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¤ Problème 1 (E3A PC 2019)  
A1. Initialement, un condensateur est déchargé. Lorsqu’il se charge, le courant arrivant sur une armature est identique à celui qui 
quitte l’autre : l’une des armatures se charge donc positivement et l’autre négativement, et il reste toujours globalement neutre. 
A2. Il faut que la taille des armatures soit grande devant leur écartement, soit extR e≫ . 

A3. Pour tout point M, le plan (Myz) est un plan de symétrie pour la distribution de charges, donc pour le champ électrostatique, ainsi 

( )AE M
����

 est parallèle à ce plan donc n’a pas de composante sur xu
���

. De même, (Mxz) est aussi un plan de symétrie, donc ( )AE M
����

 n’a 

pas de composante sur yu
���

. On cherche donc a priori le champ sous la forme ( ) ( , , )A A zE M E x y z u
���� ���

. Par ailleurs, la distribution 

supposée infinie est invariante par translation selon l’axe (Ox), donc la composante AE  est indépendante de la variable x. Et la 

distribution est invariante par translation selon l’axe (Oy), donc la composante AE  est indépendante de y. On a donc obtenu 

finalement : ( ) ( )A A zE M E z u
���� ���

. 

A4. Le plan A ( 0z  ) est un plan de symétrie, donc ( )AE z
����

 est symétrique de ( )AE z
����

 soit ( ) ( )A AE z E z     (fonction impaire). 

A5. On applique le théorème de Gauss à un cylindre fermé Σ de génératrices parallèles à (Oz), de bases d’aire S situées aux abscisses 

0z   et z  : int

0

dA

Σ

Q
E s

ε
 

���� �

� . Flux :  
base en base en surf. lat.

d ( ) d ( ) d d
zuA A z z A z z A z

Σ z z

E s E z u s u E z u s u E u s n
 

             ���
���� � ��� ��� ��� ��� ��� �

�  

   
base en base en 

( )d ( ) d 0 ( ) ( ) 2 ( )A A A A A

z z

E z s E z s E z E z S E z S
 

              . Charge intérieure : int 2
ext

AQ
Q σ S S

πR
  .  

Donc 
2

0 ext

2 ( ) A
A

Q
E z S S

ε πR
   d’où finalement : 

2
0 ext

( )  pour 0 soit 
2 2

A z
A

Q e e
E M z z

ε πR
   

���
����

 et 
2

0 ext

( )  pour 
2 2

A z
A

Q e e
E M z

ε πR
  

���
����

. 

A6. On utilise le théorème de superposition, après avoir remplacé 0ε  par ε   : ( ) ( ) ( )A BE M E M E M 
�� ���� ����

 avec 

2 2
ext ext

( )
2 2

B z A z
B

Q e Q e
E M

επR επR
   

��� ���
����

 pour 
2

e
z    et 

2 2
ext ext

( )
2 2

B z A z
B

Q e Q e
E M

επR επR
   

��� ���
����

 pour 
2

e
z   . On obtient donc : 

( ) 0 pour  et pour 
2 2

e e
E M z z    
�� �

 ; 
2
ext

( )  pour 
2 2

A zQ e e e
E M z

επR
    

���
��

. 

A7. Le potentiel est défini par : d ( ) dE M OM  V
�� �����

. Pour 
2 2

e e
z    :  2 2

ext ext

d d d d dA z A
x y z

Q e Q
x e y e z e z

επR επR
    V

���
��� ��� ���

 d’où 

2
ext

( ) cteAQ
z z

επR
 V . Avec (0) 0V  la constante est nulle : 

2
ext

( )  pour 
2 2

AQ e e
z z z

επR
   V . 

A8. La capacité est définie par : AQ
C

U
  avec 

2
ext2 2

Ae e Q e
U

επR

   
        

   
V V  donc 

2
extπR

C ε
e

 . 

A9. Bilan d’énergie pour le condensateur : 2
reçue

d d d 1

d d d 2
C U

UI UC CU
t t t

 
     

 

E
P  donc 21

2
C CUE  (à une constante près). 

Ou bien : le stock d’énergie (réparti uniformément) est 
2

2 2 2
élec ext ext2

1 1

2 2
C

U
u V εE πR e ε πR e

e
  E  soit 21

2
C CUE . 

A10. 
2 2

,max max max
élec,max 2 2

ext

1 1

2 2
C CU εU

u
V πR e e

  
E

 soit 2
élec,max 0 r max

1

2
u ε ε E . AN 3

élec,max 43 kJ mu   . 

A11. max

max

U
e

E
 . AN 5,0 µme  .  A12. ext

0 r

eC
R

πε ε
 . AN 30 cme  . Ce serait un condensateur très encombrant ! Mais 

on peut obtenir une surface équivalente avec un faible encombrement en enroulant les armatures et le diélectrique. 

B1. Loi des mailles : ( ) ( ) 0Cu t Ri t E    avec 
d

( )
d

Cu
i t C

t
  (en convention récepteur), d’où 

d 1
( )

d
C

C

u E
u t

t τ τ
   avec τ RC . 

B2. τ est appelé temps de relaxation, ou encore constante de temps du circuit RC. Il donne l’ordre de grandeur du temps de charge ou 
de décharge du condensateur (régime transitoire). 
B3. Solution générale :  ( ) expCu t E A t τ   . Avec la condition initiale (0) 0Cu E A    on obtient  ( ) 1 expCu t E t τ     . 

Cette fonction tend asymptotiquement vers E : par identification avec le graphe on peut lire 5,1 VE   (incertitude inférieure à 0,1 V). 
Pour trouver τ on peut tracer la tangente à l’origine et chercher son intersection avec l’asymptote ; ou bien chercher l’instant où 

 ( ) 1 1 0,63 3,2 VCu τ E e E     : on trouve dans les deux cas 1,1 0,1 msτ   . 

B4. 1,1 0,1 µF
τ

C
R

   . (L’incertitude relative sur la lecture de τ est beaucoup plus grande que celle sur la valeur de R.) 

C1. L’électrolyte étant globalement neutre, les charges accumulées des deux côtés sont opposées : 1 1 2 2ρ d S ρ d S   d’où 

1 1 2 2ρ d ρ d  . 



 

C2. Équation de Maxwell–Gauss pour ce milieu diélectrique :  
0 r

div
ρ

E
ε ε


��

. De plus gradE   V
�� �����

, d’où 
0 r

Δ
ρ

ε ε
 V  (équation de 

Poisson). Sachant que V et ρ sont fonctions de z seulement, ceci s’écrit : 
2

2
0 r

d ( )
0

d

ρ z

z ε ε
 
V

. 

C3. Pour 
2 2

e e
d z d      : ( ) 0ρ z   donc 

2

2

d
0

d z


V
, d’où ( )z Az B V . Si on choisit (0) 0V , on obtient bien une forme 

linéaire ( )z AzV . Pour 
2 2

e e
d z    : 

2
2

2
0 r

d
cte

d

ρ

z ε ε
  

V
 d’où 

2
2

0 r

( )
2

ρ z
z C z D

ε ε
   V , qui est bien une fonction parabolique 

avec la concavité vers le haut (premier coefficient positif). De même pour 
2 2

e e
z d      : 

2
1

0 r

( )
2

ρ z
z E z F

ε ε
   V , fonction 

parabolique avec la concavité vers le bas (premier coefficient négatif). 
 

¤ Problème 2 (Banque PT 2021) 

Q45. En notant Z  l’impédance de l’association RLC parallèle, et 
1 1

Y jCω
R jLω

    son admittance, on applique la relation du pont 

diviseur de tension en supposant la sortie ouverte (rien de branché entre les bornes de sortie) : 2

0 01

1

1F

v Z
H

v Z R R Y
  

 
 soit 

0

0 0
00

0

1 1

1 11 1 1 11
F

R

R R
H

R RR
jR Cω j CωR jCω

R Lω R R LωR jLω


  

                     

. On peut identifier à 0

0

0

1
F

F

H
H

ω ω
jQ

ω ω


 

  
 

 

en posant 0
0

R
H

R R



, 0

0 0

FQ RR C

ω R R



 et 0

0
0( )

F

RR
Q ω

R R L



, d’où 0

0
F

RR C
Q

R R L



 et 0

1
ω

LC
 , soit 0

1

2
f

π LC
 . 

Q46. On reconnaît la fonction de transfert d’un passe-bande d’ordre 2 : alors 
0

Δ 1

F

f

f Q
 . 

Q47. 
2

2
dB 0

1
20log 20log 10log 1 FG H H Q x

x

  
      

   
. 

Pour 1x≪  : dB 020log 20log 20log 24 20logFG H Q x x        

(pente + 20 dB/décade, ordonnée à l’origine –24 dB). 
Pour 1x≫  : dB 020log 20log 20log 24 20logFG H Q x x       

(pente – 20 dB/décade, ordonnée à l’origine –24 dB). 
Pour x = 1 : dB 020log 14dBG H   . 

La bande passante à –3 dB est l’intervalle de fréquences pour lequel 

dB dB,max 3 dB 17 dBG G    . Elle est ici assez étroite. 
 

Q48. Pour ces ALI idéaux, les courants dans les deux entrées sont nuls : d’après la loi des nœuds, l’intensité est donc la même dans 1R  

et dans 2R  : c’est ei  dans le montage 1, et on la note i (vers la gauche) dans le montage 2. De plus, les deux montages présentent une 

boucle de rétroaction sur l’entrée inverseuse (–), donc les ALI fonctionnent en régime linéaire, soit v v  . 

Montage 1 : 0v v    (masse) donc on retrouve ev  aux bornes de 1R  (vers la gauche) et sv  aux bornes de 2R  (vers la droite). 

Alors e 1 ev R i   (convention récepteur) et s 2 ev R i   (convention générateur), d’où s 2
1

e 1

v R
A

v R
    (réelle). 

Montage 1 : ev v v    donc on retrouve ev  aux bornes de 1R  (vers la droite) et s ev v  aux bornes de 2R  (vers la droite). Alors 

e 1v R i  (convention récepteur) et s e 2v v R i   (idem), d’où s 1 2( )v R R i   et finalement s 2
2

e 1

1
v R

A
v R

    (réelle aussi). 

Q49. Par définition, e
e1

e

v
Z

i
 . Montage 1 : e1 1Z R . Montage 2 : e 0i   (entrée de l’ ALI) donc e2Z   . 

Le montage 2 est dit idéal : si on le branche derrière un autre quadripôle, il n’y a aucun courant entre les deux donc le premier 
quadripôle peut toujours être considéré en sortie ouverte, comme on l’a fait dans l’étude du filtre. 
Q50. Si on met l’amplificateur (montage 2) derrière le filtre, 2 ev v  donc la fonction de transfert globale est : 

2 0 1s s 2
2

0 01 e 1

0 0

1 1
FA F

F

v v v A H H
H A H

v v v ω ω ω ω
jQ jQ

ω ω ω ω

      
   

      
   

 avec 0

0
F

RR C
Q Q

R R L
 


 et 1 2

1 2 0
1 0

( )

( )

R R R
H A H

R R R


 


. 

Q51. Quand l’interrupteur est fermé, 3 1v v , avec 3 2 2v A v . Pour la relation entre 1v  et 2v  donnée par le filtre, il faut retrouver une 

équation différentielle à partir de la fonction de transfert : 
 

0 0 02
2 2

0 0 0 01 1 1

v H H jω Qω

v jQ ω ω ω ω jω Qω ω ω
 

   
 

log x 
– 2 1 – 1 0 2 

– 60 

– 24 

dBG  

– 14 

– 40 

– 17 

bande 
passante 



 

2

02 12
0 00

( )
1 ( ) ( )

jω jω jω
v t H v t

Qω ω Qω

 
    

 
 

2
2 2 1

2 02 2
0 00

1 d 1 d 1 d
( )

d d d

v v v
v t H

Qω t ω t Qω t
    . Finalement on multiplie tout par 

2
20ω A , et on remplace 2 2A v  par 3v , 2 1A v  par 2 3A v , 2 0A H  par 1H , d’où l’équation : 

2
3 0 3 2

1 302

d d
(1 ) ( ) 0

d d

v ω v
H ω v t

t Q t
    . 

Q52. Pour que l’on obtienne des oscillations pseudo-périodiques, il faut que le discriminant de l’équation caractéristique 

02 2
1 0(1 ) 0

ω
r H r ω

Q
     soit négatif, soit 

2
0 2 2

1 02
(1 ) 4 0

ω
Δ H ω

Q
    . Les racines sont alors 0

1
1

(1 )
2 2

ω Δ
r H i iω

Q τ


       et 

la solution générale de l’équation différentielle est  3 ( ) exp cos( )v t A t τ ωt φ  . Pour que ces oscillations soient d’amplitude 

croissante, il faut que τ soit positif, donc 1 1H  . Alors la condition 0Δ   devient 1 1 2H Q  . Il faut donc avoir 11 1 2H Q   . 

Q53, 54. La fréquence d’oscillation est 
2 4

ω Δ
f

π π


   soit 

2
0 1

2

( 1)
1

2 4

ω H
f

π Q


  . 0

0
2

ω
f f

π
   pour 1 1H   ou pour 1Q≫ . 

Q55. Si 1H  est grand (proche de 1 2Q ), le temps caractéristique τ est petit donc la croissance des oscillations aboutit rapidement à la 

saturation de l’ALI ; et la fréquence diffère nettement de 0f . On est alors loin d’obtenir des oscillations quasi sinusoïdales à 0f . 

Q58. La résistance d’un conducteur de section S et de longueur L s’écrit 
L

R
σS

 . Ici le fil a pour section 
2

Cu

2

d
S π

 
  

 
, et la longueur 

totale du fil est celle de spN  spires de rayon BS
r

π
 , soit B

sp 2
S

L N π
π

 . Donc 
sp B

2
Cu Cu

8N S
R

σ d π
 . 

Q59. Deux spires adjacentes sont deux conducteurs à des potentiels légèrement différents (car le potentiel diminue le long d’une 
résistance), séparés par un isolant : c’est bien la structure d’un condensateur. 
Q60. Les spires sont en série les unes avec les autres, donc le condensateur {Sp1-Sp2} est en série avec {Sp2-Sp3}, et ainsi de suite. 

Dans ce cas les inverses des capacités s’ajoutent : ainsi 
sp 1

sp
éq Sp Sp( 1) i1

1 1 1
( 1)

N

n nn

N
C C C



 

    soit i
éq

sp 1

C
C

N



. 

Q61. Ce condensateur est placé entre les deux bornes de la bobine, comme l’inductance elle-même, le schéma équivalent de la bobine 
comporte donc éqC  en parallèle avec spL . Quant à la résistance R, elle est généralement représentée en série avec spL , mais le modèle 

parallèle existe aussi. 
Q62. Ce condensateur est donc en parallèle avec celui de capacité C : leurs capacités s’ajoutent, et il faut donc remplacer C par 

éqC C  dans les calculs. 

Q63. Comme on l’a vu à la question Q51 : 2 1FV H V , 3 2V AV  et 1 3V V . Donc 2 2FV H AV  soit 1FH A  . 

Q64. Comme A  est un réel positif, FH  doit l’être aussi, donc arg 0FH    . 

Q65. La condition devient 1FH A  , soit δ

0

1 j ψ
FH e

A

 , donc arg δFH ψ    . 

Q66. 
0 0

δ
1

ω ω

ω ω
   et 0

0

δ
1

ω ω

ω ω
   donc 0

01 2 δF

H
H

j Q ω ω



. Alors  0

0 0

δ δ
arg arg arg 1 2 0 arctan 2F

ω ω
H H j Q Q

ω ω

   
          

   
. 

Donc 
0

δ
arctan 2 δ

ω
Q ψ

ω

 
   

 
, d’où 0δ tan(δ )

2

ω
ω ψ

Q
  et 0δ tan(δ )

2

f
f ψ

Q
 . AN 2δ 3 10 Hzf    (variation de 0,3 %). 

Q67. Si δψ  fluctue légèrement, la fréquence de l’oscillateur fluctue aussi ; si le temps de réponse du détecteur est assez grand, on 

observera alors un élargissement spectral du signal (pic de largeur max2δ f ). 

Q68. Pour réduire fortement cette fluctuation, il faut augmenter au maximum le facteur de qualité Q (d’où son nom). 
 
 

____________________ 


