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Em4 — Corrigé de I’exercice 4

o Exercice 4

3(%'5)(@'5)—’"1""2

a)[6, = —m, - B(M) = - £2

. La force subie par ;2 est|F = —grad &, |, gradient calculé au point M.
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b)-Cas1: &, =- Ho 3mymy —mymy = Ko WM one |F = —2H0 ThM2 . | (force attractive : le pdle nord attire le pole sud).
4z r3 2 3 2r ot
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-Cas2: &, =- Ho 3m (Zmy) = m (=) = Ko T Gone |F = 2t msz . | (force répulsive : les pdles nord se repoussent).
4z 3 2r 3 2 r
_ — 3 —
—Cas3: & =- Ho 3x0=mm =+ £ onc |F = 2Ho msz e, | (force répulsive : les pdles se repoussent deux a deux).
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L’énergie cinétique d’agitation thermique, qui tend a orienter les dipOles aléatoirement, est généralement plus grande que 1’énergie

potentielle d’interaction, qui tend a les aligner : le désordre I’emporte, et la matiére ne reste pas aimantée en général, en I’absence de

champ extérieur.

) my ~my ~py et r~107" m, d’ou |5, . Energie moyenne d’agitation thermique : |&, ~ kg7 ~1072! J |
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EmS — Corrigé des exercices 1 et 3

o Exercice 1
a) La distribution de charges et de courants est a symétrie sphérique : un point M de I’espace appartient a une infinité de plans de
symétrie de cette distribution, qui sont tous les plans contenant (OM). Par conséquent, le champ ¢€lectrique est paralléle a tous ces

plans, soit E(M ,WD=E.(M ,t)g en coordonnées sphériques; et le champ magnétique est orthogonal a tous ces plans, soit

E(M ,t)=6 . Et comme il y a invariance par rotation autour de tout axe passant par O, E, est indépendant de 6 et de ¢:

EM,t)=E,(r,0)e, |

. L . . , . = t) —
b) Le théoréme de Gauss est toujours valable en régime variable, donc on obtient comme en électrostatique : | E(M ,¢) :“Q;)ze,
e
e . — EAB = =
pour > R, c’est-a-dire dans I’air extérieur. Vecteur de Poynting : I7 = donc ici |1 =0|
Ho

¢) Pour trouver une équation différentielle pour Q(¢) il suffit d’en trouver une pour le champ E(M ,t) . Pour cela, la seule équation de

Maxwell utile est celle de Maxwell-Ampére : rT)th,uo (}4‘80 Z—E}() On combine avec la loi d’Ohm locale }'zyi :
t

= 1 ;
& Z—f +yE =0 d’ou d—?-lrlQ(t) =0|. Solution, avec la condition initiale Q(0)=Q, :|0(t) =0, exp(—y—] .
€ )

La durée de décharge est de 1’ordre de quelques 7 (par exemple 57) avec 7 = £ pour I’évaluer il faut estimer un ordre de grandeur de
I

la conductivité de Iair. Sachant que I’ordre de grandeur de y peut aller de 107 S-m™" pour les meilleurs conducteurs a4 1072° S-m™!

pour les meilleurs isolants, on peut supposer par exemple que pour un air humide légérement conducteur y ~107'4 S.m™!

, ce qui
donne une durée de décharge 57 ~10° s, soit quelques heures.

d) La puissance volumique fournie par les champs aux charges de I’air est ;E =yE?, donc pour obtenir la puissance totale il faut

400 2 2 ~+00
intégrer sur tout le volume extérieur a la boule : 9= J.J.J. yE2dr= J. }/&47[}”2 dr=y 0] I dr soit
air ext

g lém?elrt 4¢ ) _p1?
t 2 2 2 t +00 2 +00 2 t 2
Qz&z@exp i . Alors Wy, = P)dt = 7% exp ~ 27 \dr soit Wem = % .
4¢lR 4elR £ —0 4¢2R )., N 8eoR

e) Si on fait un bilan énergétique sur I’ensemble de 1’air environnant, comme il n’y a pas de flux externe (vecteur de Poynting nul),
cette énergie cédée par le champ (et dissipée par effet Joule) est égale a la variation de 1’énergie électromagnétique stockée :
. . o . [ e E?  B? ,

O (+0) =6 (0) =W, . On vérifie ce bilan en calculant 1’énergie stockée : &g, (¢) = J.J. (OT+2_]dT soit
o air ext Ho

—+00 2 2 —+00 2 2
8ém (t) = (8_0—Q(t) + 0]471’1"2 dr= —QO eXp(—%]I ﬂ = QO exp(—%j d’ou gém (+OO) - gém (O) == QO -

g\ 2 167r28§r4 e & R r2  8mweyR & 8wegR




a Exercice 3
p

a) Les relations contenant la densité de charge sont 1I’équation de Maxwell-Gauss divE = et I’équation locale de conservation de
o
la charge a—p+div}' =0. Pour les combiner on utilise la loi d’Ohm locale } = yE : Z—p+ ydivE =0 Z—p+lp =0. Solution :
t t &o

t . . ..
(1) =po exp{——j avec le temps de relaxation |7 - 9:107" s|. Le temps de disparition de I’excédent de charge est donc de
T Y

I’ordre de 10°!8 s, c’est-a-dire inobservable, quel que soit I’instrument : le milieu reste toujours neutre.

. . — E ] 2
b) Densité volumique de courant de déplacement : j; = 3086— donc j; ~ gywE =¢y2nfE . Alors ]—d ~ M Pour < 1 THz on
t

J 14

trouve ]—‘.1 <5-107% donc j, est négligeable devant j.
J

, = —— 0B . = —— - 1 =
¢) Equations de Maxwell dans ce milieu : |divE =0 ; roth—E; divB=0; rothlqu:TE.
c’t

d) On utilise la formule d’analyse vectorielle r‘o“t(r‘o“t E) = grad (divE)—AE , soit Tm[—%—f] =grad (0)-AE < —%r‘o“t B=-AE

—~ 1 9E : e , .
et finalement |[AE = ————/|. On reconnait une équation de diffusion, avec un coefficient de diffusion .
c’t ot




