PC Lavoisier A rendre jeudi 5 février 2026

Devoir d’entrainement de physique n° 6

Cet énoncé comporte deux problémes.

Probléme A

De la physique autour d’un tore

II. — Etude d’un conducteur ohmique torique

Un conducteur ohmique est caractérisé
par une conductivité électrique v de 1’or-
dre de 10® S - m~! 1l forme un tore
tronqué de section rectangulaire de ra-
yon intérieur a, de rayon extérieur b,
d’épaisseur c.

On cherche a déterminer la résistance
orthoradiale R d’une portion de ce con-
ducteur comprise entre les angles # = 0
ou on applique un potentiel uniforme
V =U et § = a ou on applique un
potentiel V' = 0.

FI1GURE 3 — Portion d’un conducteur torique

(4 6 — On rappelle la valeur numérique

1
de la constante ¢y = o 1072 dans les unités du systéme international. Rappeler le nom et

T
I'unité pratique de cette constante.

a7 — Etablir7 dans un conducteur ohmique, 1'équation différentielle vérifiée par la densité
volumique de charge p. En déduire que p ~ 0 tant que la durée 1" caractéristique de variation
des grandeurs électromagnétiques est tres supérieure a une durée 7 dont on donnera 'expression
en fonction de v et gg ainsi que la valeur numérique.

(1 8 — Montrer qu'un terme peut étre négligé dans I'équation de Maxwell-Ampere si T > 7.

3 9 — Etablir I'équation vérifiée en régime permanent et dans le conducteur ohmique par le
potentiel électrique V.

(d 10 — On suppose que V' ne dépend que de I'angle 6 en coordonnées cylindriques et on donne,

dans ce systeme de coordonnées, les expressions du gradient du potentiel gradV = %%—‘e/ﬂe et de

son laplacien AV = T%%ZT‘; Déterminer les expressions de V' (6), du champ E et de la densité

de courant .

(d 11 — Déterminer I'expression de l'intensité totale [ traversant une section rectangulaire
droite quelconque de ce tore. En déduire sa résistance orthoradiale R en fonction de a, b, ¢, v
et a.

(d 12 — Rappeler l'expression de la résistance d'un conducteur filiforme de section S et de
longueur L. Vérifier qu’elle est cohérente avec l'expression du conducteur torique quand b est
tres proche de a.
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III. — Etude d’une pince ampéremétrique

Une pince amperemétrique est un appareil dont I'extrémité possede
la forme d'un tore. En disposant ce tore autour d'un conducteur
parcouru par un certain courant le dispositif équipant la pince
permet d’en mesurer 'intensité.

Son principal intéret est 'absence de contact physique avec le
conducteur et le fait qu’il ne soit pas nécessaire d’ouvrir le circuit
pour mesurer le courant qui le traverse contrairement a l'implan-
tation d’'un amperemetre classique.

Le dispositif de mesure de la pince amperemétrique est formé d’un
bobinage torique comportant N spires enroulées sur un tore de
section rectangulaire de rayon intérieur a, de rayon extérieur b,
d’épaisseur ¢, d’axe (O,z). Le fil conducteur utilisé pour le bobi-
nage possede une résistance linéique \.

Un point M intérieur au tore est repéré par ses coordonnées cylindriques : O—]\} = ru, + 2U.
avec r € [a,b] et z € [0,c].

Un fil rectiligne infini de méme axe (O,z) est parcouru par un courant d’intensité i(¢). On note
i1(t) Vintensité du courant circulant dans la bobine torique. On se place dans I'approximation
des états quasi-stationnaires.

FIGURE 4 — Partie active
de la pince

4 13 — Rappeler ce qu'on appelle approximation des états quasi-stationnaires. Montrer que
cette approximation permet de simplifier I'équation de Maxwell-Ampere. Enoncer dans ce cas
le théoreme d’Ampere.

d4 14 — Montrer qu’au point A intérieur au tore, le champ magnétique peut se mettre sous
la forme B = B(r)uy ou I'on précisera I'expression de B (r) en fonction de puo, i(t), i1(t), N et
r.

3 15 — Calculer le flux ® de B A travers le bobinage et en déduire les expressions des
coefficients d’autoinductance L du bobinage et de mutuelle inductance M entre le fil et le
bobinage.

'd 16 — Déterminer I'expression de la résistance totale R, du bobinage en fonction de a, b, c,
N et A.

On se place en régime sinusoidal forcé avec i(t) = Iyv/2 cos(wt) associée a l'intensité complexe
i = IoV/2e7% et iy (t) = I1V/2 cos(wt + ¢1) associée a l'intensité complexe i, = I;y/2e/<t i1,

'd 17 — Le bobinage formant un circuit fermé, déterminer 'expression de la fonction de
i

transfert 4 = == en fonction de M, w, R, et L.
i

'd 18 — Dans quel régime de pulsation ce dispositif peut-il former une pince amperemétrique ?
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Probléme B

Activité électrique du ceeur

I1.A.1) Dans un premier temps, on se propose d’étudier le champ électrique dii & la présence de charges
ponctuelles avant de passer a la modélisation électrique du coeur.

Q 32.  Soit une charge ponctuelle ¢ > 0 placée en un point O fixe. Donner U'expression du vecteur champ
électrostatique E et du potentiel électrostatique V' créé par g en un point M quelconque de 1’espace situé a une
distance r de O. On suppose que le potentiel électrostatique est nul a I'infini.

Q 33. Rappeler la définition d'une ligne de champ et d’une surface équipotentielle. Quelles sont-elles sur
Iexemple précédent de la charge ponctuelle ¢ > 0 située en O 7 en faire une représentation dans un plan passant
par O.

Q 34.  On considere deux charges fixes positionnées sur un axe (Oz) : une charge —q < 0 au point A d’abscisse
T = —a et une charge ¢ > 0 au point B d’abscisse x = a. Déterminer le vecteur champ électrostatique E et le
potentiel électrostatique V' au point O, milieu de [AB].

Un dipdle électrique est constitué de deux charges —q située en A et +¢ située en B ; on lui associe un moment
dipolaire électrique p = q/TB, de norme p = qd avec d = AB. On repére un point M quelconque de 1'espace par
7 = OM avec O le milieu de [AB] (figure 4). En coordonnées sphériques et a grande distance des deux charges,
c’est-a-dire pour r = OM > d, on montre que le potentiel électrostatique V' au point M s’écrit

—

v — pcosf  D-F
dmeqr?  dmegrd’

Ce potentiel électrostatique est associé a un champ électrostatique E.

—q
L > & >
A O 4, B L

Figure 4 Dipdle électrique et coordonnées associées

Q 35. Déterminer les expressions des composantes E,. et E, du champ électrostatique E a grande distance
des deux charges (r > d).

Q 36. Quelle relation a-t-on entre ’'angle 6 et I’angle a que fait le champ E avec l'axe (OM)?

Q 37. Déterminer et dessiner le champ E pour § =0et 6§ =7/2.

I1.A.2) L’enregistrement de I'activité cardiaque électrique au cours du temps est réalisée en mesurant une
différence de potentiel entre deux points du corps. On appelle dérivation un systeme de deux électrodes explo-
ratrices entre lesquelles on mesure une différence de potentiel. Dans I’étude des dérivations dites périphériques
(ou des membres) les électrodes sont placées soit au poignet droit (point R) de potentiel Vj, soit au poignet
gauche (point L) de potentiel V7, soit a la jambe gauche (point F) de potentiel V. Par hypothese, les points
R, L et F sont aux sommets d'un triangle équilatéral (figure 5). On définit enfin une électrode de référence au
potentiel V};, constant dont on précise les caractéristiques ci-apres.

Une dérivation unipolaire correspond a une différence de potentiel entre une électrode exploratrice et 1'électrode
de référence alors qu'une dérivation bipolaire correspond & une différence de potentiel entre deux électrodes
exploratrices.

Q 38. Combien peut-on construire de dérivation unipolaire ? de dérivation bipolaire 7

Q 39. Quel intérét y a-t-il a associer ces deux types de dérivations ?
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Figure 5 Dérivations périphériques

La théorie d’Einthoven permet d’expliquer les tracés observés dans les dérivations périphériques (enregistrement
a grande distance du coeur).

— Hypotheése 1: a chaque moment du cycle cardiaque le coeur est assimilable & un dipoéle électrique dont le
vecteur moment dipolaire P varie en module, direction et sens au cours du cycle cardiaque.

— Huypothése 2: Dorigine de p peut étre considérée comme fixe et correspond au centre électrique O du coeur.

— Hypothése 3: le centre de gravité du triangle équilatéral formé par R, L et F' est occupé par le centre
électrique O du ceeur.

Q 40. A Tlaide de I’expression du potentiel créé par un dipdle donnée précédemment, exprimer les trois

potentiels Vg, Vi et Vi en fonction, notamment, des distances rp = OR, r;, = OL et 7y = OF. On n’introduira

pas de variables angulaires.

Q 41. Qu’'imposent les hypotheses 2 et 3 pour le calcul précédent 7

Q 42. En déduire la possibilité de définir par le calcul une électrode de référence de potentiel Vy; nul. On

parle alors de borne centrale de Wilson. En pratique comment réaliser cette borne de Wilson ?
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