
Op1 – Corrigé des exercices 2, 3 et 5 
 

¤ Exercice 2 
a) (Traitée en classe) On a trouvé : a a 0( ) ( ) ( )SM n f x n n e    . 

b) Le rayon émergent passant par N est parallèle à l’axe, comme tous les rayons 
émergents, puisque la source (point objet réel) est au foyer principal objet. À première 
vue, on pourrait faire un calcul géométrique simple du chemin optique (SN), mais ce 
n’est pas le cas, car il y a une information cachée sur ce schéma simplifié : on ne sait pas 
quelle est l’épaisseur de lentille traversée par ce rayon ; on peut juste dire qu’elle est 
inférieure à 0e , puisqu’une lentille convergente est plus épaisse au centre. Pour 

contourner cette difficulté, on trace alors la surface d’onde passant par N : elle est plane 
et orthogonale au faisceau de rayons parallèles, d’après le théorème de Malus.  
Donc N est sur la même surface d’onde que M, d’où par définition de la surface d’onde : a a 0( ) ( ) ( ) ( )SN SM n f x n n e     . 

Le chemin optique (SN) semble pourtant nettement plus long que (SM) sur la figure, mais c’est parce qu’on ne « voit » que la partie 
dans l’air : la partie dans le verre est au contraire plus grande pour (SM), et ces deux effets se compensent exactement. 
c) Pour M sur l’axe, le raisonnement précédent reste entièrement valable : on trouve donc a a 0( ) (3 ) ( )SM n f x n n e    . 

Pour N, cette fois le rayon émergent n’est plus parallèle à l’axe. Pour pouvoir 
tracer le rayon allant de S à N, il faut d’abord trouver l’image de S, 
graphiquement ou bien en utilisant une formule de conjugaison : 
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On trace alors, en partant de la fin, le rayon émergent passant par S, S   et N.  
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Pour ( )SS  , chemin optique entre deux points conjugués, on peut utiliser n’importe quel rayon partant de S, qui passe ensuite 

forcément par S  , le chemin ( )SS   étant indépendant du rayon choisi. Or le rayon réel est compliqué et inutilisable (toujours à cause 

de l’épaisseur inconnue de lentille traversée), mais il est très simple d’utiliser comme autre rayon celui qui est confondu avec l’axe, 

donnant le même calcul que pour M : a a 0
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Dans le cas où N est plus à gauche que S   
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, la formule devient : 
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Dans les deux cas, si on prend y = 0 on retrouve bien le cas particulier ( )SM . 
 
¤ Exercice 3 

a) M et H sont sur une même surface d’onde, plane et orthogonale à l’axe, puisque le faisceau de rayons émergents est un faisceau 
parallèle (image à l’infini). Donc 0( ) ( ) ( ) ( 1) ( ) ( 1)FM FKM FOH FK n e r KM d n e          (indice 1 pour l’air) soit 
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b) On considère maintenant les points A et A', entre lesquels tous les rayons donnent le même chemin optique. 
2 2 2 2

0 0( ) ( ) ( 1) ( ) ( 1) ( 1) ( ) ( 1)AKA AOA AK n e r KA AA n e OA r n e r OA r OA OA n e                        . 

Comme précédemment, 
2 2 2

2 2
2 2

1 1
2 2

r r r
OA r OA OA OA

OA OA OA

 
       

 
 et de même 

2
2 2

2

r
OA r OA

OA
   


. 

L’équation devient donc : 
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. On simplifie par OA et OA  et on utilise le 

résultat précédent pour ( )e r  : 
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. Finalement on introduit les mesures algébriques : 

0OA OA    et 0OA OA   , d’où la formule de Descartes 
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¤ Exercice 5 

a) L’allure de la fonction 
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P
 est donnée ci-contre : ce type de 

courbe est appelé gaussienne. fp  est maximale en 0f , et tend vers 0 pour 0 Δf f f ≫ . 

La largeur du pic à mi-hauteur est donnée par : 
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donc elle vaut 2 ln 2 Δ 1,7 Δf f . La valeur Δ f  elle-même est la largeur du pic un peu plus haut (à une hauteur de 78 %).  

La grandeur Δ f  donne donc l’ordre de grandeur de la largeur spectrale de la source. 
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∼ . La raie est donc nettement plus large que s’il n’y avait que l’effet 

Doppler : la cause principale de l’élargissement spectral est ici le raccourcissement des trains d’ondes par les collisions entre les 
atomes, dont la fréquence est liée notamment à la pression dans la vapeur. 
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