
Ém2 – Corrigé des exercices 4 et 5 
 

¤ Exercice 4 
a) La distribution de charges est à symétrie sphérique, donc on trouve comme d’habitude : ( ) ( )r rE M E r e
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 en coordonnées 

sphériques. On applique le théorème de Gauss à une sphère de rayon r : int
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Le flux vaut 2( ) 4rE r πr  (vu en cours). 
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Le champ électrostatique est confiné entre les deux armatures. Il est discontinu au passage de chaque armature. 

b) 
d

( ) grad ( )
d

r

V
E M V M e

r
   

�� ����� ���

 ici. Pour 1r R  : 
d

0
d

V

r
  d’où ( ) cteV r A  . On choisit l’origine des potentiels (masse) par 

exemple sur l’armature intérieure, c’est-à-dire en 1r R  : alors la constante est nulle, 1( ) 0 pour V r r R  . Pour 1 2R r R   : 
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c) Par définition : 
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e) 2 1R R e   et 2
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de l’armature extérieure. On a donc trouvé 
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  qui est la même formule que pour un condensateur plan : la courbure des 

armatures ne change pas l’expression de la capacité, dès lors que l’épaisseur du condensateur est faible devant le rayon de courbure. 

 

 

¤ Exercice 5 
a) La distribution de charges n’a pas assez de symétries pour qu’on puisse trouver le champ avec le théorème de Gauss.  

Mais elle est équivalente à la superposition de deux distributions : une boule de centre O1 et de rayon a, portant la charge volumique 

uniforme ρ, sans cavité ; et une boule de centre O2 et de rayon b, portant la charge volumique uniforme –ρ. On peut alors utiliser le 

principe de superposition, connaissant le champ à l’intérieur d’une boule uniforme (vu en cours, § 3b) : en effet, un point M de la 

cavité (dans la distribution réelle) se trouve à l’intérieur de chacune des deux boules (dans la distribution équivalente). 
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. On constate que le champ est uniforme dans la cavité, ce qui 

n’était pas prévisible avec les éléments de symétrie. 

b) Si O1 et O2 sont confondus, le champ est nul dans la cavité. 

Dans ce cas, la distribution est à symétrie sphérique et on peut alors appliquer un autre résultat du cours, obtenu avec le théorème de 

Gauss : int
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. Puisque int ( ) 0Q r   en tout point de la cavité, on trouve bien un champ nul. 
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