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¤ Problème A 
Q1. Une ligne de courant est une courbe tangente au champ de vitesse en chacun de ses points : c’est une notion eulérienne 
puisqu’elle fait appel à la notion de champ de vitesse. 

Q2. Les quatre hypothèses permettent d’appliquer la relation de Bernoulli le long d’une ligne de courant : 21
cte

2
P ρv   (en 

négligeant l’effet du poids). Elles impliquent aussi la conservation du débit volumique : ainsi la vitesse est plus élevée là où les lignes 
de courant sont plus resserrées, c’est-à-dire au-dessus de l’aile. Alors la pression est plus faible au-dessus de l’aile qu’au-dessous, la 
résultante des forces de pression est donc orientée vers le haut, ce qui constitue une force de portance. 
Q3. D’après les arguments précédents, le coefficient de pression est plus faible au-dessus de l’aile, or 1PC  est plus faible que 2PC  

(attention, valeurs négatives en haut !) donc la courbe 1PC  correspond à l’extrados, 2PC  à l’intrados. 

Q4. D’après la relation de Bernoulli sur une ligne de courant : 2 21 1

2 2
P ρv P ρv     d’où  
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Q5. 
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 soit dim 1zC   : c’est bien une grandeur adimensionnée. 

Q6. Le coefficient de portance augmente avec l’écart entre les coefficients de pression de l’extrados et de l’intrados : il est donc 
beaucoup plus grand sous l’incidence de 6°. 
Q8. L’avion volant à vitesse constante, la somme de toutes les forces est nulle.  
Le poids P

��

 est compensé par la force de portance zF
���

 (qu’on notera poF
����

 dans la suite), et la 

force de traînée xF
���

 ( trF
���

)  est compensée par la force propulsive propF
������

 exercée par les réacteurs. 

Q9. À haute altitude, la masse volumique de l’air est plus faible. Pour garder la même portance 
(et ainsi compenser le poids), il faut garder le même produit 2ρ v  , donc augmenter la vitesse. 

Mais de cette façon on garde aussi la même valeur de la traînée, donc la même force propulsive :  

ainsi la même consommation de carburant permet d’aller plus vite. Par ailleurs, le vol en haute altitude permet de se placer au-dessus 
des nuages et ainsi d’éviter les intempéries ; et en cas d’accident, il donne plus de temps pour planer avant d’arriver au sol. 
Q10. 

 

Cette fois il n’y a plus de force propulsive, donc tr po 0F F P  
��� ���� �� �

. 

Projection sur xu
���

 : po trsin cos 0F α F α   d’où tr

po

tan x

z

F C
α

F C
   soit 

1
tan α

f
 . 

Quand l’avion perd une altitude Vd , il a avancé de 
tan

V
H V

d
d f d

α
   . Ainsi la finesse 

indique la capacité de planer sur une longue distance avant de toucher le sol. 
Q17. Le point F est un point d’arrêt pour la ligne de courant centrale. 
Q18. Donc 0Fv  , et en G l’écoulement n’est plus perturbé donc on 

retrouve Gv v . Le théorème de Bernoulli sur la ligne de courant 

de F s’écrit alors : 21

2
FP P ρ v    . Et sur celle de G : 

2 21 1

2 2
GP ρ v P ρ v        d’où GP P . 

 
Q19. Le liquide, qu’on peut supposer incompressible, est à l’équilibre dans le tube : H I lP P ρ gh   (loi de l’hydrostatique). 

Q20. Or F HP P  et G IP P  (air immobile dans le tube), d’où 2 lρ
v gh

ρ




 . Quand la vitesse augmente, h augmente. 

Q25, 26. La quantité de mouvement étant extensive : e e*( ) ( ) δp t p t m v 
���� �� ���

 et s s*( d ) ( d ) δp t t p t t m v   
���� �� ���

. 

Q27. 
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Q28. Le système est soumis à la force exercée par le réacteur (pièces mobiles et fixes) et aux forces de pression en entrée et en sortie 
exercées par les gaz extérieurs au système (le poids étant toujours négligé). 

Q29. Théorème de la quantité de mouvement pour ce système fermé : avion air p,e p,s
d *( )

d

p t
F F F

t
  

����
���������� ���� ����

. Les forces de pression, de sens 

opposés, se compensent au moins en partie. Si on néglige leur résultante devant la force du réacteur, il reste :  avion air s emF D v v  
���������� ��� ���

. 

Q30.  air avion avion air e smF F D v v    
���������� ���������� ��� ���

 d’après le principe des actions réci-

proques. Pour que cette force soit propulsive, c’est-à-dire de sens opposé aux 
vitesses ev

���

 et sv
���

, il faut que s ev v  (on éjecte les gaz brûlés à grande vitesse). 
 

 
¤ Problème B 

Q1. À chaque battement, le cœur fait circuler un volume 3
1 80 cmV   de sang. En 1 minute, il y a 60N   battements, donc 

3
1 4800 cm 4,8 LV NV   , ce qui correspond bien aux 5 litres attendus (avec un chiffre significatif). 
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Q2. Le côté droit fournit d 0, 2 WP , tandis que le côté gauche fournit un travail 3 6Δ 16 10 80 10 1,3 JP V       en 1 seconde 

environ, soit une puissance g 1,3 WP . Pour une masse 0,3 kgm  , la puissance totale tot d g 1,5 W  P P P  correspond alors à une 

puissance massique 1
tot 5 W kgmp m   P . 

Q3. Les 90 % restants correspondent, d’une part à de l’énergie absorbée par les cellules du muscle pour leur fonctionnement 
(réactions chimiques), d’autre part à un transfert thermique vers le reste du corps (qui contribue à le maintenir à 37 °C). 

Q4. Le graphe donne une relation affine de la forme log 10 log (µm)N k a   avec 
10

2,7
3,7

k   , soit 
10

2,7

10
(  en µm)N a

a
 . 

Q5. Le débit volumique dans l’artère aorte est 
2

3 180 cm s
4

V

d
D π v   , d’où 

2

4 VD
v

πd
 . AN 11 m sv   . 

Q6. La différence de pression entre l’entrée de l’aorte et l’autre extrémité est justement ce qui met le sang en mouvement. 

Q7. Terme 
v

ρ
t





�

 : produit de la masse volumique par l’accélération locale (liée au caractère non stationnaire de l’écoulement).  

Terme  gradρ v v
� ����� �

 : produit de la masse volumique par l’accélération convective (liée au caractère non uniforme de l’écoulement). 

Terme volf
����

 : densité volumique de forces (se réduisant généralement au poids volumique). Terme grad P
�����

 : équivalent volumique 

des forces de pression. Terme Δη v
�

 : équivalent volumique des forces de viscosité. 

Q8. L’écoulement peut être considéré comme laminaire si le nombre de Reynolds 
vDρ

Re
η

  est inférieur à une valeur critique de 

l’ordre de 103. On calcule ici : 4 3
3

1 0,01 1000
10 10

10
Re



 
   , donc l’écoulement n’est pas laminaire dans l’aorte. Il peut l’être en 

revanche dans les vaisseaux beaucoup plus petits, ce qui justifie la suite de l’étude. 

Q9. On suppose l’écoulement stationnaire : 0
v

t






�
�
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 puisque ( )v r  

et xe
���

 sont indépendants de x. Enfin on néglige les effets de la pesanteur, c’est-à-dire le terme volf
����

. Il reste donc : grad ΔP η v
����� �

. 

Q10. La face supérieure a une aire d ( d ) ( d )d dΣ r r r r θ x    , donc la force de viscosité exercée par le fluide situé au-dessus est 
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 est la force exercée par le fluide au-dessous de la 

face inférieure, d’aire d ( ) d dΣ r r θ x . Résultante : visc
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. Le volume élémentaire étant d d dr r θ x , 

on obtient une densité volumique v,visc
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Q11. Projection de l’équation de Navier–Stokes sur θe
���

 : 
1

0
P

r θ





 donc P est indépendante de θ (ce qui correspond également à 

l’invariance par rotation supposée pour le champ de vitesse). Projection sur re
���

 : 0
P

r


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
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Projection sur xe
���

 : 
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d d d

P η v
r

x r r r

  
     

. Ceci ne dépend pas de x, donc P est une fonction affine ( )P x A x B  . CL : 

(0) AP B P   et ( ) A BP L AL P P    d’où B AP P
A

L


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A
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
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d
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
  . Une deuxième intégration donne alors : 
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
   . CL : (0)v  ne peut pas être infinie, 
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
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Q12. 
2

2 2

0 0
d ( ) d d

4

a π
A B

V x x
Σ r θ

P P
D v n s a r e e r r θ

ηL 


      

� � ��� ��� 2 2 2 4
2 3

0 0 0

( )d d 2
4 4 2 4

a
a π

A B A B

r θ
r

P P P P a r r
a r r r θ π

ηL ηL  

  
    

    soit 

finalement 4

8
A B

V

P P
D πa

ηL


 . Par analogie avec la résistance électrique A B

A B

V V
R

I 


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Q13. Toujours par analogie électrocinétique, le réseau est constitué de aN  branches identiques en parallèle, chaque branche étant 

elle-même l’association d’une résistance H,aR  (artère) en série avec une association parallèle de c aN N  résistances H,cR  (capillaires). 

Ainsi, la résistance globale est : H,c H,a H,c
tot H,a

a c a a c

1 R R R
R R

N N N N N

 
    

 
 soit a c

tot 4 4
a a c c

8η L L
R

π N r N r

 
  

 
. 

Q14. La paroi d’un vaisseau cylindrique a un volume 22 2πr Le παr L  car e r≪ , donc 2 2
0 a a a c c c2 ( )V πα N r L N r L  . 0V  étant 

minimal, sa différentielle est nulle : 0 a a a a c c c cd 0 2 ( 2 d 2 d )V πα N r r L N r r L    d’où c a a a

a c c c

d

d

r N r L

r N r L
  . 

Q15. De même totR  est minimale, donc a a c c
tot 5 5
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 d’où 

5
c a c c

5
a c a a

d

d

r L N r

r L N r
  . Par identification avec la 

relation précédente : 
5

a a a a c c
5

c c c c a a

N r L L N r

N r L L N r
  soit 3 3

a a c cN r N r , autrement dit 
3

cte
N

a
 . 

Q16. La puissance de a trouvée expérimentalement est légèrement différente de cette valeur théorique (2,7 au lieu de 3), c’est-à-dire 
qu’il y a en réalité moins de petits vaisseaux que ce que prévoit la théorie ci-dessus. Cela peut s’expliquer par les hypothèses un peu 
trop simplificatrices du modèle : géométrie cylindrique, alors que les vaisseaux ont des formes plus complexes ; pesanteur négligée, 
alors qu’elle peut jouer un rôle notamment pour les vaisseaux verticaux ; paramètre α uniforme, alors qu’il est certainement plus 
grand pour les petits vaisseaux (l’épaisseur de la paroi ne pouvant pas être inférieure à celle d’une cellule) ; modèle newtonien du 
sang, ce qui n’est plus valable pour des vaisseaux de petit diamètre ; modélisation laminaire, qui n’est peut-être pas valable dans les 
artères… 
 
¤ Problème C 
Q1. On règle l’oculaire de façon à observer sans accommoder. Pour un œil emmétrope, cela suppose d’avoir l’image finale à l’infini 

 2 1
i 1

L L
A A F A    : le réticule doit donc se trouver dans le plan focal objet de l’oculaire, c’est-à-dire à la distance 1f  .  

Q2. Formule de grandissement : 2 2
ob

2

F O
γ

F A
  d’où 2

2
ob

f
F A

γ


 . AN 2 25 mmF A   . 

Q3. 2 1 2 2 2 1 1 1 2 2 1 1O O O F F F F O f F F f           et 2 1
ob

2 2

F F
γ

F O





 d’où 2 1 ob 2F F γ f    donc 2 1 2 ob 1(1 )O O f γ f    . AN 2 1 200 mmO O  . 

Q4.  

 

En prenant sur l’axe horizontal les deux distances 
trouvées ci-dessus, on vérifie bien que l’image 
intermédiaire est deux fois plus grande que l’objet, 
et se forme dans le plan focal objet de l’oculaire. 
 

Q5. Un viseur à frontale fixe peut être utilisé sur un 
banc d’optique pour faire des mesures précises de 
distances entre objets difficiles à repérer : position 
d’une image virtuelle, épaisseur d’une lame de 
verre… 

Q6. L’œil n’accommode pas si l’image finale est à l’infini, donc si l’image donnée par l’objectif est dans le plan focal objet de 
l’oculaire. L’objet étant à l’infini, il faut donc que 1F   et 2F  soient confondus : alors la distance entre l’objectif et l’oculaire est 

1 2 1 2O O f f   . Ce système optique donne d’un objet à l’infini une image à l’infini : il n’a pas de foyer, il est donc dit afocal. 

Q7. Conditions de Gauss : les rayons doivent être peu inclinés 
par rapport à l’axe optique, et rencontrer le système au 
voisinage de l’axe. 

1

tan
h

θ θ
f

 

, 

2

tan
h

θ θ
f

  


 donc 1

2

f
G

f





. AN 50G  . 

 
Q8.  

 

D’après le théorème de Malus, les surfaces d’onde sont 
orthogonales aux rayons d’un faisceau. Elle sont donc planes 
au début et à la fin, et sphériques entre les lentilles. 

Théorème de Thalès : 1 1

2

D f
G

D f


 


 donc 1D

D
G

 . 

AN 2 mmD  . On a trouvé 2D D , donc la largeur du 

faisceau est limitée par l’objectif et non par l’oculaire. 
 

Q9. 

 

Lorsque l’angle θ devient trop grand, les rayons ayant traversé 
l’objectif passent ensuite à côté de l’oculaire (ils arrivent sur sa 
monture) : l’objet correspondant n’est donc pas observable. Ainsi, 
c’est le diamètre de l’oculaire qui limite l’intervalle d’angles 
observables, c’est-à-dire le champ de vision, d’où l’expression 
« diaphragme de champ ». (Il y a aussi un problème pour les 
conditions de Gauss, mais ce n’était pas vraiment le sujet ici.) 
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