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Mc3. Dynamique des fluides 
 

1. Forces dans un fluide en mouvement 
a) Forces à distance 
b) Forces de pression 
c) Forces de viscosité 
 

2. Nombre de Reynolds 
a) Expérience de Reynolds 
b) Généralisation 

 

Parties traitées en classe  

 
c) Force de traînée sur une sphère 
● Formule générale de la traînée 
Un objet se déplaçant dans un fluide, à la vitesse V V u

�� �
 par rapport au fluide, subit de la part de celui-ci une force 

globale F
��

, due à la pression et à la viscosité. On décompose cette force en deux termes : le terme tF
���

 tangentiel à V
��

 est 

la force de traînée ; le terme pF
���

 normal à V
��

 est la force de portance. 

On peut écrire la force de traînée sous la forme standardisée générale : 2
t

1

2
xF ρC SV u 

��� �
 

où ρ est la masse volumique du fluide, S l’aire de la surface frontale (ou maître couple) de l’objet (surface obtenue par 
projection de l’objet sur un plan orthogonal à la vitesse), et xC  le coefficient de traînée (noté aussi dC  pour drag 

coefficient en anglais), sans dimension, qui dépend de la forme de l’objet et du nombre de Reynolds de l’écoulement. 
 

● Cas d’une sphère de rayon R : variations de xC  

On détermine le nombre de Reynolds en utilisant le diamètre D = 2R. La surface frontale est un disque d’aire S = πR2. 
De nombreux travaux expérimentaux ont permis d’obtenir les variations de xC  en fonction de Re (graphes toujours 

réalisés en échelles logarithmiques). 
 

 
 
On distingue deux domaines particuliers importants pour lesquels on obtient un résultat simple. 

– Pour Re < 1 environ, on trouve log log 24 logxC Re   (droite de pente – 1), soit 
24

xC
Re

 , ce qui donne finalement, 

après simplification, une force proportionnelle à la vitesse (traînée linéaire) :  t 6F πηRV 
��� ��

 (formule de Stokes). 

– Pour 103 < Re < 105 environ, on trouve la valeur sensiblement constante 0,4xC  , ce qui donne effectivement une force 

proportionnelle au carré de la norme de la vitesse (traînée quadratique) :  2 2
t 0,2F ρπR V u 
��� �

. 
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3. Équations de la dynamique 
a) Équation de Navier–Stokes pour un écoulement incompressible 
● Établissement de l’équation 
Appliquons le PFD (ou le TRC, théorème de la résultante cinétique) à une particule fluide de volume d τ , au sein d’un 
écoulement incompressible, dans un référentiel galiléen, en considérant le poids comme seule force volumique :  

p viscd ( , ) d d dm a M t P F F  
� �� ��� �����

    soit   d grad d grad d Δ d
v

ρ τ v v ρ τ g P τ η v τ
t

 
     

 

�
� ����� � �� ����� �

. 

En simplifiant par d τ  on obtient l’équation de Navier–Stokes :   grad grad Δ
v

ρ v v ρg P η v
t

 
     

 

�
� ����� � �� ����� �

. 

Elle peut s’écrire aussi : 
2

grad rot grad Δ
2

v v
ρ v v ρg P η v

t

 
      

 

�
����� ��� � � �� ����� �

. 

 Dans certaines conditions, il faut éventuellement ajouter au second membre des termes de forces volumiques 
supplémentaires, par exemple des forces d’inertie. 
 

● La viscosité, phénomène diffusif 
Considérons à nouveau le cas particulier de l’écoulement simple de cisaillement ( , ) ( , )x xv M t v y t e

� ���
, où l’axe (Ox) est 

supposé horizontal. Appliquons cette équation et projetons-la sur (Ox) : 

� �

2

2

0 0

0x x x
x

v v P v
ρ ρv η

t x x y

   
   

   
  soit  

2

2
x xv η v

t ρ y

 


 
. 

On reconnaît la forme d’une équation de diffusion dans la direction (Oy). Or la diffusion concerne toujours une grandeur 
extensive (nombre de particules, énergie…), dont la densité volumique apparaît dans les deux dérivées. Ici, en multipliant 

chaque terme par ρ (qui est une constante dans cet écoulement incompressible), on obtient :  
2

2

( ) ( )x xρv η ρv

t ρ y

 


 
  

où xρv  est la densité volumique de quantité de mouvement sur (Ox).  

La viscosité est donc un phénomène de diffusion de la quantité de mouvement, 
se produisant spontanément depuis les zones de grande concentration (couches 
de fluide rapides) vers les zones de moindre concentration (couches lentes), 
dans une direction orthogonale à celle de la vitesse. 
Le coefficient de diffusion correspondant n’est autre que la viscosité 

cinématique 
η

ν
ρ

  (qui s’exprime bien en 2 1m s ). 
 

 

● Comparaison des ordres de grandeur 

Le deuxième terme du premier membre,  gradρ v v
� ����� �

, est le terme convectif (provenant de l’accélération convective). Le 

dernier terme du second membre, Δη v
�

, est le terme diffusif (exprimant la viscosité, diffusion de quantité de mouvement). 

Comparons leurs ordres de grandeur, pour un écoulement de taille caractéristique D :  

 grad
V

ρ v v ρ V
D


� ����� �

∼  et 
2

Δ
V

η v η
D

�
∼  donc 

 grad

Δ

ρ v v ρVD

ηη v


� ����� �

� ∼  soit 
 grad

Δ

ρ v v
Re

η v


� ����� �

� ∼  (nombre de Reynolds). 

Ainsi le nombre de Reynolds représente le rapport entre les effets convectif et diffusif dans un écoulement. 
– Si Re est élevé, le transfert de quantité de mouvement par convection prédomine (les particules rapides se mélangent 

facilement aux lentes, notamment par des tourbillons), et on peut négliger le terme Δη v
�

 dans l’équation. 

– Si Re est faible, le transfert de quantité de mouvement par diffusion (la viscosité) prédomine, et on peut négliger le 

terme  gradρ v v
� ����� �

 dans l’équation. 
 

● Résolution et conditions aux limites 
L’équation de Navier–Stokes est l’équation dynamique fondamentale pour étudier tout écoulement incompressible. Cette 
équation étant très complexe, et notamment non linéaire (à cause du deuxième terme), on doit faire des approximations 
avant de pouvoir la résoudre dans des conditions données. On peut notamment faire l’une des deux approximations ci-
dessus, après avoir estimé le nombre de Reynolds. 
 

Comme toujours, des conditions aux limites seront nécessaires pour déterminer 
certaines constantes. En plus des conditions aux limites cinématiques (notamment la 
continuité de la vitesse normale), la viscosité ajoute une condition supplémentaire : la 
continuité de la vitesse tangentielle (sinon la force de viscosité deviendrait infinie). En 
particulier, sur une paroi immobile, la vitesse du fluide doit être nulle (composantes 
normale et tangentielle toutes les deux nulles) : le fluide « accroche » aux parois.  

R 

y 

O x 

diffusion de la 
quantité de 
mouvement 

éc incompr 
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b) Écoulement parfait et relation de Bernoulli 
● Notion d’écoulement parfait 
Un écoulement est dit parfait s’il ne comporte aucun phénomène diffusif : notamment, pas de viscosité et pas de transfert 
thermique. Une particule de fluide évolue alors de façon adiabatique réversible, c’est-à-dire isentropique.  
C’est un cas idéal qui suppose une viscosité nulle (ce qui, en réalité, n’existe que pour l’hélium superfluide à très basse 
température). En pratique, on peut s’en approcher dans certaines conditions. 
 

● Couche limite et écoulement parfait 
Dans un écoulement à grand nombre de Reynolds, les effets de la viscosité sont 
notables seulement au voisinage des parois, dans une couche limite dont 

l’épaisseur peut être évaluée selon : 
D

δ
Re

∼ . En dehors de la couche limite, les 

effets de la viscosité sont négligeables : l’écoulement peut donc être considéré 
comme parfait dans le fluide suffisamment loin des parois.  

 Sans le terme de viscosité, l’équation de Navier–Stokes devient l’équation d’Euler :  grad grad
v

ρ v v ρg P
t

 
    

 

�
� ����� � �� �����

. 

Celle-ci est valable pour tout écoulement parfait, même s’il est compressible (car c’est justement le terme Δη v
�

 qui 

nécessitait de se restreindre à un écoulement incompressible). 
 

● Relation de Bernoulli pour un écoulement parfait, stationnaire, incompressible et homogène 

Considérons un écoulement parfait (on néglige Δη v
�

 dans l’équation de Navier–Stokes), stationnaire 0
v

t

 
 

 

�
�

, 

incompressible et homogène (c’est partout le même fluide, sous la même phase, avec une masse volumique ρ uniforme). 

L’équation s’écrit dans ce cas :  
2

grad rot grad
2

v
ρ v v ρg P
 

    
 

����� ��� � � �� �����
  soit  

2

grad rot grad
2

ρv
ρ v v ρg P   

����� ��� � � �� �����
. 

Définissons un axe (Oz) vertical ascendant, de sorte que zg ge 
�� ���

 : on peut alors écrire grad ( )zρg ρge ρg z   
�� ��� �����

. En 

regroupant les trois gradients on obtient donc : 21
grad rot

2
P ρv ρg z ρ v v
      
 

����� ��� � �
. 

Distinguons alors deux sous-cas. 

– Si l’écoulement est également irrotationnel, il reste : 21
grad 0

2
P ρv ρg z
    
 

����� �
. Or une fonction de gradient nul 

partout est une fonction uniforme. On a donc dans ce cas : 21
cte   dans tout le fluide

2
P ρv ρg z   . 

– Sinon, calculons la circulation de ce vecteur le long d’une ligne de champ entre deux points A et B : 

 21
grad d rot d

2

B B

A A

P ρv ρg z ρ v v
        
  

����� � ��� � � �
ℓ ℓ    soit  21

d 0
2

B

A

P ρv ρg z
    
    

(l’intégrale de droite est nulle car d v
� �
ℓ �  sur une ligne de courant, donc  rot dv v 

��� � � �
ℓ ) 

donc finalement 2 21 1
  pour  et  sur une même ligne de courant

2 2
A A A B B BP ρv ρg z P ρv ρg z A B     . 

Le terme 21

2
ρv  est parfois appelé pression dynamique (par opposition à la pression statique P).  

La grandeur 21

2
P ρv ρg z   est appelée charge. On dit ainsi qu’il y a conservation de la charge (ou qu’il n’y a pas de 

perte de charge) le long d’une ligne de courant, ou même dans tout le fluide dans le cas irrotationnel. 
 

● Applications de la relation de Bernoulli 
– Effet Venturi 
Considérons, dans un écoulement stationnaire incompressible, un tube de 
courant horizontal de section variable (cela peut être une canalisation) : il y a 
conservation du débit volumique le long du tube de courant. Pour simplifier, 
supposons la vitesse uniforme sur chaque section rectiligne : le débit volumique 
est 1 1 2 2VD S v S v   ; donc si 2 1S S , alors 2 1v v . 

 

Appliquons alors la relation de Bernoulli sur une ligne de courant : 2
1 1 1

1

2
P ρv ρg z  2

2 2 2
1

2
P ρv ρg z    donc 2 1P P . 

De façon plus générale, si on peut négliger l’effet du poids, la pression est plus faible dans une zone où la vitesse est plus 

grande (donc les lignes de courant plus serrées). Cette dépression permet d’interpréter diverses situations (portance sur 
une aile, aspiration par une trompe à eau ou un carburateur de voiture…). 

2S  

1v
��

 2v
���

1S  

R 

couche limite 

couche limite 

écoulement 
parfait 

δ 

D 

éc pft, sta, inc, hom, irr 

éc pft, sta, inc, hom 



4 
 

– Tube de Pitot 

  
C’est un dispositif de mesure de vitesse présent notamment sur les avions : la 
mesure de pression en deux points différents (B et D sur le schéma) permet 
d’obtenir la vitesse v  de l’écoulement loin en amont du tube.  

Sur la ligne de courant AB : 21

2
AP ρv ρg z   0B BP ρg z   . Le capteur de pression en B mesure donc 21

2
P ρv  . 

Sur la ligne de courant voisine CD : 2 21 1

2 2
C D D DP ρv ρg z P ρv ρg z      . Le tube étant très étroit, D Cz z  et 

Dv v  (écoulement très peu perturbé), donc DP P  : le capteur en D mesure la pression « statique » P . 

Finalement, la différence entre ces deux pressions permet de déterminer 
2( )B DP P

v
ρ




  . 

– Formule de Torricelli 
Considérons un récipient de section S, rempli de liquide, et qui se vide lentement par un 
très petit trou de section s S≪ . On note h la hauteur du liquide entre le trou de vidange 
et la surface libre, et on cherche à déterminer la vitesse v de sortie du liquide.  
Il y a conservation du débit volumique (écoulement incompressible) : 

(surface libre) (trou)V VD D  soit 
d

d

h
S s v

t
 , dont on déduit 

d

d

h
v

t
≪ . 

On va alors considérer l’écoulement comme quasi stationnaire, ce qui permet 
d’appliquer la relation de Bernoulli sur une ligne de courant entre un point A de la 

surface libre et un point B du trou : 2 21 1

2 2
A A A B B BP ρv ρg z P ρv ρg z     . 

 

La surface libre et le trou étant au contact de l’air, atmA BP P P  . De plus 
d

d
A B

h
v v v

t
 ≪ . Enfin A Bz z h  . 

On obtient donc finalement : 21

2
ρgh ρv  d’où 2v gh . 

C’est la même expression que celle de la vitesse d’un point matériel en chute libre sans vitesse initiale. 
 
 
4. Bilans dynamiques 
a) Surface de contrôle et bilan de masse 
b) Bilan d’énergie cinétique 
c) Bilan de quantité de mouvement  

Partie qui sera traitée en classe  

 
 

 ____________________ 

B (point d’arrêt) A 
C 

D 


