
Ém4 – Corrigé de l’exercice 4 
 
¤ Exercice 4 
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 (force attractive : le pôle nord attire le pôle sud). 
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 (force répulsive : les pôles nord se repoussent). 

– Cas 3 : 0 1 2 0 1 2
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 (force répulsive : les pôles se repoussent deux à deux). 

c) 1 2 Bm m μ∼ ∼  et 1010  mr 
∼ , d’où 
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E ∼ ∼ . Énergie moyenne d’agitation thermique : 21
c B 10  Jk T E ∼ ∼ . 

L’énergie cinétique d’agitation thermique, qui tend à orienter les dipôles aléatoirement, est généralement plus grande que l’énergie 
potentielle d’interaction, qui tend à les aligner : le désordre l’emporte, et la matière ne reste pas aimantée en général, en l’absence de 
champ extérieur. 
 
 

Ém5 – Corrigé des exercices 1 et 3 
 

¤ Exercice 1 
a) La distribution de charges et de courants est à symétrie sphérique : un point M de l’espace appartient à une infinité de plans de 
symétrie de cette distribution, qui sont tous les plans contenant (OM). Par conséquent, le champ électrique est parallèle à tous ces 

plans, soit ( , ) ( , )r rE M t E M t e
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 en coordonnées sphériques ; et le champ magnétique est orthogonal à tous ces plans, soit 
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. Et comme il y a invariance par rotation autour de tout axe passant par O, rE  est indépendant de θ et de φ : 
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b) Le théorème de Gauss est toujours valable en régime variable, donc on obtient comme en électrostatique : 
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pour r > R, c’est-à-dire dans l’air extérieur. Vecteur de Poynting : 
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c) Pour trouver une équation différentielle pour ( )Q t  il suffit d’en trouver une pour le champ ( , )E M t
��

. Pour cela, la seule équation de 

Maxwell utile est celle de Maxwell–Ampère :  
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La durée de décharge est de l’ordre de quelques τ (par exemple 5 τ) avec 0ε
τ

γ
 . Pour l’évaluer il faut estimer un ordre de grandeur de 

la conductivité de l’air. Sachant que l’ordre de grandeur de γ peut aller de 7 110  S m  pour les meilleurs conducteurs à 20 110  S m   

pour les meilleurs isolants, on peut supposer par exemple que pour un air humide légèrement conducteur 14 110  S mγ  ∼ , ce qui 

donne une durée de décharge  
3  5 10 sτ ∼ , soit quelques heures. 

d) La puissance volumique fournie par les champs aux charges de l’air est 2j E γE 
� ��

, donc pour obtenir la puissance totale il faut 

intégrer sur tout le volume extérieur à la boule : 
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e) Si on fait un bilan énergétique sur l’ensemble de l’air environnant, comme il n’y a pas de flux externe (vecteur de Poynting nul), 
cette énergie cédée par le champ (et dissipée par effet Joule) est égale à la variation de l’énergie électromagnétique stockée : 

ém ém ém( ) (0) W   E E . On vérifie ce bilan en calculant l’énergie stockée : 
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¤ Exercice 3 

a) Les relations contenant la densité de charge sont l’équation de Maxwell–Gauss 
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l’ordre de 10–18 s, c’est-à-dire inobservable, quel que soit l’instrument : le milieu reste toujours neutre. 
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. On reconnaît une équation de diffusion, avec un coefficient de diffusion 2D c τ . 
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