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Corrigé du devoir test de physique n° 3

o Probleme A
Q1. Une ligne de courant est une courbe tangente au champ de vitesse en chacun de ses points : c’est une notion eulérienne
puisqu’elle fait appel a la notion de champ de vitesse.
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Q2. Les quatre hypothéses permettent d’appliquer la relation de Bernoulli le long d’une ligne de courant : P+E pv? =cte (en

négligeant ’effet du poids). Elles impliquent aussi la conservation du débit volumique : ainsi la vitesse est plus élevée 1a ou les lignes
de courant sont plus resserrées, c¢’est-a-dire au-dessus de 1’aile. Alors la pression est plus faible au-dessus de ’aile qu’au-dessous, la
résultante des forces de pression est donc orientée vers le haut, ce qui constitue une force de portance.

Q3. D’apres les arguments précédents, le coefficient de pression est plus faible au-dessus de ’aile, or Cp; est plus faible que Cp,

(attention, valeurs négatives en haut !) donc la courbe Cp; correspond a I’extrados, Cp, a ’intrados.
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Q5. dimC, = (ML) -(L 1Y soit : ¢’est bien une grandeur adimensionnée.

Q6. Le coefficient de portance augmente avec 1’écart entre les coefficients de pression de I’extrados et de 1’intrados : il est donc
beaucoup plus grand sous I’incidence de 6°.
Q8. L’avion volant a vitesse constante, la somme de toutes les forces est nulle.
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Q4. D’apres la relation de Bernoulli sur une ligne de courant : P +5 pv- =P, +5 pve, dou —— 1——2 soit

Le poids P est compensé par la force de portance F (qu’on notera F dans la suite), et la ‘
‘
force de trainée Fx (Rr ) est compensée par la force propulsive Fpmp exercée par les réacteurs. ST e 5.
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Q9. A haute altitude, la masse volumique de I’air est plus faible. Pour garder la méme portance Forop F,
(et ainsi compenser le poids), il faut garder le méme produit p,v2, donc augmenter la vitesse. P

Mais de cette fagon on garde aussi la méme valeur de la trainée, donc la méme force propulsive :
ainsi la méme consommation de carburant permet d’aller plus vite. Par ailleurs, le vol en haute altitude permet de se placer au-dessus
des nuages et ainsi d’éviter les intempéries ; et en cas d’accident, il donne plus de temps pour planer avant d’arriver au sol.

Q10. Cette fois il n’y a plus de force propulsive, donc Fy + Fpo + P =0.
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F Projection sur u, : F,,sina—F,cosa=0 d’ou tana = =—= soit|tana = —
. tr Fpo Cz f
. . . , dy .
Quand I’avion perd une altitude dj , il a avancé de |dy = . = f-dy| Ainsi la finesse
an o
indique la capacité de planer sur une longue distance avant de toucher le sol.
Q17. Le point F est un point d’arrét pour la ligne de courant centrale. tube 2
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Q18. Donc , et en G I’écoulement n’est plus perturbé donc on —» d
—
retrouve |Vg =V, | Le théoréme de Bernoulli sur la ligne de courant > /
—

1 —
de F s’écrit alors: |Pr =P, +Ep°°v3°' Et sur celle de G:

Py +%pmv§O =P, +%pwv30 d’ou . ___i_h

Q19. Le liquide, qu’on peut supposer incompressible, est a 1’équilibre dans le tube : | Py — P = p; gh| (loi de I’hydrostatique).

Q20. Or Py = Py et P; = P, (air immobile dans le tube), d’ou |v,, = \/2ﬂgh . Quand la vitesse augmente, 4 augmente.
Peo

Q25, 26. La quantité de mouvement étant extensive : |F"(t) = ;(t) + om, Z
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Q27. d[;t(t) y 2 (H_ddti p*() . Or en régime stationnaire, p(¢+d¢) = p(¢) et dm, =dm, = D,, d¢, donc 1

Q28. Le systeme est soumis a la force exercée par le réacteur (pieces mobiles et fixes) et aux forces de pression en entrée et en sortie
exercées par les gaz extérieurs au systeme (le poids étant toujours négligé)

et p(t+dn) = p(t+di)+3m)y |

4P*0 _py (5-37)|

*(r) 7

Q29. Théoréme de la quantité de mouvement pour ce systéme fermé : avion—sair T Fpe + 5 . Les forces de pression, de sens

opposés, se compensent au moins en partie. Si on néglige leur résultante devant la force du réacteur, il reste : | Fyyionsair = Dy (vs - vc) .
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Q30. Fiavion = —Favionsair = D (vc —vs) d’aprés le principe des actions réci-  — W w
S

proques. Pour que cette force soit propulsive, c’est-a-dire de sens opposé aux —) — >

vitesses E et \Z , 1l faut que (on éjecte les gaz briilés a grande vitesse). \/_\/

o Probléeme B
Q1. A chaque battement, le cceur fait circuler un volume ¥; =80 cm® de sang. En 1 minute, il y a N =60 battements, donc
V=NV =

, ce qui correspond bien aux 5 litres attendus (avec un chiffre significatif).




Q2. Le coté droit fournit § =0,2 W, tandis que le coté gauche fournit un travail PAV =16-10°x80-10°=1,3J en 1 seconde
9

environ, soit une puissance %, =1,3 W . Pour une masse m = 0,3 kg , la puissance totale %, =% +9, =1,5 W correspond alors a une

g

puissance massique ‘ P =P /m=5W-kg!

Q3. Les 90 % restants correspondent, d’une part a de ’énergie absorbée par les cellules du muscle pour leur fonctionnement

(réactions chimiques), d’autre part a un transfert thermique vers le reste du corps (qui contribue a le maintenir a 37 °C).
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Q4. Le graphe donne une relation affine de la forme log N =10—kloga (um) avec k = % =2,7,s0it| N =—-
a
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Q5. Le débit volumique dans Iartére aorte est D, =80 cm?® -s7! = ndTv ,d’ou|v= d; . AN .
TT

Q6. La différence de pression entre I’entrée de I’aorte et I’autre extrémité est justement ce qui met le sang en mouvement.
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Q7. Terme pa— : produit de la masse volumique par I’accélération locale (liée au caractére non stationnaire de 1’écoulement).
t

Terme p(v~ grad)v : produit de la masse volumique par I’accélération convective (liée au caractére non uniforme de 1I’écoulement).

Terme f,, : densité volumique de forces (se réduisant généralement au poids volumique). Terme —grad P : équivalent volumique

des forces de pression. Terme #Av : équivalent volumique des forces de viscosité.

Q8. L’écoulement peut étre considéré comme laminaire si le nombre de Reynolds Re = V2P est inférieur & une valeur critique de
n

Pordre de 10°. On calcule ici: Re :Mﬁﬂ =10* > 103, donc ’écoulement n’est pas laminaire dans ’aorte. Il peut I’étre en

revanche dans les vaisseaux beaucoup plus petits, ce qui justifie la suite de 1’étude.

Q9. On suppose 1’écoulement stationnaire : % =0.De plus, (;g—ra?l); = (v ; +v, 66 +v, aijv = v(r)iv(r)e =0 puisque v(r)
X Z

et (Z sont indépendants de x. Enfin on néglige les effets de la pesanteur, c’est-a-dire le terme ﬂ . Il reste donc : |grad P = ﬂA; .

Q10. La face supérieure a une aire d 2 (r+dr)=(r+dr)dfxdx, donc la force de viscosité exercée par le fluide situé au-dessus est

df’: =ngx(r+dr)dfdxdxx (ﬂj a . De méme, dF = —-nrdfx dx(ﬂ) eT. est la force exercée par le fluide au-dessous de la
r r

enr+dr enr

face inférieure, d’aire dX(r)=rd@dx. Résultante: dF,, =dF, +dF_ —11(r+dr)dt9><dx><(dvj e, —qrdexdx(ﬂ) e,
r ¥ Jenr

enr+dr

dr

_ —d d
:ndﬁdxex[(r+dr)x(ﬂj —r(%j } soit dva nd@dxexd [ ( vﬂdr Le volume élémentaire étant »drd6fdx,
V' Jenr+dr ¥ Jenr r

d dv)|—
on obtient une densité volumique fV vise = nAv = ——[r(—vﬂ e |

rdr dr
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Q11. Projection de I’équation de Navier—Stokes sur e, : ~0 =0 donc P est indépendante de 8 (ce qui correspond également a
r

. . . . . L — OP .
I’invariance par rotation supposée pour le champ de vitesse). Projection sur e, : Fn =0 donc P est indépendante de r.
r

. — dP _g d [ (dv
Projection sur e, : ——|r i
B

Ar 1 ﬂ Ceci ne dépend pas de x, donc P est une fonction affine P(x)=4x+B. CL:
x rdr

P.—P -P, . . .
P(0)=B=P, et P(Ly=AL+P,=P, dou A=-2 7 4 et finalement |P(x )— 7 4 x+P,|. L’équation différentielle pour la

vitesse est alors : ﬂi{r(dvﬂ :%@i[{ﬂﬂ zgi, On intégre une premicre fois : r(jvj By LP r —+C
n

r dr dr dr r 2n
_ 2
soit — dv PB B v g . Une deuxiéme intégration donne alors : v(r) = L-Pr +Clnr+D.CL: v(0) ne peut pas étre infinie,
dr L 277 r L 4y
P,—Pa P-P ,
donc C=0 ;et v(a)= +D 0 (fluide visqueux accrochant la paroi) d’ou finalement | v(r) = AnL (a* —r?)|
n
o a p2tp _p . P, —P, (¢ 27 P —P 2,2 47 )
Q12. DV=J.J.V~ndS=J. A8 (a?-r)e, e rdrdé :ujl (a*r—r¥)dr| do="2—"L72g ar _r soit
z r=0do-0 4nL 4L Jr-0 60 4nL 2 41,
P -F . L. , . V,=Vg s L. .
finalement | Dy = L ma*|. Par analogie avec la résistance électrique R = 7 , on peut définir une résistance hydraulique
n 4B
PA PB 877L

Ry = . L’expression du débit donne alors ici |[Ry =

n
Dy, Ta




Q13. Toujours par analogie électrocinétique, le réseau est constitué de N, branches identiques en parallele, chaque branche étant

elle-méme I’association d’une résistance Ry, (artére) en série avec une association paralléle de N, /N, résistances Ry (capillaires).

. . . 1 R C R a R C 3 8 La LC
Ainsi, la résistance globale est : R =—| Ry, +— =12 TR Soit| Ry = el — 2t
N, " N./N, N, N, T \ N,ryt N.r;

a

Q14. La paroi d’un vaisseau cylindrique a un volume 2zrLe =2zar’L car e<r, donc |V, =2ma(N,r?L, + Ng?2L,)|. V, étant

d NonL
minimal, sa différentielle est nulle : d¥ =0 = 2za(N, 2r, dr,L, + N,2r. dr.L,) d’ou di = —ﬁ .
ra CrC C

5
0= 8—'7 - 4L, dr, - L. dr, d’ou dr. = _LaN_crc. Par identification avec la
T Na ras ]\/C’/'C5

dr, L.N,r}
. . N,r, L L N_r? . . cte
relation précédente ;: —+22 = —4_°¢ °5 soit , autrement dit [N =—-|.
N.r.L, L.N,r; a

Q16. La puissance de a trouvée expérimentalement est 1égerement différente de cette valeur théorique (2,7 au lieu de 3), c’est-a-dire
qu’il y a en réalité moins de petits vaisseaux que ce que prévoit la théorie ci-dessus. Cela peut s’expliquer par les hypothéses un peu
trop simplificatrices du modéle : géométrie cylindrique, alors que les vaisseaux ont des formes plus complexes ; pesanteur négligée,
alors qu’elle peut jouer un réle notamment pour les vaisseaux verticaux ; paramétre a uniforme, alors qu’il est certainement plus
grand pour les petits vaisseaux (I’épaisseur de la paroi ne pouvant pas étre inférieure a celle d’une cellule) ; modele newtonien du
sang, ce qui n’est plus valable pour des vaisseaux de petit diamétre ; modélisation laminaire, qui n’est peut-étre pas valable dans les
arteres. ..

Q15. De méme R, est minimale, donc dR,, =

g Probléme C
Q1. On régle I’oculaire de fagon a observer sans accommoder. Pour un ceil emmétrope, cela suppose d’avoir I’image finale a 1’infini

(A% A4 =F RN A;O) : le réticule doit donc se trouver dans le plan focal objet de I’oculaire, ¢’est-a-dire a la distance f,".

Q2. Formule de grandissement : y,, = FZ_OZ d’ou|F,A4= S . AN|F,4=-25 mm|.
FZA Yob
’ ’ ’ ’ - FZIFi s N ' - -
Q3. 0,0, =0,F, + FE+ RO =f; + EE+ i et yq :F'O d’ou FF =—yy,fy donc| 0,0, = f5(1-y3)+ /| AN|O,0; =200 mm|.
1%
Q4. A A En prenant sur I’axe horizontal les deux distances
50 mm trouvées ci-dessus, on vérifie bien que I’image
B intermédiaire est deux fois plus grande que 1’objet,
~ F 4=F F.l’/ et se forme dans le plan focal objet de I’oculaire.
A Jol 0, : 0, QS. Un viseur a frontale fixe peut étre utilisé sur un
banc d’optique pour faire des mesures précises de
R ¥ distances entre objets difficiles a repérer : position
” B e d’une image virtuelle, épaisseur d’une lame de
v 7 verre. ..
B~

Q6. L’ceil n’accommode pas si I’image finale est a I’infini, donc si I’image donnée par 1’objectif est dans le plan focal objet de
I’oculaire. L’objet étant a I’infini, il faut donc que F,' et F, soient confondus : alors la distance entre 1’objectif et I’oculaire est

0,0, = f'+ 15 | Ce systéme optique donne d’un objet 4 I’infini une image 4 linfini : il n’a pas de foyer, il est donc dit afocal.

Q7. Conditions de Gauss : les rayons doivent étre peu inclinés A A
par .rapport fl I’axe optique, et rencontrer le systéme au F, F'=F, F/
voisinage de I’axe. ' :
O=tanf=—, O'=tanf’'=— donc|G=-"-| AN|G=50| o
fl ' f 2’ f2 \ 4 > \
QS8. surfaces d’onde D’aprés le théoréme de Malus, les surfaces d’onde sont
> / \ A orthogonales aux rayons d’un faisceau. Elle sont donc planes
D 12d ke au début et a la fin, et sphériques entre les lentilles.
1 D 2 '
. } L . D D
i Théoréme de Thalés : — = S =G donc|D=—|
F=F > D f) G
> v AN . On a trouvé , donc la largeur du
faisceau est limitée par 1’objectif et non par I’oculaire.
Q9. Lorsque I’angle 6 devient trop grand, les rayons ayant traversé

I’objectif passent ensuite a coté de 1’oculaire (ils arrivent sur sa
monture) : 1’objet correspondant n’est donc pas observable. Ainsi,
c’est le diamétre de I’oculaire qui limite ’intervalle d’angles
observables, c’est-a-dire le champ de vision, d’ou I’expression
« diaphragme de champ». (Il y a aussi un probléme pour les
conditions de Gauss, mais ce n’était pas vraiment le sujet ici.)




