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Exercices du chapitre Ém5 
 
 

Données et formules pour tous les exercices :   
6 1

0 1,257 10 H mμ      ;   
12 1

0 8,854 10 F mε      ; 
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Équations de Maxwell et bilan énergétique 

 

1. Décharge d’une boule métallique dans l’air 
Pour une expérience d’électrostatique, on a chargé une boule 
métallique de rayon R avec une charge initiale 0Q  répartie 

uniformément sur toute sa surface. La boule est placée dans 
l’air : si celui-ci était parfaitement isolant, la boule pourrait 
rester chargée indéfiniment. Mais l’air possède en fait une très 
légère conductivité électrique γ, de l’ordre de  

15 110 S m   
(surtout lorsqu’il est humide), ce qui entraîne une décharge 
progressive de la boule : on cherche alors à déterminer 
l’évolution de sa charge ( )Q t . Les charges qui quittent la 

boule suivent des trajectoires rectilignes radiales, ce qui crée 
une distribution de courant isotrope ; l’air reste globalement 
neutre. 
a) En utilisant les propriétés de symétrie de cette distribution 
de charges et de courants, simplifier les expressions des 
champs ( , )B M t

��
 et ( , )E M t
��

 créés dans l’air environnant (en 

M tel que r R ). 
b) Calculer ces deux champs, puis le vecteur de Poynting. 
c) En utilisant l’une des équations de Maxwell, déterminer 
l’équation différentielle vérifiée par ( )Q t . Donner sa solution, 

et donner une évaluation numérique de la durée de décharge 
de la boule. 
d) Déterminer la puissance totale fournie par les champs à l’air 
environnant. En déduire l’énergie électromagnétique reçue par 
l’air pendant toute la décharge de la boule. 
e) Retrouver ce résultat en calculant la variation de l’énergie 
électromagnétique stockée dans l’air. 
 

ARQS magnétique 
 

2. Chauffage par induction dans un solénoïde 
Dans la technique de forge par induction, on utilise un 
solénoïde pour chauffer une barre de métal par effet Joule. 
 

 

On considère un solénoïde de N spires circulaires de rayon R, 
jointives, formant un cylindre de longueur ℓ . Les fils ayant 
une épaisseur négligeable devant le rayon R, le solénoïde peut 
être assimilé à une distribution surfacique de courant. Il est 
alimenté par un courant d’intensité i (t) = Im cos(ω t), de 
fréquence suffisamment faible pour que l’on puisse faire 
l’hypothèse de l’ARQS magnétique. 
a) Rappeler sans démonstration l’expression du champ 
magnétique ( , )B M t

��
 créé à l’intérieur de ce solénoïde. 

b) Calculer le champ électrique ( , )E M t
��

 à l’intérieur du 

solénoïde, à l’aide de la loi intégrale de Faraday ou de 
l’équation de Maxwell–Faraday. Vérifier que ce champ est 
bien compatible avec l’équation de Maxwell–Gauss. 
c) Montrer qu’à l’intérieur du solénoïde, le terme électrique de 
la densité d’énergie électromagnétique est négligeable devant 
le terme magnétique, dans le cadre de l’ARQS. 
 

On place à l’intérieur de ce solénoïde, sur son axe, une barre 
de fer cylindrique de même longueur ℓ  et de rayon a. La 
conductivité du fer est 7 11,0 10  S mγ    . 

d) Déterminer la puissance de chauffage P, c’est-à-dire la 
puissance moyenne fournie par le champ électromagnétique à 
la barre de fer. Faire l’application numérique avec des valeurs 
réalistes des différents paramètres. 
 
3. Propagation des champs dans un conducteur 
Un champ électrique sinusoïdal de pulsation ω est imposé 
dans un bloc de fer de conductivité 7 11,0 10  S mγ    . 

a) Supposons qu’au voisinage d’un point du conducteur il 
existe à 0t  un petit excédent de charge, de densité 
volumique ρ0. Montrer, en utilisant la loi d’Ohm locale et une 
équation de Maxwell, que la densité de charge ρ tend vers 0 
avec un temps de relaxation τ que l’on définira. Évaluer 
numériquement le temps de disparition de ρ et commenter. 
 

On considère dans la suite que ρ est toujours nulle. 
b) Pour une fréquence inférieure au térahertz, montrer que le 
« courant de déplacement » peut être négligé devant le courant 
de conduction dans l’équation de Maxwell–Ampère. 
c) En tenant compte des deux approximations précédentes, 
écrire les quatre équations de Maxwell dans ce bloc de fer, 
avec uniquement les champs ( , )B M t

��
 et ( , )E M t
��

 et les 

constantes τ et c (célérité de la lumière dans le vide). 
d) Montrer alors que le champ ( , )E M t

��
 obéit à une équation 

de diffusion, et préciser l’expression de son coefficient de 
diffusion D. 
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