n)
n (x) et Φ(n+1)

n (x) en fonction de Ln(x) et L′
n(x).

Q 27. Utiliser l'égalité Φ
(n+1)
n+1 (x) =

dn+1xΦn(x)

dxn+1
, que l'on Justi�era, pour démontrer l'égalité

Ln+1(x) =

(
1− x

n+ 1

)
Ln(x) +

x

n+ 1
L′
n(x)

valable pour tout nombre réel x.

Q 28. Utiliser l'égalité Φ
(n+2)
n+1 (x) =

dn+1Φ
(1)
n (x)

dxn+1
pour démontrer l'égalité

L′
n+1(x) = L′

n(x)− Ln(x)

valable pour tout nombre réel x.

Q 29. En déduire que Ln est solution de l'équation di�érentielle

xL′′
n(x) + (1− x)L′

n(x) + nLn(x) = 0. (IV.1)

Q 30. Montrer que Ln est une fonction hypergéométrique con�uente.

V Loi hypergéométrique

On rappelle que, si U est une variable aléatoire à valeurs dans 0, ..., n, l'espérance et la variance de
U sont données par :

E(U) =
∑n

k=0 k.P(U = k) et V(U) =
∑n

k=0 k
2.P(U = k)− (E(U))2

Q31 donner l'espérance d'une loi de Bernoulli B(p), d'une loi binomiale B(n, p).

On considère un espace probabilisé (Ω,A ,P).
Soient deux entiers naturels A et n tels que n ⩽ A et p un nombre réel compris entre 0 et 1. On
suppose pA ∈ N et on note q = 1− p.
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Soit X une variable aléatoire réelle discrète sur (Ω,A ,P). On dit que X suit la loi hypergéométrique

de paramètres n, p et A lorsque
X(Ω) ⊂ J0, nK,

P(X = k) =

(
pA

k

)(
qA

n− k

)
(
A

n

) pour tout k ∈ J0, nK.

On note alors X ↪→ H(n, p, A).

V.A − Premiers résultats

Q32. Véri�er qu'on a bien dé�ni une loi de probabilité.

Q33. Soit X une variable aléatoire telle que X ↪→ H(n, p, A). Calculer l'espérance de X.

On rappelle que, pour tous entiers naturels non nuls k et N , k

(
N

k

)
= N

(
N − 1

k − 1

)
.

Q34 Montrer que la suite (P(X = k))k∈N est hypergéométrique. En déduire une expression de la
fonction génératrice de X à l'aide d'une fonction hypergéométrique.

V.B − Modélisation

On considère deux urnes contenant chacune A boules dont pA sont blanches et qA sont noires. On
tire simultanément, de manière équiprobable, n boules dans la première urne. On note Y le nombre
de boules blanches obtenues. On tire également, de manière équiprobable, n boules dans la deuxième
urne, mais successivement et avec remise. On note Z le nombre de boules blanches obtenues.

Q35. Quelle est la loi de la variable Z ? Donner l'espérance de Z.

Q36. Démontrer que Y ↪→ H(n, p, A).

V.C − Calcul de l'éspérance

On se propose d'utiliser la modélisation du tirage dans la première urne pour retrouver la valeur de
l'espérance d'une variable aléatoire suivant la loi hypergéométrique H(n, p, A).

Pour cela, on numérote de 1 à pA chacune des boules blanches contenues dans la première urne et,
pour tout entier naturel i ∈ J1, pAK, on pose

Yi =

{
1 si la boule numérotée i a été tirée,

0 sinon.

Q37. Exprimer Y à l'aide des Yi et retrouver la valeur de l'espérance de Y . La comparer à celle de
Z.

Q38. Pour 1 ⩽ i < j ⩽ pA, démontrer que la variable aléatoire YiYj suit une loi de Bernoulli dont
on précisera le paramètre.
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V.D − Résultats asymptotiques

Soit X une variable aléatoire suivant la loi H(n, p, A). On �xe n et p. Soit k ∈ J0, nK.

Q39. Montrer que lim
A→+∞

P(X = k) =

(
n

k

)
pk (1− p)n−k.

Q40. Interpréter ce résultat en lien avec celui obtenuspour l'espérance de Y .

• • • FIN • • •
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