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Exercices du chapitre On1 
 

Équation de D’Alembert et énergie 
 

1. Transport d’énergie par une onde sur une corde 

On considère une corde vibrante de masse linéique µ, tendue 
selon l’axe (Ox) avec une tension T. Les déplacements de la 
corde s’effectuent selon (Oy) et sont repérés par ( , )y x t . On 

note ( , )yT x t  la composante selon (Oy) de la force ( , )T x t
��

 

exercée par la partie de la corde d’abscisse inférieure à x sur la 
partie d’abscisse supérieure à x. Enfin on note 

( , ) ( , )yv x t y x t ɺ
 
la vitesse de la corde parallèlement à (Oy). 

a) Établir l’équation d’onde vérifiée par ( , )y x t
 
en rappelant 

les hypothèses qu’elle suppose. 
b) Exprimer la puissance instantanée ( , )x tP  fournie par la 

partie de la corde d’abscisse inférieure à x sur la partie 
d’abscisse supérieure à x. 
c) Trouver les deux relations couplées reliant, d’une part  
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l’expression d’une quantité ( , )e x t  vérifiant l’équation 
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. Quel type d’équation reconnaît-on ? 

d) Montrer que ( , )e x t  a la dimension d’une énergie par unité 

de longueur. On appelle ( , )e x t  la densité linéique d’énergie 

associée à l’onde. Elle comporte un terme associé à l’énergie 
cinétique de la corde et un terme associé à l’énergie potentielle 
de déformation : identifier ces deux termes.  
e) Montrer que pour une onde progressive vers les x positifs, e 
est la somme de deux termes égaux. Cette propriété est-elle 
encore vraie pour une onde progressive dans le sens des x 
négatifs ? pour une onde quelconque ? 

 
Équation de D’Alembert et conditions aux limites 

 

2. Coefficient de réflexion au bout d’un câble coaxial 

Un câble coaxial est constitué de deux fils conducteurs 
parallèles « l’un dans l’autre », les deux étant séparés par un 
isolant en matière plastique. 

 
Entre les deux conducteurs, la capacité par unité de longueur 
du câble est 197 pF mγ   . Et le câble possède également 

une inductance par unité de longueur 10, 23 µH mλ   . 

Lorsqu’on connecte une extrémité du câble coaxial à un 
générateur (GBF) fournissant une tension périodique, une onde 
électrique se propage le long du câble et transmet le signal à 
l’autre extrémité, connectée à un circuit ou à un oscilloscope. 
On se propose de déterminer l’équation de propagation de 
cette onde. Pour cela, on raisonne sur un élément de longueur 
d x  du câble, modélisé selon le schéma ci-dessous. 

 
a) Par application des lois des circuits, établir deux équations 
aux dérivées partielles couplées, d’ordre 1, vérifiées par la 
tension ( , )u x t  et l’intensité ( , )i x t . 

b) En déduire l’équation de propagation de l’onde de tension, 
et calculer la célérité c de cette onde. Quel est l’indice de 
réfraction de l’isolant présent dans ce câble ? 
c) Pour une onde progressive harmonique vers les x positifs, 
établir la relation : c( , ) ( , )u x t Z i x t  où cZ  est une constante 

réelle positive que l’on exprimera en fonction de γ et λ. Que 
devient cette relation pour une OPH allant vers les x négatifs ? 
 

Une OPH se propage depuis x → – ∞ jusqu’à l’extrémité du 
câble coaxial, en x = 0, reliée à un dipôle d’impédance 
complexe Z. Lorsque l’onde arrive à cette extrémité, elle 
donne naissance à une onde réfléchie. L’onde d’intensité en un 
point quelconque peut alors s’écrire, en notation complexe : 

i r( , ) exp[ ( )] exp[ ( )]i x t I j ωt kx I j ωt kx     

d) En déduire la forme complexe de l’onde de tension. 
e) Écrire la condition aux limites en x = 0, et en déduire les 
coefficients de réflexion en intensité et en tension, définis par : 
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f) Déterminer les valeurs de ur  obtenues pour 0Z   et pour 

Z  . Comment réaliser ces deux impédances ? 

g) Que se passe-t-il si on choisit cZ Z  ? Est-ce intéressant ? 

 
3. Détermination du module de Young du graphite 

Dans l’industrie nucléaire, on utilise du graphite en barres 
comme modérateur (absorbeur de neutrons) dans les réacteurs.  
Le module de Young E de ce matériau est une propriété 
importante pour prévoir son comportement en situation. La 
méthode proposée par François PATTOU et Jean-Claude TRUTT 
en 1963 consiste à créer une onde stationnaire longitudinale 
auto-entretenue au moyen d’une boucle de rétroaction. 
 

 
(F. Pattou, J.-C. Trutt, Rapport CEA no 2243, 1963) 

 

La détermination de la fréquence propre (fondamentale) de 
cette onde permet de calculer le module de Young. 
On prend (Ox) comme axe longitudinal de la barre, de section 
S et de longueur L. On note ( , )ξ x t  le déplacement dans cette 

direction de la tranche de graphite se trouvant à l’abscisse x au 
repos, et ( , )x xF x t e

���

 la force de traction/compression exercée 

par la partie de la barre à droite de x sur celle à gauche. 
a) Établir l’équation de D’Alembert vérifiée par ( , )ξ x t , et 

préciser l’expression de la célérité c en fonction de E et de la 
masse volumique ρ du graphite. 
b) Pour une onde stationnaire, donner sans démonstration la 
forme mathématique de ( , )ξ x t  ; en déduire celle de ( , )xF x t . 

c) La barre étant libre aux deux extrémités, quelles sont les 
conditions aux limites ? En déduire l’expression des 
fréquences propres nf  en fonction de L, c et d’un entier n. 

d) Pour une barre de longueur 80,0 mmL   faite avec un 
échantillon de graphite de faible densité (masse volumique 

31610 kg mρ   ), Pattou et Trutt ont mesuré une fréquence 

fondamentale 1 11,78 kHzf  . Déterminer le module de 

Young E de ce graphite. 
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4. Réflexion de l’onde sur une corde 

On considère une corde très longue, de masse linéique μ, 
tendue sur la partie négative de l’axe (Ox) avec une tension T. 
À son extrémité d’abscisse x = 0 est attachée une masse m ne 
pouvant se déplacer que verticalement (par exemple une petite 
perle coulissant sans frottement sur une tige verticale). Le 
poids de cette masse est négligeable devant la tension de la 
corde. 

 
Une onde incidente sinusoïdale arrive sur cette extrémité et y 
subit une réflexion. On note r le coefficient de réflexion de 
l’onde, qui est le rapport entre l’amplitude complexe r (0)A  de 

l’onde réfléchie et celle i (0)A  de l’onde incidente en x = 0. 

a) Donner la forme réelle des ondes incidente et réfléchie, et 
en déduire les expressions des leurs amplitudes complexes. 
b) En appliquant le principe fondamental de la dynamique à la 
masse m, déterminer l’expression de r. 
c) Étudier les deux cas limites 0m   et m  , en donnant 
leur signification physique. 
d) La corde est maintenant fixée en x = 0. Retrouver directe-
ment la valeur de r, et déterminer l’onde résultante sur la 
corde ( , )y x t . De quel type d’onde s’agit-il ? 

 
Autre établissement d’une équation de D’Alembert 

 

5. Onde acoustique dans un solide 

On se propose d’établir l’équation de D’Alembert pour une 
onde acoustique unidimensionnelle dans un solide, en 
raisonnant à l’échelle atomique. 
On suppose que les atomes du solide, de masse m, forment un 

réseau cubique de période a (paramètre de maille). 
L’interaction entre deux atomes voisins est modélisée par un 
ressort de longueur à vide a et de coefficient de raideur K.  
Pour une onde unidimensionnelle selon l’axe (Ox), on peut se 
contenter de considérer des atomes voisins sur une seule ligne 
parallèle à cet axe. On numérote ces atomes avec un entier n ; 
le n-ième atome se trouve à l’abscisse n  a à l’équilibre. En 
présence d’une onde, son déplacement par rapport à sa 
position d’équilibre est noté ξn (t), donc son abscisse devient  
xn (t) = n a + ξn (t). 

 
a) Établir l’équation différentielle reliant ξn, ξn–1, ξn+1, m et K. 
 

On modélise maintenant le solide comme un milieu continu, le 
déplacement local étant une fonction notée ξ (x, t), telle que   
ξn (t) = ξ (n a, t). 
b) À l’aide de développements de Taylor d’ordre 2, exprimer 
les déplacements ξ ((n + 1) a, t) et ξ ((n – 1) a, t) en fonction de a 
(considéré comme un infiniment petit) et de ξ et ses dérivées 
au point n a. 
c) Montrer alors que l’équation différentielle de la question a 
devient, par passage au continu, une équation aux dérivées 
partielles de la forme : 
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Donner l’expression de c en fonction de a, K et m. Que 
représente cette grandeur ? 
d) Vérifier que cette expression s’identifie à celle trouvée avec 
la modélisation macroscopique (dans la partie 3.b du cours et 
l’exercice 3). 
e) Quelle doit être la relation entre a et la longueur d’onde λ 
pour que cette modélisation continue soit valable ? 

 
 

 
 
 Réponses partielles 

1. b) ( , ) ( , ) ( , )y yx t T v T x t v x t  P
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2. b) 1, 4n  .    3. d) 5,72 GPaE  . 
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