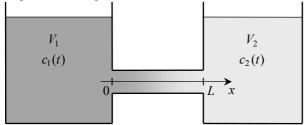
Exercices du chapitre Th2

Bilans et solutions stationnaires

1. Régime quasi stationnaire sans création/absorption

Deux récipients de volumes V_1 et V_2 communiquent par un tuyau poreux de longueur L et de section S.



Une solution moléculaire se trouve de part et d'autre, aux concentrations molaires respectives $c_1(t)$ et $c_2(t)$; chacune de ces concentrations est supposée uniforme dans tout le volume du récipient correspondant, et elles vérifient $c_1(t) > c_2(t)$.

Selon l'axe (Ox) s'établit dans le tuyau un flux de molécules dont la densité molaire j_n est donnée par la loi de Fick (sous forme molaire) avec un coefficient D.

- a) Effectuer un bilan et en déduire l'équation aux dérivées partielles vérifiée par la concentration c(x,t) dans le tuyau.
- b) Quel temps caractéristique T peut-on associer à la diffusion dans le tuyau ?

On suppose maintenant que l'évolution des concentrations dans les deux récipients se fait sur une durée caractéristique τ très grande devant T: ainsi, on peut faire l'approximation d'un régime stationnaire de diffusion.

- c) Montrer alors que dans le tuyau, la concentration est une fonction affine de x, et en déduire que la densité de courant molaire j_n est proportionnelle à $\Delta c = c_1 c_2$.
- d) Établir l'équation différentielle vérifiée par $\Delta c(t)$.
- e) Intégrer cette équation en introduisant un temps de relaxation τ que l'on précisera.

2. Diffusion dans un semi-conducteur

Dans un barreau cylindrique de silicium d'axe (Ox), de section droite A et de longueur L (très grande), on étudie le courant électrique dû à la diffusion de particules P de charge électrique q. Le nombre de particules P par unité de volume est noté $n^*(x,t)$; le coefficient de diffusion est D.

Dans le silicium, les particules P peuvent être créées par un processus thermique, le nombre de particules créées par unité de volume et de temps étant : $\sigma_{\rm cr} = \frac{k}{\tau}$ avec k et τ deux constantes positives. Elles peuvent être également absorbées selon la loi : $\sigma_{\rm abs}(x,t) = \frac{n^*(x,t)}{\tau}$.

a) Effectuer un bilan et en déduire l'équation de diffusion.

On suppose établi un régime stationnaire. On pose $L_{\rm m}=\sqrt{D\tau}$ et on suppose la longueur du barreau quasi infinie : $L\gg L_{\rm m}$.

- b) Déterminer $n^*(x)$ en fonction de $n^*(0)$, k, L_m et x.
- c) En déduire $\overrightarrow{j_N}(x)$, puis l'intensité du courant électrique I(x) dû à la diffusion de ces particules.

3. Évaporation d'une gouttelette d'eau sphérique

On considère une gouttelette d'eau liquide, de centre O, de rayon a, en suspension dans une atmosphère de taux d'humidité relative H: il s'agit du rapport de la pression partielle de vapeur d'eau sur la pression de vapeur saturante $P_{\rm sat}$ à la température T considérée. Ainsi, la concentration particulaire

en vapeur d'eau, loin de la goutte $(r \gg a)$, est égale à $H \times n_{\text{sat}}^*$ avec n_{sat}^* celle d'une atmosphère saturée en eau.

a) Exprimer n_{sat}^* en fonction de P_{sat} , T, R (constante des gaz parfaits) et \mathfrak{N}_A (constante d'Avogadro).

La gouttelette s'évapore progressivement, et la vapeur d'eau ainsi créée diffuse dans l'air environnant avec un coefficient de diffusion D. Pour r = OM > a, sa concentration particulaire $n^*(r,t)$ ne dépend que de la distance r et du temps t, et le vecteur densité de flux est de la forme $\overline{j_N}(M,t) = \overline{j_{N,r}(r,t)e_r}$ en coordonnées sphériques. Il n'y a pas de processus de production ni de consommation d'eau en dehors de la goutte.

- b) Faire un bilan sur une coquille sphérique comprise entre r et $r+\mathrm{d} r$ et en déduire une équation aux dérivées partielles.
- c) En déduire l'équation de diffusion à l'aide de la loi de Fick.d) L'évaporation de la gouttelette étant très lente, on fait
- l'approximation d'un régime stationnaire. Montrer alors que la concentration de vapeur d'eau à l'extérieur de la goutte est de

la forme: $n^*(r) = \frac{A}{r} + B$ avec A et B deux constantes.

Déterminer A et B, sachant que la concentration à la surface de la goutte est n_{sat}^* (équilibre liquide/vapeur établi).

e) Déterminer $j_{N,r}(a)$, puis en déduire le taux de perte de masse $\frac{\mathrm{d}\,m}{\mathrm{d}\,t}$ de la gouttelette en fonction de $D,H,a,\,n_{\mathrm{sat}}^*,\,\mathfrak{N}_{\mathrm{A}}$ et M (masse molaire de l'eau).

Solution de l'équation de diffusion en régime variable

4. Élargissement d'une tache d'encre

Un trait d'encre très fin est tracé sur une feuille de papier : il s'élargit progressivement sous l'effet de la diffusion. On étudie cette situation de manière simplifiée en se plaçant dans un modèle unidimensionnel : la concentration des particules de l'encre ne dépend que de l'abscisse x et de l'instant t. La feuille a une épaisseur e selon l'axe (Oz), une largeur e selon l'axe e0, et une longueur infinie selon l'axe e0.

Le nombre total de particules d'encre est noté N. À l'instant initial, elles sont supposées infiniment concentrées en x=0, sur la largeur l et l'épaisseur e de la feuille, et leur concentration est nulle partout ailleurs. À un instant quelconque, les conditions aux limites sont : $n^*(+\infty,t) = n^*(-\infty,t) = 0$ car l'encre progresse à vitesse finie.

- a) Rappeler sans démonstration l'équation de diffusion unidimensionnelle, dans un milieu sans processus de création ou destruction de particules.
- b) Vérifier que la fonction suivante est solution de l'équation de diffusion, et respecte les conditions initiales et aux limites :

$$n^*(x,t) = \frac{A}{\sqrt{Dt}} \exp\left(-\frac{x^2}{4Dt}\right).$$

- c) Représenter graphiquement cette concentration en fonction de *x* à deux instants *t* différents.
- d) Déterminer la constante A en fonction de N, l et e.
- e) On définit la largeur $\lambda(t)$ de la tache à un instant t par :

$$n^*\left(\frac{\lambda(t)}{2},t\right) = \frac{n^*(0,t)}{10}.$$

Calculer $\lambda(t)$ et commenter le résultat.

Donnée pour cet exercice : $\int_{-\infty}^{+\infty} \exp(-u^2) du = \sqrt{\pi}.$

Préponses partielles

- 1. a) Avec $j_n = -D\frac{\partial c}{\partial x}$ on établit $\frac{\partial c}{\partial t} = D\frac{\partial^2 c}{\partial x^2}$. d) Faire un bilan pour chaque récipient. 2. a) $\frac{\partial n^*}{\partial t}(x,t) = D\frac{\partial^2 n^*}{\partial x^2}(x,t) \frac{1}{\tau}n^*(x,t) + \frac{k}{\tau}$.
- 3. b) $\frac{\partial n^*(r,t)}{\partial t} = -\frac{1}{r^2} \frac{\partial \left[r^2 j_{N,r}(r,t)\right]}{\partial r}.$ d) $n^*(r) = n_{\text{sat}}^* \left[\frac{a(1-H)}{r} + H\right].$ 4. d) $A = \frac{N}{2le\sqrt{\pi}}.$ e) $\lambda(t) = 4\sqrt{Dt \ln 10}.$