PC Lavoisier Vendredi 16 janvier 2026
Corrigé du devoir test de physique n° 5

o Probléme 1 (E3A PC 2019)
Al. Initialement, un condensateur est déchargé. Lorsqu’il se charge, le courant arrivant sur une armature est identique a celui qui
quitte I’autre : 'une des armatures se charge donc positivement et I’autre négativement, et il reste toujours globalement neutre.

A2. 1l faut que la taille des armatures soit grande devant leur écartement, soit | R, > e|.
A3. Pour tout point M, le plan (Myz) est un plan de symétrie pour la distribution de charges, donc pour le champ électrostatique, ainsi

E—A(M ) est paralléle a ce plan donc n’a pas de composante sur ﬁ: . De méme, (Mxz) est aussi un plan de symétrie, donc EZ(M ) n’a

pas de composante sur ;t; . On cherche donc a priori le champ sous la forme E—A(M )=E,(x, y,Z)lZ . Par ailleurs, la distribution

supposée infinie est invariante par translation selon 1’axe (Ox), donc la composante £, est indépendante de la variable x. Et la

distribution est invariante par translation selon I’axe (Oy), donc la composante E, est indépendante de y. On a donc obtenu
finalement : |E(M) =E, (Z)LZ .

A4, Le plan 4 (z' =0) est un plan de symétrie, donc EZ(—Z’) est symétrique de E(z') soit |E (-z)=-E, (z')| (fonction impaire).

AS. On applique le théoréme de Gauss a un cylindre fermé X2 de génératrices paralléles a (Oz), de bases d’aire S situées aux abscisses

Z>0 et -z (ﬂ)EA ds =9 ppx - #EA ds_”EA(z’)zT-dssz+”EA( 2y, -ds(- ”EALTZ-dsﬁ@
€y base en z/ base en —z' surf. lat.

IIEA(Z')ds + II —E (-2"))ds +0=(E,(z")-E4(-z"))S =2E (z')S. Charge intérieure : Oy =0 S = Qi
b

base en z/ ase en —z' ERCZXt
Donc 2E,(z")S = 2 S d’ou finalement : | E (M) = +—=4= Que. pour z' >0 s0it z > = et E (M)=——4=_ Q.e. pourz<£.
807ert 2e0mRZ, 2 2eTR2, 2
A6. On utilise le théoréme de superposition, aprés avoir remplacé g, par € . EM Y=E (M)+ ET;(M ) avec
ET;(M)=+ Ope: ___Cue: pour z>-< et Eg(M)=— Ope: _ QA ¢ pour z<-< . On obtient donc
26mR%, 2e7mR2, 2 ZSERgxt ZSERgxt 2
E(M) :6pourz <% et pour z > + < ; E(M) =—% pour —£<z<£.
2 2 2. 2 2
A7. Le potentiel est défini par : d0 = —E(M)~dOM . Pour —2<z<< :dv :%-(dxa+dya+dz€) = O dz d’ou
2 2 enR2, ’ enR2,
V(z) = o z+cte. Avec 0(0) =0 la constante est nulle : |0(z) = QA2 z pour Ll
emR2, emR2, 2 2
RZ

AS8. La capacité est définie par: C =& avec U = ”O(Jri)—”()(—fj = Que done |C = 2o |

U 2 2 RS, e

1
A9. Bilan d’énergie pour le condensateur : dd8C Fregue =UI =UC— (ZU (;1 (% CcU 2) donc |&¢ = EC U? | (a une constante pres).
t t t

1 1 U? .
Ou bien : le stock d’énergie (réparti uniformément) est 6. = vV = ESE 2xR2e = 2 —¢ UZ nR%.e soit|&c = ECU 2|
e

O max 1 CU? 1 eU? . 1
A10. Uglecmax = ;na = 2 ”Re[:ta; =5 2 efznax SO1t | Uglec, max :EgogrE[%lax . AN

Uglee,max — 43 kJ - 1’1’173

U

max — _ eC
Allje =251 AN e=5,0um]| Al12.|R,, =

max TEYE,

. AN |e =30 cm|. Ce serait un condensateur trés encombrant ! Mais

on peut obtenir une surface équivalente avec un faible encombrement en enroulant les armatures et le diélectrique.
. . duc du- 1 E

B1. Loi des mailles : Y dtc +—u-(t) =—|avec .

T T

B2. 7 est appelé temps de relaxation, ou encore constante de temps du circuit RC. Il donne 1’ordre de grandeur du temps de charge ou
de décharge du condensateur (régime transitoire).

B3. Solution générale : uc(¢) = E + Aexp(—1/7) . Avec la condition initiale u.(0)=0=E+ A on obtient uc(t)=E [1 —exp(—t/ 1)] .

Cette fonction tend asymptotiquement vers E : par identification avec le graphe on peut lire | E = 5,1 V| (incertitude inférieure a 0,1 V).
Pour trouver 7 on peut tracer la tangente a 1’origine et chercher son intersection avec I’asymptote ; ou bien chercher 1’instant ou

uc(r) = E[1-1/e]=0,63E =3,2 V : on trouve dans les deux cas |z =1,1£0,1 ms|

B4.|C = % =1,1£0,1 pF| (L incertitude relative sur la lecture de 7 est beaucoup plus grande que celle sur la valeur de R.)

C1. L’électrolyte étant globalement neutre, les charges accumulées des deux cotés sont opposées : pd,S =-p,d,S d’ou

=t



C2. Equation de Maxwell-Gauss pour ce milieu diélectrique : divE = L. De plus E= —gr?i”@ , d’ou A= - (équation de

&y Eoér
. . e |20 p(2)
Poisson). Sachant que 0 et p sont fonctions de z seulement, ceci s’écrit : 12 +—==0]
z¢ g8,

2
C3. Pour —§+d < z<§—d : p(z)=0 donc j—?:o, d’ou V(z)=Az+ B . Si on choisit 0(0)=0, on obtient bien une forme
z

pr 2z’

€&

e &0 p
0

linéaire V(z) = Az . Pour %—d <z< 5 =cte d’ou V(z) = +Cz+ D, qui est bien une fonction parabolique
z

Eo&r
4

€&

2
z .
—+ Ez+ F, fonction

. . . . R e e
avec la concavité vers le haut (premier coefficient positif). De méme pour > <z< _E+d 2 0(z)=—

parabolique avec la concavité vers le bas (premier coefficient négatif).

o Probleme 2 (Banque PT 2021)

Q45. En notant Z I’impédance de I’association RLC paralléle, et ¥ = jCw +l+% son admittance, on applique la relation du pont
JjLo

Z

Y _

= = soit
v Z+Ry 1+R)Y

diviseur de tension en supposant la sortie ouverte (rien de branché entre les bornes de sortie) : H . =

R
H, = ! - ! - R+ Ry . On peut identifier 4 H , = Hy
1+ Ry| jCo+ L4 1+ Ry 'RO(Ca)—lj 1+ KR (Cw—lj 1+ jO | 2 -0
VTR e R/ Lo "R+ R, Lo el P
R R C 1 1
en posant |H, = ,&:KOC et proz&,d’oﬁ QF=—R0 —let|wy =——|, soit| fy = .
R+Ry| wy R+R, (R+Ry)L R+Ry VL NLC 2a\LC
1
Q46. On reconnait la fonction de transfert d’un passe-bande d’ordre 2 : alors Tf = Q_
0 2
, 1)? Gasp  bande
Q47. Gy =20log|H| = 201log|H,|-10log| 1+ 0} x=—| | L, passante
2 1 b 3 logx
Pour x <1 : Gy = 20log H, —20log O +20log x =—-24+20logx _14
(pente + 20 dB/décade, ordonnée a 1’origine —24 dB). -17 — T >

Pour x>1: Gy = 20log H, —20log O —20log x = —24 -20log x
(pente — 20 dB/décade, ordonnée a I’origine —24 dB).

Pourx=1: Gy =20log H, =-14dB. -40+
La bande passante a -3 dB est lintervalle de fréquences pour lequel
Ggp > Gypmax —3 dB=—17 dB . Elle est ici assez étroite. 60

Q48. Pour ces ALI idéaux, les courants dans les deux entrées sont nuls : d’aprés la loi des nceuds, 1’intensité est donc la méme dans R,

et dans R, : c’est i, dans le montage 1, et on la note i (vers la gauche) dans le montage 2. De plus, les deux montages présentent une
boucle de rétroaction sur 1’entrée inverseuse (—), donc les ALI fonctionnent en régime linéaire, soit v_ =v, .

Montage 1

Alors v, = +R,i, (convention récepteur) et v, = —R, i, (convention générateur), d’ou

V,

Ve

Ry

(réelle).

: v_=v, =0 (masse) donc on retrouve v, aux bornes de R, (vers la gauche) et v, aux bornes de R, (vers la droite).
R
s 2

Montage | : v_ =v, =v, donc on retrouve v, aux bornes de R, (vers la droite) et v, —v, aux bornes de R, (vers la droite). Alors

v, = R;i (convention récepteur) et v, —v, = R,i (idem), d’ot v, =(R, + R,)i et finaleme

nt

Az__

Vs

Ve

=1+

R
R

(réelle aussi).

v,
49. Par définition, Z,, =—=. Montage 1 :|Z,; = R, | Montage 2 : i, =0 (entrée de I’ ALI) donc |Z,, = |,
Q 1 =7+ Montag : ( )

(3
Le montage 2 est dit idéal : si on le branche derriére un autre quadripdle, il n’y a aucun courant entre les deux donc le premier
quadripole peut toujours étre considéré en sortie ouverte, comme on 1’a fait dans 1’étude du filtre.
Q50. Si on met ’amplificateur (montage 2) derriere le filtre, v, = v, donc la fonction de transfert globale est :

A,H H RR C R, +R)R
Hy, -5 :_ESX—XZ =4, xH = = = . avec |Q=0p = 0 1= et H, = ZHOZM.
R+Ry VL R (R+R
Xl l}e Xl 1+]Q (CO CO()] 1+]Q[w CO()] + 0 l( + 0)
. _ _
@ w @ w

Q51. Quand I’interrupteur est fermé, v; =v,, avec v; = 4,v, . Pour la relation entre v; et v, donnée par le filtre, il faut retrouver une
Y _ H, _ H, jo/Qw,
v 1+ j0(0foy -0y /o) 1+ jo/Qu - oo

équation différentielle a partir de la fonction de transfert :



2
P=N [14- (jw) ]vz(t) Ho vl(t) S )+ ! &+Ld V2 =H, I dv . Finalement on multiplie tout par
(o5 CU

2 Ow, Ow, dt o} df’ Qw, dt
2 A 1as . d?v, @y
w4, , et on remplace A4,v, par vy, 4,v; par 4,v;, 4,H, par H,, d’ou I’équation : i Q Hl) +w0v3(t) 0l
Q52. Pour que l’on obtienne des oscillations pseudo-périodiques, il faut que le discriminant de I’équation caractéristique
2 BN ’_
r? +%(1—H1)r+w§ =0 soit négatif, soit 4 =%(1—H1)2 —4m3 <0 . Les racines sont alors r = —%(I—Hl)ii 2A Lo et
T

la solution générale de I’équation différentielle est v3(t):Aexp(t/ r)cos(wt+¢)) . Pour que ces oscillations soient d’amplitude

croissante, il faut que 7 soit positif, donc H, >1. Alors la condition 4 <0 devient H, —1<2Q . Il faut donc avoir |1 < H; <1+20 |
, . . w V —A . @ (Hl — 1)2 (O
53, 54. La fréquence d’oscillation est f =—= soit| f =—, |l -————— | f = f, =— pour|H, =1|oupour|Q>1|
Q q f 2 47 ! 2 4Q2 =t 27 p p

Q55. Si H, est grand (proche de 1+20), le temps caractéristique 7 est petit donc la croissance des oscillations aboutit rapidement a la
saturation de I’ALI ; et la fréquence differe nettement de f;. On est alors loin d’obtenir des oscillations quasi sinusoidales a f; .

2
. . L. L . . d
Q58. La résistance d’un conducteur de section S et de longueur L s’écrit R = -l Ici le fil a pour section S = 71'( ;u j , et la longueur
o

8Ny, [Sp

. [Sp /S
totale du fil est celle de Ny, spires de rayon r = ,s0it L=Ng,2n .Donc |R = 5 .
T T ocdiy V @
Q59. Deux spires adjacentes sont deux conducteurs a des potentiels 1égérement différents (car le potentiel diminue le long d’une
résistance), séparés par un isolant : ¢’est bien la structure d’un condensateur.
Q60. Les spires sont en série les unes avec les autres, donc le condensateur {Sp1-Sp2} est en série avec {Sp2-Sp3}, et ainsi de suite.

o 1 G
Dans ce cas les inverses des capacités s’ajoutent : ainsi — = —————=(Ngp —1)— soit|Csq = — |
éq n=1 CSpn—Sp(nJrl) Ci Nsp -1

Q61. Ce condensateur est placé entre les deux bornes de la bobine, comme I’inductance elle-méme, le schéma équivalent de la bobine

comporte donc Cy, en paralléle avec L, . Quant a la résistance R, elle est généralement représentée en série avec L, , mais le modele

parallele existe aussi.
Q62. Ce condensateur est donc en parallele avec celui de capacité C: leurs capacités s’ajoutent, et il faut donc remplacer C par

C+C,, dans les calculs.
s =AV,|et[V, =V,| Done ¥, = H, AV, soit|H  4=1]

Q64. Comme A est un réel positif, H , doit I’étre aussi, donc |arg [ﬁp] =0

.. . . 1 o
Q65. La condition devient H . A'=1, soit H, = Ze‘ﬁw’ , donc |arg [ﬁp] =0y |.

w dw w, dw H, dw dw
66. — =1+— et —~1—— donc H, ¥~—— . Alors arg| H . |=arg|H,|-arg|1+ j20— | = 0—arctan| 20— |.
Q , y w , = 1+j2Q6a)/a)0 g[_F] g[ O] g|: / Qwo} { Qa)o}

Q63. Comme on I’a vu a la question Q51 : |Z2 =H.V,\

Donc —arctan {ZQS—(U} =3y ,d’ou|dw = %tan(&//) et 8f = fo tan(&//) AN |8/ =3-10? Hz| (variation de 0,3 %).
2

Q67. Si Sy fluctue 1égerement, la fréquence de 1’oscillateur ﬂuctue aussi ; si le temps de réponse du détecteur est assez grand, on

observera alors un élargissement spectral du signal (pic de largeur 25/, )-

Q68. Pour réduire fortement cette fluctuation, il faut augmenter au maximum le facteur de qualité Q (d’ou son nom).




