TD6

Optique ondulatoire

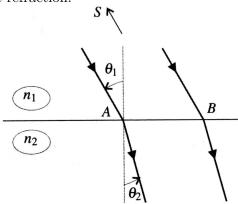
Questions de cours

- Expliquer le modèle du train d'onde
- Que sont le temps de cohérence et la longueur de cohérence
- Comment évolue la largeur spectrale d'un train d'onde en fonction de la longueur de cohérence du train d'onde?
- Citer des sources de lumières. Quelle est la particularité de la lumière qu'elles émettent?
- Donner des ordres de grandeurs de longueur de cohérence de 3 sources
- Citer des détecteurs de lumière en précisant leur temps de réponse
- Donner l'expression de l'intensité mesurée par un détecteur
- Que signifie le modèle scalaire de la lumière?
- Qu'est ce que le chemin optique
- Donner le théorème de Malus
- Dessiner les surfaces d'onde pour une onde plane, une onde sphérique
- Donner l'expression générale d'une vibration lumineuse
- Démontrer l'expression donnant la phase en un point M en fonction de celle en S, un point atteint précédemment par l'onde
- Dans quel cas il y a-t-il un déphasage supplémentaire
- Donner l'expression d'une onde sphérique, d'une onde plane
- Comment une lentille modifie-t-elle les surfaces d'onde?

Applications directes du cours

Exercice 1 - Démonstration de la loi de la réfraction - \forall / \star

Une onde plane monochromatique émise par une source S tombe sur un dioptre plan séparant le milieu d'indice n_1 , contenant la source, du milieu d'indice n_2 . On note θ_1 l'angle d'incidence sur le dioptre et θ_2 l'angle de réfraction.



- 1. On note M_1 le point d'intersection de la surface d'onde passant par A et du deuxième rayon dans l'espace d'indice n_1 , et M_2 le point d'intersection de la surface d'onde passant par B et du premier rayon dans l'espace d'indice n_2 . Que dire des chemins optiques (M_1B) et (AM_2) ?
- 2. En déduire la loi de Snell-Descartes pour la réfraction.

Exercice 2 - Tache d'huile - ♥♥ / ★★

Une goutte d'huile déposée sur une flaque d'eau s'étale en surface et forme une mince couche dont on supposera l'épaisseur e constante. Un observateur regarde un reflet du soleil en incidence normale sur la flaque, et en se plaçant à la quasi-verticale de la flaque, il observe une teinte magenta. On rappelle que le magenta est la couleur complémentaire du vert.

$$Donn\acute{e}s: n_{eau} = 1,33 \text{ et } n_{huile} = 1,5$$

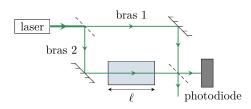
1. En considérant uniquement les interférences entre une onde réfléchie sur l'interface air-huile et l'autre sur l'interface huile-eau, montrer que la condition d'interférences destructives s'écrit :

$$2n_h e = (k+1)\lambda$$

avec λ la longueur d'onde de la lumière dans le vide.

- 2. Expliquer alors pourquoi le reflet est coloré.
- 3. Estimer l'épaisseur minimale de la tâche d'huile donnant cette teinte. Peut-on déterminer sans ambiguïté l'épaisseur de la sorte ?

Exercice 3 - Mesure de l'indice optique du méthane - $\forall \forall \forall$ / $\star \star$



Un interféromètre de Mach-Zehnder, schématisé ci-contre, est composé de deux miroirs et de deux lames semi-réfléchissantes qui transmettent la moitié de l'intensité lumineuse et réfléchissent l'autre moitié. L'interféromètre est éclairé par un laser de longueur d'onde $\lambda=532~nm$, et une photodiode mesure l'intensité dans l'une des voies de sortie de l'interféromètre.

Une cuve fermée de longueur $\ell=10,0$ cm est placée dans l'un des bras. Cette cuve contient initialement de l'air, d'indice optique n_{air} , progressivement remplacé par du méthane d'indice $n_{CH_4} > n_{air}$. Au cours de l'opération, la photodiode permet d'observer le défilement de 32 franges.

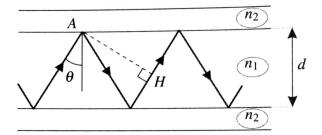
- 1. Exprimer l'ordre d'interférence p_{air} lorsque la cuve est remplie d'air en fonction des longueurs géométriques L_1 , L_2 et ℓ des bras de l'interféromètre et de la cuve.
- 2. Exprimer de même l'ordre p_{CH_4} lorsque la cuve est remplie de méthane.
- 3. En déduire l'indice optique du méthane, sachant que $n_{air} = 1 + 2,78;10^{-4}$.

Lavoisier - PC 2

Approfondissements

Exercice 4 - Fibre à saut d'indice - ♥♥ / ★★

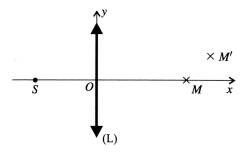
Une fibre optique est schématisée par une lame de verre d'épaisseur d et d'indice n_1 placée entre deux couches de verre d'indice $n_2 < n_1$. Les rayons lumineux suivent des trajets compris dans un plan perpendiculaire à la lame, du type de celui qui est représenté sur la figure suivante :



- 1. À quelle condition portant sur l'angle θ le rayon est-il confiné dans la lame d'indice n_1 ?
- 2. Pour qu'il y ait propagation de l'énergie, l'onde doit être en phase aux points A et H de la figure. En déduire une nouvelle condition sur l'angle θ .
- 3. Chaque valeur de θ correspond à un mode de propagation. Calculer le nombre de modes possibles si $d = 50\mu m$, $\lambda_0 = 0, 5 \mu m$, $n_1 = 1, 5$ et $n_2 = 1, 4$.

Exercice 5 - Chemin optique - ♥/ ★

La lentille (L) est en verre d'indice n, et a une épaisseur e au niveau de son centre optique O. Sa distance focale image est notée f'. Elle est plongée dans l'air d'indice n_{air} . Soient M et M' deux points dont les coordonnées dans le repère (Oxy) sont respectivement (x,0) et (x',y'). Une source S est placée devant la lentille (L) sur l'axe (Ox).



- 1. On suppose que OS = f'. Construire les rayons issus de S qui parviennent en M et en M'. Exprimer les chemins optiques (SM) et (SM') en fonction des paramètres du problème.
- 2. Même question avec $OS = \frac{3f'}{2}$.

Lavoisier - PC 3

Éléments de réponse

1.
$$(SB) - (SA) = n_1 \ell \sin \theta_1$$

$$\Delta \varphi = \frac{4\pi n_h e}{\lambda} - \pi$$
; $e_{min} = 180 \ nm$

3.
$$p_{air} = \frac{n_{air}(L_2 - L_1)}{\lambda}$$
; $p_{CH_4} = \frac{n_{air}(L_2 - L_1)}{\lambda} + \frac{n_{CH_4} - n_{air}\ell}{\lambda}$
 $n_{CH_4} = 1 + 4,48.10^{-4}$

4.
$$\sin \theta > \frac{n_2}{n_1}$$
; $\cos \theta = m \frac{\lambda_0}{2n_1 d}$, avec m entier; $0 \le m \le \frac{2d}{\lambda_0} \sqrt{n_1^2 - n_2^2}$: 108 modes possibles.

5.
$$(SM) = n_{air}(f'+x) + (n-n_{air})e$$
; $(SM') = (SH) = n_{air}(f'+x') + (n-n_{air})e$.
 $(SM) = n_{air}(\frac{3f'}{2}+x) + (n-n_{air})e$; $(SM') = n_{air}(\frac{9f'}{2} - \sqrt{(x'-3f')^2 + y'^2}) + (n-n_{air})e$.

Lavoisier - PC 4