|Mc3. Dynamique des ﬂuides\

1. Forces dans un fluide en mouvement
a) Forces a distance
b) Forces de pression

¢) Forces de viscosité > Parties traitées en classe

2. Nombre de Revnolds
a) Expérience de Reynolds
b) Généralisation

c) Force de trainée sur une sphére
e Formule générale de la trainée
Un objet se déplacant dans un fluide, a la vitesse V' =Vu par rapport au fluide, subit de la part de celui-ci une force

globale F,ducala pression et a la viscosité. On décompose cette force en deux termes : le terme E tangentiel & V est

la force de trainée ; le terme F, normal a V estla force de portance.

. " L = 1 -
On peut écrire la force de trainée sous la forme standardisée générale : | F; = Y pC.SV?u

ou p est la masse volumique du fluide, S I’aire de la surface frontale (ou maitre couple) de 1’objet (surface obtenue par
projection de 1’objet sur un plan orthogonal a la vitesse), et C, le coefficient de trainée (noté aussi Cy pour drag

coefficient en anglais), sans dimension, qui dépend de la forme de 1’objet et du nombre de Reynolds de I’écoulement.

e Cas d’une sphere de rayon R : variations de C,

On détermine le nombre de Reynolds en utilisant le diamétre D = 2R. La surface frontale est un disque d’aire S = zR>.
De nombreux travaux expérimentaux ont permis d’obtenir les variations de C, en fonction de Re (graphes toujours

réalisés en échelles logarithmiques).
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On distingue deux domaines particuliers importants pour lesquels on obtient un résultat simple.

. . . 24 .
— Pour Re < 1 environ, on trouve logC, =log24 —log Re (droite de pente — 1), soit Cx:R_ , ce qui donne finalement,
e

apres simplification, une force proportionnelle a la vitesse (trainée /inéaire) : ft = —6m1RI7 (formule de Stokes).
— Pour 10° < Re < 10° environ, on trouve la valeur sensiblement constante C,=0,4, ce qui donne effectivement une force

proportionnelle au carré de la norme de la vitesse (trainée quadratique) : E =-0,2p TR u .



3. Equations de la dynamique

a) Equation de Navier—Stokes pour un écoulement incompressible

e Etablissement de I’équation

Appliquons le PFD (ou le TRC, théoréme de la résultante cinétique) a une particule fluide de volume dz, au sein d’un
¢coulement incompressible, dans un référentiel galiléen, en considérant le poids comme seule force volumique :

dmaM =P +dF+dF ot pd{%;q;gmﬂj:pmg_gﬁp¢+nmmf

En simplifiant par dz on obtient I’équation de Navier—Stokes : |p (% + (; . grad)\j) = pg —grad P+ nAv|.

éc incompr
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Elle peut s’écrire aussi : p(% + grad% +r1otv A ;j =pg—grad P+nAv.
t

® Dans certaines conditions, il faut éventuellement ajouter au second membre des termes de forces volumiques
supplémentaires, par exemple des forces d’inertie.

e La viscosité, phénomeéne diffusif

Considérons a nouveau le cas particulier de 1’écoulement simple de cisaillement v(M,7) = v, (y,t)e, , ou I’axe (Ox) est
supposé horizontal. Appliquons cette équation et projetons-la sur (Ox) :

ov, ov, orP v, . ov, n 0%,
p + pv, =0——+7y 5 soit =——
ot Ox Ox oy ot p Oy

0 0

On reconnait la forme d’une équation de diffusion dans la direction (Oy). Or la diffusion concerne toujours une grandeur
extensive (nombre de particules, énergie...), dont la densité volumique apparait dans les deux dérivées. Ici, en multipliant

. , . . . 0 0?
chaque terme par p (qui est une constante dans cet écoulement incompressible), on obtient : (pv.) =1 (pv.)

ot p o’

ou pv, est la densité volumique de quantité de mouvement sur (Ox).
La viscosité est donc un phénomeéne de diffusion de la quantité de mouvement, 'y
se produisant spontanément depuis les zones de grande concentration (couches ) > > >
de fluide rapides) vers les zones de moindre concentration (couches lentes), diffusion de la
dans une direction orthogonale a celle de la vitesse. uantité de
Le coefficient de diffusion correspondant n’est autre que la viscosité Yy i\ i\ mouvement
cinématique v = n (qui s’exprime bien en m?-s7!). >

P 0 x

e Comparaison des ordres de grandeur
Le deuxiéme terme du premier membre, p(; . grad)\: , est le terme convectif (provenant de 1’accélération convective). Le

dernier terme du second membre, ;1A\7 , est le terme diffusif (exprimant la viscosité, diffusion de quantité de mouvement).
Comparons leurs ordres de grandeur, pour un écoulement de taille caractéristique D :
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Ainsi le nombre de Reynolds représente le rapport entre les effets convectif et diffusif dans un écoulement.
— Si Re est élevé, le transfert de quantit¢é de mouvement par convection prédomine (les particules rapides se mélangent

Hp(;@);u ~ p%V et ||11A\7|| ~ n% donc Re| (nombre de Reynolds).

facilement aux lentes, notamment par des tourbillons), et on peut négliger le terme 7 Av dans I’équation.
— Si Re est faible, le transfert de quantité de mouvement par diffusion (la viscosité) prédomine, et on peut négliger le

terme p(\: . grad); dans 1’équation.

e Résolution et conditions aux limites

L’équation de Navier—Stokes est 1’équation dynamique fondamentale pour étudier tout écoulement incompressible. Cette
équation étant trés complexe, et notamment non linéaire (a cause du deuxiéme terme), on doit faire des approximations
avant de pouvoir la résoudre dans des conditions données. On peut notamment faire 1’une des deux approximations ci-
dessus, aprés avoir estimé le nombre de Reynolds.

>
Comme toujours, des conditions aux limites seront nécessaires pour déterminer —
certaines constantes. En plus des conditions aux limites cinématiques (notamment la —r
continuité de la vitesse normale), la viscosité ajoute une condition supplémentaire : la —>
continuité de la vitesse tangentielle (sinon la force de viscosité deviendrait infinie). En _”
particulier, sur une paroi immobile, la vitesse du fluide doit étre nulle (composantes _)_)

normale et tangentielle toutes les deux nulles) : le fluide « accroche » aux parois.



b) Ecoulement parfait et relation de Bernoulli

e Notion d’écoulement parfait

Un écoulement est dit parfait s’il ne comporte aucun phénomene diffusif : notamment, pas de viscosité et pas de transfert
thermique. Une particule de fluide évolue alors de fagon adiabatique réversible, ¢’est-a-dire isentropique.

C’est un cas idéal qui suppose une viscosité nulle (ce qui, en réalité, n’existe que pour I’hélium superfluide a trés basse
température). En pratique, on peut s’en approcher dans certaines conditions.

e Couche limite et écoulement parfait couche limite
Dans un écoulement & grand nombre de Reynolds, les effets de la viscosité sont >
notables seulement au voisinage des parois, dans une couche limite dont >

o o . D o D écoulement —->
1I’épaisseur peut étre évaluée selon : J ~ N En dehors de la couche limite, les parfait >
effets de la viscosité sont négligeables : 1’écoulement peut donc étre considéré >
comme parfait dans le fluide suffisamment loin des parois. couche limite

® Sans le terme de viscosité, 1’équation de Navier—Stokes devient I’équation d’Euler : p[% + (\7 . M);J = pg - gr71P .
t

Celle-ci est valable pour tout écoulement parfait, méme s’il est compressible (car c’est justement le terme nA; qui
nécessitait de se restreindre a un écoulement incompressible).

e Relation de Bernoulli pour un écoulement parfait, stationnaire, incompressible et homogéne

o , . . - A : v
Considérons un écoulement parfait (on néglige n#Av dans I’équation de Navier—Stokes), stationnaire [8_20} ,
t

incompressible et homogene (c’est partout le méme fluide, sous la méme phase, avec une masse volumique p uniforme).
2 2

L’équation s’écrit dans ce cas : p(grad% +r1otv A ;j = p§ —gradP  soit grad% + pﬁ; Av= p§ —gradP.
Définissons un axe (Oz) vertical ascendant, de sorte que g =—ge. : on peut alors écrire pg = —pge. =—grad(pgz). En

. . . — 1 -
regroupant les trois gradients on obtient donc : grad(P + 5 pv:+p gzj =—protvAv.

Distinguons alors deux sous-cas.

. . . . — 1 ~ . .
— Si I’écoulement est également irrotationnel, il reste : grad[PJrE pv:+ pgzj =0. Or une fonction de gradient nul

. . 1 .
partout est une fonction uniforme. On a donc dans ce cas : |P+—pv? + pgz =cte dans tout le fluide|,
2 éc pft, sta, inc, hom, irr]
— Sinon, calculons la circulation de ce vecteur le long d’une ligne de champ entre deux points A et B :

B___ | - B o _ B
j grad(PJr%pszrpgzj-df:—J‘ (prothv)-dﬁ soit j d(P-i-%sz-i-ngj:O
A A A

(I’intégrale de droite est nulle car ds I V sur une ligne de courant, donc (r?ot; A 17) 1d7¢ )

1 1 .
donc finalement | P, + 5 pvi+pgz =P+ 5 pvs + pgzy pour A et B sur une méme ligne de courant |,

éc pft, sta, inc, hom

Le terme 5 pv? est parfois appelé pression dynamique (par opposition a la pression statique P).

1 o, . .
La grandeur P+5 pv? + pgz est appelée charge. On dit ainsi qu’il y a conservation de la charge (ou qu’il n’y a pas de

perte de charge) le long d’une ligne de courant, ou méme dans tout le fluide dans le cas irrotationnel.

e Applications de la relation de Bernoulli
— Effet Venturi :—> N\
Considérons, dans un écoulement stationnaire incompressible, un tube de S — S, ——
courant horizontal de section variable (cela peut étre une canalisation) : il y a . — —_—
conservation du débit volumique le long du tube de courant. Pour simplifier, :_’ Vi —
supposons la vitesse uniforme sur chaque section rectiligne : le débit volumique —

est D, =S, =8,v, ;doncsi S, <, alors v, >v,.

1 1
Appliquons alors la relation de Bernoulli sur une ligne de courant : P +—pv2 + pe%, =P, +—pv2 + donc P, <P.
ppliq g P pg% =P S PV e ) <R

De fagon plus générale, si on peut négliger 1’effet du poids, la pression est plus faible dans une zone ou la vitesse est plus
grande (donc les lignes de courant plus serrées). Cette dépression permet d’interpréter diverses situations (portance sur
une aile, aspiration par une trompe a eau ou un carburateur de voiture...).



— Tube de Pitot

C’est un dispositif de mesure de vitesse présent notamment sur les avions : la D
mesure .de pr'ession en deux points différents (B et D sur le schéma) permet g (it aPrat)
d’obtenir la vitesse v,, de 1’écoulement loin en amont du tube.

. 1 . 1
Sur la ligne de courant AB : P, + 3 pvi o+ %7/ =P +0+ M . Le capteur de pression en B mesure donc P, + 5 pv2.

. . 1 1 . N
Sur la ligne de courant voisine CD: P, +E pv2+pgze =Py +E pvh +pgzp . Le tube étant trés étroit, z, ~z- et

vp =V, (écoulement trés peu perturbé), donc P, ~ P, : le capteur en D mesure la pression « statique » P, .

. . . , . 2P - PR
Finalement, la différence entre ces deux pressions permet de déterminer v,, = 20 = Fp) .
\f p

— Formule de Torricelli Q

Considérons un récipient de section S, rempli de liquide, et qui se vide lentement par un
trés petit trou de section s < .S. On note / la hauteur du liquide entre le trou de vidange
et la surface libre, et on cherche a déterminer la vitesse v de sortie du liquide.

Il y a conservation du débit volumique (écoulement incompressible) :

=sv, dont on déduit <«v.

D, V (surface libre) — DV(trou) soit S

On va alors considérer I’écoulement comme quasi stationnaire, ce qui permet
d’appliquer la relation de Bernoulli sur une ligne de courant entre un point 4 de la

. . 1 1
surface libre et un point B du trou : P, +Epvi +pgz, =Py +Epv§ +pgzp.

<v=vy.Enfin z,—zz=h.

. . dh
La surface libre et le trou étant au contact de 1’air, P, = P; = P, . De plus v, = ‘E

. 1
On obtient donc finalement : pgh = 5 pv? d’ot v=./2gh .

C’est la méme expression que celle de la vitesse d’un point matériel en chute libre sans vitesse initiale.

4. Bilans dynamiques

a) Surface de controle et bilan de masse
b) Bilan d’énergie cinétique

¢) Bilan de quantité de mouvement

Partie qui sera traitée en classe




