PC

TD 1 — Bases de données

Correction

2025 - 2026

Démarrage

Sélectionner "Fichier", "ouvrir" (ou CTRL+0), et indiquer le dossier ou trouver votre base de données, a savoir la zone d’échange
de la classe, dossier informatique, puis bases_de donnees et enfin bdd.

Sélectionnez alors la base de données movies.

Exercice 1

Parcourir les différentes tables de cette base de données, et dresser son schéma relationnel.

CASTING MOVIE
Movieid cleé étrangere | entier Id clé primaire entier
Actorid clé étrangere | entier title Ch.caract.
ord entier yr entier
ACTOR Score flottant
Id clé primaire | entier Votes entier
name Ch. Caract. ‘ Director clé étrangeére | entier

Dans les exercices 2 et 3, on travaillera avec la base de données France, que 1’on ouvrira suivant la méme procédure que ci-dessus.

Nous n’utiliserons que sa table Villes2, dont le schéma relationnel est le suivant :

Villes2

Attribut Type
Cl¢ primaire

Numéro Entier
Dept Chaine de caracteres merci la Corse !
Nom Chaine de caracteres
Code postal Chaine de caractére (pourquoi ?)
Pop 2010 Entier
densité Réel

Exercice 2

On répondra aux questions ci-dessous en écrivant des « requétes » (c’est-a-dire des instructions), sur le modele de celles
données en annexe. On doit répondre a chaque question ou sous-question grice a une seule et unique requéte.

1. Y a—t—ildes villes de densité nulle ? Sont — ce les mémes que celles qui avaient une population nulle en 2010 ? Explication ?

SELECT Nom, Pop 2010, Densit¢ 2010 FROM Villes2
WHERE (Densit¢ 2010 =0 OR Pop 2010 =0) AND NOT (Densit¢ 2010 =0 AND Pop 2010=0)

On regoit pour réponse :

Nom | Pop_2010 | Densité 2010 E
1 |Blieux 55 0 IL|
2_ Majastres 2 0
|3 | Gesties 9 0
1 |LaFajelle 15 0
5_ Fontanés-de-5Sault 5 0
5_ Rochefourchat 1 0
| = 11 Ratie-des-Fands 8 nl=

Les densités ont probablement été arrondies.
. Déterminer le nombre de villes pour chaque département.

SELECT COUNT(*), Dept FROM Villes2 GROUP BY Dept

. Donner la population de chaque département.

SELECT SUM(Pop_2010), Dept FROM Villes2 GROUP BY Dept

. Donner une estimation de la superficie de la ville de Paris (vous devez trouver environ 105 km :).

SELECT Pop_2010/Densit¢_2010 FROM Villes2 WHERE Nom= "Paris'

Sortir les données de la ville (ou des villes) de densité (non nulle) minimale.

Solution de feignant : c’est laid, incomplet, mais ¢a donne une réponse partielle

SELECT * FROM Villes2 WHERE densité 2010>0 ORDER BY densité_ 2010 LIMIT 1

Mieux, méme si ¢a semble plus compliqué :

SELECT * FROM VILLES2

WHERE Densité 2010=(SELECT MIN(Densit¢ 2010) FROM Villes2 WHERE Densité 2010>0)

. Donnner la liste des noms et la population 2010 des villes dont le nom commence par B ou dont la population 2010
était supérieure a 50 000.

SELECT Nom , Pop 2010 FROM villes2

WHERE Nom LIKE 'B%' OR POP_2010>50000

Exercice 3

. Que fait la stupide requéte suivante ? Qu’aurait — on pu écrire d’autre, avec le méme résultat ?

SELECT Nom , Pop 2010 FROM villes2

WHERE Nom IN

(SELECT Nom FROM villes2

WHERE Nom LIKE 'B%")

Cette requéte renvoie le nom et la population des villes dont le nom commence par la lettre B. La requéte suivante aurait été plus
logique :

SELECT Nom , Pop 2010 FROM villes2 WHERE Nom LIKE 'B%'

. Donner la liste des villes dont la population est supérieure (ou égale) a celle de toutes les villes dont le nom
commence par A .

SELECT Nom FROM villes2 WHERE Pop 2010 >=

(SELECT MAX(POP_2010) FROME Villes2 WHERE NOM LIKE 'A%")

3. On souhaite déterminer la population moyenne (en 2010) de I’ensemble des villes dont le nom commence par ’A’,
département par département.

Que renvoient les requétes suivantes ?

SELECT AVG(nb) FROM

(SELECT Dept, Nom, COUNT(*) as nb
FROM villes2

WHERE Nom LIKE 'A%’

GROUP BY Dept)

As result

(on regoit pour réponse : 19,77)

On obtient le nombre moyen par département de villes dont le nom commence par A.

SELECT AVG(nb) FROM

(SELECT Dept, Nom, COUNT(Pop_2010) as nb

FROM villes2

GROUP BY Dept)

As result

(on regoit pour réponse : 359,8039)

On obtient le nombre moyen de villes par département. Rq : COUNT(Pop_2010) renvoie la méme chose que COUNT()

SELECT nb FROM

(SELECT Dept, Nom, AVG(Pop_2010) as nb
FROM villes2

WHERE Nom Like ('A%")

GROUP BY Dept)

As result

(on regoit pour réponse : 1637,19)

Cette requéte renvoie le résultat voulu.

4. Que fait la requéte suivante ?
SELECT Nom , Pop 2010 FROM villes2
WHERE Nom IN
(SELECT Nom FROM villes2
WHERE Pop_2010 >50000)
On pourra comparer son résultat avec celui de l'instruction suivante :
SELECT Nom , Pop 2010 FROM villes2
WHERE Pop_ 2010 >50000
La premiére requéte renvoie la liste des villes qui ont le méme nom qu’un ville de plus de 50 000 habitants, avec leur
popolation. A tritre d’exemple, une ville nommée Saint-Denis et ayant 350 habitants figurerait dans cette liste, puisqu’il

existe une autre ville, nommée Saint Denis également, et ayant plus de 50 000 habitants.

Exercice 4

On s’occupe ici de la base de données mondial, située au méme endroit que la base précédente. Cette base de données contient de
nombreuses tables de données géographiques. Parmi celles — ci, on trouve une table nommée Country, qui posséde 6 attributs :

Name Code Capital Province Area Population.

Les quatre premiers sont des chaines de caractéres, le cinquiéme un nombre flottant et le sixiéme un entier. Le code du pays est une

clé primaire de la table, son unicité est donc garantie.

1. Rédiger une requéte SQL permettant d’obtenir la liste des noms de pays dont la population excéde 60 000 000 d’habitants.
SELECT name FROM country WHERE population>60000000

2. Rédiger une requéte SQL permettant d’obtenir la méme liste, triée par ordre alphabétique.
SELECT name FROM country WHERE population>60000000 ORDER BY Name

3. Rédiger une requéte SQL permettant d’obtenir la méme liste, triée par ordre décroissant de population.
SELECT name FROM country WHERE population>60000000 ORDER BY Pop 2010 DESC

4. Rédiger une requéte SQL permettant d’obtenir la liste des noms dix plus petits pays (en terme de surface).
SELECT name FROM country ORDER BY Area limit 10

5. Rédiger une requéte SQL permettant d’obtenir la liste des quinze suivants.
SELECT name FROM country ORDER BY area DESC LIMIT 15 OFFSET 10

6. En utilisant les tables Country et Island, dresser la liste des noms de pays ou d’iles (une seule liste,merci !).
SELECT name FROM Country UNION SELECT Name FROM Island

7. Dresser la liste des noms des pays ayant le méme nom qu’une ile.

SELECT name FROM Country INTERSECTION SELECT Name FROM Island

Exercice 5

On revient & la base mondial. On y on trouve une table nommée encompasses possédant trois attributs :

Country Continent Percentage.
Le premier attribut est le code du pays, le deuxiéme le nom du continent, et le dernier la portion du pays présente sur le continent. La
clé primaire de cette table est le couple (Country, Continent), et la valeur du troisiéme argument ne peut pas étre nulle. Cette seconde
table posséde un attribut en commun avec la premiére table : I’attribut Country de la table encompasses renvoie en effet a 1’ attribut
Code de la table country (c’est une clé étrangére pour la table encompasses). Ceci va nous permettre de croiser les informations de ces

deux tables.

Q1. Rédiger une requéte SQL permettant d’obtenir la liste des pays dont une partie au moins du territoire est en Europe.

SELECT Name FROM country JOIN encompasses ON country=code AND continent='"Europe’'

Q2. Rédiger une requéte SQL permettant d’obtenir le nombre de pays qui sont a cheval sur plusieurs continents.
Voici plusieurs possibilités :
SELECT DISTINCT country.name
FROM country JOIN encompasses
On country.code=encompasses.country

WHERE encompasses.percentage<100

SELECT name
FROM country JOIN encompasses
On country.code=encompasses.country
WHERE encompasses.percentage<100
GROUP BY name

La requéte ci — dessous ne fait pas tout a fait ce que ’on veut....
SELECT count(*) C, name
FROM country JOIN encompasses

On country.code=encompasses.country
GROUP BY name
ORDER BY C DESC

... mais si on creuse un peu plus 1’idée, cela donne aussi le résultat attendu :
SELECT N FROM

(SELECT count(*) C, name N

FROM country JOIN encompasses

On country.code=encompasses.country

GROUP BY N)
WHERE C>1

Q3. Rédiger une requéte SQL permettant d’obtenir (super intéressant) le nombre moyen d’habitants des pays du
continent américain qui comptent moins de dix habitants par kilométre carré.
SELECT AVG (P) FROM
(SELECT population P
FROM country JOIN encompasses
ON country.code=encompasses.country AND continent='"America' AND 1.0*Population/Area<10)

Si I’on veut la liste de ces pays, et si I’on a peur que deux pays aient le méme nom :

SELECT DISTINCT country.name FROM country JOIN encompasses
ON country.code=encompasses.country

WHERE encompasses.Continent='"America' AND country.population/country.area < 10

ce qui revient encore a :
SELECT country.name FROM country JOIN encompasses
ON country.code=encompasses.country
WHERE encompasses.Continent='"America' AND country.population/country.area < 10

GROUP BY country.name

Exercice 6

Dans la méme base de données figure une table nommée city qui posseéde les attributs suivants :
Name Country Province Population Longitude Latitude.

L’attribut Coutry est toujours le code du pays : c’est, a nouveau, une clé étrangere pour la table city.

Q1. Déterminer les capitales européennes situées a une latitude supérieure a 60, ainsi que les noms des pays correspondants.
Cela commence a se compliquer... il faut croiser les tables country, city et encompasses :
SELECT country.capital, country.name
FROM country JOIN encompasses
ON country.code=encompasses.country
JOIN city
ON country.code=city.country

WHERE (city.latitude>60 and encompasses.continent="Europe' and city.name=country.capital)

ou, si I’on préfére :

SELECT country.capital, country.name
FROM country JOIN encompasses, city
ON country.code=encompasses.country AND country.code=city.country

WHERE (city.latitude>60 and encompasses.continent="Europe' and city.name=country.capital)

Que fait la requéte (correcte, mais ne répondant pas a la question posée) suivante ?
SELECT DISTINCT country.capital
FROM country JOIN encompasses
ON country.code=encompasses.country
JOIN city
ON country.code=city.country WHERE (city.latitude>60 and encompasses.continent='"Europe')

Q2. Latable Language posssede les attributs suivants :
Country Name Percentage.
L’attribut Country est le code du pays, Name le nom d’une langue parlée dans ce pays, et Percentage le pourcentage

d’habitants dont c’est la langue maternelle.

a. Donner la liste ordonnée (dans le sens décroissant), des 10 langues parlées dans le plus de pays.
Une jointure n’est pas nécessaire, puisque toutes les informations nécessaires figurent dans la table Language
SELECT name, COUNT(*) N
FROM language
GROUP BY name
ORDER BY N DESC LIMIT 10

b. Quelles sont les 5 langues les plus parlées dans le monde ? On précisera pour chacune d’entre elles le
nombre de personnes qui la parlent.
Cette fois — ci, il faut croiser les tables country et language :
SELECT L.name , SUM(C. population * L.percentage / 100) S
FROM language L JOIN country C
ON L.country = C.code
GROUP BY L.name
ORDER BY S DESC LIMIT 5

¢. Quel est le pays partiellement francophone dans lequel la langue frangaise est la plus minoritaire ?
SELECT country.name , language.percentage
FROM language JOIN country
ON country.code = language.country
WHERE language.name = 'French'
AND language.percentage =
(SELECT MIN (percentage) FROM language WHERE name = "French')

d. Quelle est le pourcentage de personnes francophones dans le monde ?
SELECT 100*A/B FROM
((SELECT SUM(C. population * L.percentage / 100) A
FROM language L JOIN country C
ON L.country = C.code AND L.name = 'French'),

(SELECT SUM(population) B FROM country))
ou encore :

SELECT 100*SUM(C. population * L.percentage / 100)/ (SELECT SUM(population) FROM country)
FROM language L JOIN country C
ON L.country = C.code AND L.name = 'French'

Nous ne travaillerons dans tous les exercices qui suivent qu’avec une seule base de données : la base de données eph2,

qui se trouve a ’endroit habituel.

Exercice 7

Parcourir les différentes tables, puis donner le schéma relationnel de cette base de données.

SATELLITES CORPS ETAT
Id_satellite clé étr. | entier 7 Id_corps clé primaire | entier Datem entier
Id_satellite clé étr. | entier nom Ch. car. \ Id clé étrangere Ch.caract.
masse flottant X flottant
y flottant
y flottant
VX flottant
vy flottant
vz flottant

Exercice 8

On ordonne les corps par masse décroissante. Parmi les corps suivants : Titan, Terre, Lune, Ganymede, quels sont ceux dont le rang

est situé entre la 13 et la 22°™ position ?

SELECT nom FROM corps
WHERE
nom IN (select nom from corps ORDER BY masse DESC LIMIT 10 OFFSET 12)
AND
(nom LIKE 'Lune' OR nom LIKE 'Terre' OR nom LIKE 'Titan' OR nom LIKE 'Ganymede')

Exercice 9

Donner la liste des noms des satellites de Neptune présents dans cette base de données.

SELECT nom FROM corps JOIN satellites
ON id_satellite=id_corps
AND id planete=
(SELECT id_corps FROM corps WHERE nom LIKE NEPTUNE")

Exercice 10

Deux corps n’ont aucune donnée présente dans la table etat. Quels sont —ils ?

SELECT nom FROM corps JOIN etat
ON corps.id_corps=etat.id_corps
AND corps.id_corps NOT IN
(SELECT id_corps FROM etat GROUP BY id_corps)

Exercice 11

De quelle(s) planete(s) les deux corps ci — dessus sont — ils satellites ?

SELECT nom FROM corps JOIN satellites
ON id corps=id_planete
AND id_satellite NOT IN
(SELECT corps.id_corps FROM corps JOIN etat
ON corps.id_corps=ctat.id_corps)
GROUP BY nom

Exercice 12

On néglige les deux corps ci — dessus. Quelle est (s’il y en a une), la premiére date a laquelle tous les corps ont des positions établies
dans la table etat ?
SELECT MIN(D) FROM
(SELECT DATEM AS D, COUNT() AS C FROM ETAT GROUP BY Datem
HAVING C =
(SELECT MAX(E) FROM (SELECT COUNT() AS E FROM ETAT GROUP BY Datem)))

Exercice 13

Donner le nombre d’entrées enregistrées dans la table etat concernant le systéme planétaire de Neptune.

SELECT SUM(C) FROM
(SELECT id_corps, COUNT(*) C FROM etat
WHERE id_corps IN
(SELECT id_satellite FROM satellites
WHERE id planete=(SELECT id_corps FROM corps WHERE NOM LIKE 'Neptune'))
OR id_corps=(SELECT id_corps FROM corps WHERE NOM LIKE 'Neptune')
GROUP BY id_corps)

