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¤ Problème A (CCINP MP 2024) 
Q6. a) Il s’agit de division de front d’onde, car le faisceau incident est séparé géométriquement en deux parties. Cela produit des 
interférences non localisées : la position de l’écran peut être quelconque. 
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Q7. a) Équation d’une frange : 
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raissent à l’intérieur de la tache de diffraction donnée par les trous. L’interfrange est la période de la fonction ( )I M  : 
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b) Les fentes de Young se comportent comme un ensemble de paires de trous de Young accolées les unes aux autres. La différence de 
marche donnée par chaque paire de trous est la même en chaque point de l’écran, puisqu’elle ne dépend pas de y, donc toutes les 
figures d’interférences sont identiques, et elles se superposent par addition des intensités (sources incohérentes), d’où une plus grande 
luminosité. Ces franges s’inscrivent cette fois à l’intérieur de la figure de diffraction d’une fente. 
Si on translate les fentes selon (Oy), les franges restent inchangées. Si on les translate selon (Ox), on translate de même les franges 
(puisque la frange d’ordre 0 est toujours équidistante des deux fentes).  
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. Les différentes bandes spectrales sont incohérentes entre elles, donc 

leurs intensités s’ajoutent : 
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. On utilise la formule trigonométrique donnée :  
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fonction qui varie « lentement » par rapport au cosinus : celui-ci donne donc des oscillations d’intensité à l’intérieur d’une enveloppe 
constituée par le sinus cardinal. 
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c) Les franges ne sont plus visibles quand le contraste s’annule. Or le premier zéro du sinus cardinal est obtenu pour 
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critère semi-quantitatif habituel. 
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