Exercices du chapitre Onl

Equation de D’Alembert et énergie

1. Transport d’énergie par une onde sur une corde

On considere une corde vibrante de masse linéique u, tendue
selon I’axe (Ox) avec une tension 7. Les déplacements de la
corde s’effectuent selon (Oy) et sont repérés par y(x,7). On

note 7,(x,f) la composante selon (Oy) de la force T (x,1)

exercée par la partie de la corde d’abscisse inférieure a x sur la
partie d’abscisse supérieure a x. Enfin on note
v, (x,t) = y(x,t) la vitesse de la corde parallelement a (Oy).

a) Etablir 1’équation d’onde vérifiée par y(x,f) en rappelant

les hypothéses qu’elle suppose.
b) Exprimer la puissance instantanée P(x,¢) fournie par la

partie de la corde d’abscisse inférieure a x sur la partie
d’abscisse supérieure a x.
¢) Trouver les deux relations couplées reliant, d’une part

oT, ov, o7, ) o
— et —— , et d’autre part —— et —— . En déduire
ot Ox Ox
I’expression d’une quantité e(x,7) vérifiant 1’équation
0P Oe . . .
o +—=0. Quel type d’équation reconnait-on ?

X

d) Montrer que e(x,t) a la dimension d’une énergie par unité
de longueur. On appelle e(x,?) la densité linéique d’énergie
associée a l'onde. Elle comporte un terme associé a I’énergie
cinétique de la corde et un terme associé a I’énergie potentielle
de déformation : identifier ces deux termes.

e) Montrer que pour une onde progressive vers les x positifs, e
est la somme de deux termes égaux. Cette propriété est-elle
encore vraie pour une onde progressive dans le sens des x
négatifs ? pour une onde quelconque ?

Equation de D’Alembert et conditions aux limites

2. Coefficient de réflexion au bout d’un cible coaxial
Un cable coaxial est constitué de deux fils conducteurs
paralléles « I'un dans I’autre », les deux étant séparés par un

isolant en matiére plastique.
T ame

isolant

gaine ou
tresse

Entre les deux conducteurs, la capacité par unité de longueur
du cable est y=97 pF-m~!. Et le cable posséde également

une inductance par unité de longueur A =0,23 uH-m™".

Lorsqu’on connecte une extrémité du cable coaxial a un
générateur (GBF) fournissant une tension périodique, une onde
électrique se propage le long du cable et transmet le signal a
I’autre extrémité, connectée a un circuit ou a un oscilloscope.
On se propose de déterminer 1’équation de propagation de
cette onde. Pour cela, on raisonne sur un élément de longueur
d x du cable, modélisé selon le schéma ci-dessous.

Adx
i(\x,t) 1222 i(x\+dx,t)
u(x,1) ydx —/— u(x+dx,t)

a) Par application des lois des circuits, établir deux équations
aux dérivées partielles couplées, d’ordre 1, vérifiées par la
tension u(x,¢) et I’intensité i(x,?) .

b) En déduire I’équation de propagation de I’onde de tension,
et calculer la célérité ¢ de cette onde. Quel est I’indice de
réfraction de 1’isolant présent dans ce cable ?

c¢) Pour une onde progressive harmonique vers les x positifs,
établir la relation : u(x,t) = Z,i(x,t) ou Z, est une constante

réelle positive que 1’on exprimera en fonction de y et 1. Que
devient cette relation pour une OPH allant vers les x négatifs ?

Une OPH se propage depuis x — — oo jusqu’a I’extrémité du

cable coaxial, en x= 0, relié¢e a un dipdle d’impédance

complexe Z. Lorsque I’onde arrive a cette extrémité, elle

donne naissance a une onde réfléchie. L’onde d’intensité en un

point quelconque peut alors s’écrire, en notation complexe :
i(x,1) = I; exp[ j(wt —kx)]+ 1, exp[ j(w + kx)]

d) En déduire la forme complexe de I’onde de tension.

e) Ecrire la condition aux limites en x = 0, et en déduire les

coefficients de réflexion en intensité et en tension, définis par :

—=r — =
r.= etr, =

- I U.

=i =i

f) Déterminer les valeurs de 7, obtenues pour Z =0 et pour
Z — oo . Comment réaliser ces deux impédances ?

g) Que se passe-t-il si on choisit Z = Z, ? Est-ce intéressant ?

3. Détermination du module de Young du graphite

Dans I’industrie nucléaire, on utilise du graphite en barres
comme modeérateur (absorbeur de neutrons) dans les réacteurs.
Le module de Young £ de ce matériau est une propriété
importante pour prévoir son comportement en situation. La
méthode proposée par Francois PATTOU et Jean-Claude TRUTT
en 1963 consiste a créer une onde stationnaire longitudinale
auto-entretenue au moyen d’une boucle de rétroaction.
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La détermination de la fréquence propre (fondamentale) de
cette onde permet de calculer le module de Young.

On prend (Ox) comme axe longitudinal de la barre, de section
S et de longueur L. On note &(x,7) le déplacement dans cette
direction de la tranche de graphite se trouvant a I’abscisse x au
repos, et F.(x,t)e, la force de traction/compression exercée
par la partie de la barre a droite de x sur celle a gauche.

a) Etablir ’équation de D’Alembert vérifiée par &(x,¢), et
préciser I’expression de la célérité ¢ en fonction de E et de la
masse volumique p du graphite.

b) Pour une onde stationnaire, donner sans démonstration la
forme mathématique de &(x,¢) ; en déduire celle de Fi(x,¢).
c) La barre étant libre aux deux extrémités, quelles sont les
conditions aux limites ? En déduire 1’expression des
fréquences propres f, en fonction de L, ¢ et d’un entier #.

d) Pour une barre de longueur L =80,0 mm faite avec un
échantillon de graphite de faible densité (masse volumique
p=1610 kg-m™3), Pattou et Trutt ont mesuré une fréquence
fondamentale f, =11,78 kHz .

Young E de ce graphite.

Déterminer le module de
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4. Réflexion de ’onde sur une corde
On considére une corde trés longue, de masse linéique g,
tendue sur la partie négative de 1’axe (Ox) avec une tension 7.
A son extrémité d’abscisse x = 0 est attachée une masse m ne
pouvant se déplacer que verticalement (par exemple une petite
perle coulissant sans frottement sur une tige verticale). Le
poids de cette masse est négligeable devant la tension de la
corde.

onde incidente

> m
\./ 0 ’x

Une onde incidente sinusoidale arrive sur cette extrémité et y
subit une réflexion. On note r le coefficient de réflexion de
I’onde, qui est le rapport entre I’amplitude complexe A4,(0) de

I’onde réfléchie et celle 4,(0) de I’onde incidente en x = 0.

a) Donner la forme réelle des ondes incidente et réfléchie, et
en déduire les expressions des leurs amplitudes complexes.

b) En appliquant le principe fondamental de la dynamique a la
masse m, déterminer 1’expression de r.

¢) Etudier les deux cas limites m — 0 et m — oo, en donnant
leur signification physique.

d) La corde est maintenant fixée en x = 0. Retrouver directe-
ment la valeur de r, et déterminer I’onde résultante sur la
corde y(x,t).De quel type d’onde s’agit-il ?

Autre établissement d’une équation de D’Alembert

5. Onde acoustique dans un solide

On se propose d’établir 1’équation de D’Alembert pour une
onde acoustique unidimensionnelle dans un solide, en
raisonnant a 1’échelle atomique.

On suppose que les atomes du solide, de masse m, forment un

réseau cubique de période a (parameétre de maille).
L’interaction entre deux atomes voisins est modélisée par un
ressort de longueur a vide a et de coefficient de raideur K.
Pour une onde unidimensionnelle selon 1’axe (Ox), on peut se
contenter de considérer des atomes voisins sur une seule ligne
paralléle & cet axe. On numérote ces atomes avec un entier 7 ;
le n-iéme atome se trouve a 1’abscisse na a 1’équilibre. En
présence d’une onde, son déplacement par rapport a sa
position d’équilibre est noté &, (¢), donc son abscisse devient
xXo(O)=na+& (o).
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a) Etablir ’équation différentielle reliant &, &, 1, &1, m et K.

m

On modélise maintenant le solide comme un milieu continu, le
déplacement local étant une fonction notée &(x, ), telle que
(=& (na,i).
b) A I’aide de développements de Taylor d’ordre 2, exprimer
les déplacements &((n+1)a, f) et £((n—1)a, t) en fonction de a
(considéré comme un infiniment petit) et de & et ses dérivées
au point na.
¢) Montrer alors que 1’équation différentielle de la question a
devient, par passage au continu, une équation aux dérivées
partielles de la forme :

0% 1 9%¢

oxr 2o’
Donner I’expression de ¢ en fonction de a, K et m. Que
représente cette grandeur ?
d) Vérifier que cette expression s’identifie a celle trouvée avec
la modélisation macroscopique (dans la partie 3.b du cours et
I’exercice 3).
e) Quelle doit étre la relation entre a et la longueur d’onde 4
pour que cette modélisation continue soit valable ?

& Réponses partielles

1.b) 9(x,t) =T -v="T,(x,0)v,(x,1).

2.b) n=14.

_ jTk+me?
JjTk—ma®

d*¢,

4.b) r

5. a) m = _K(fn - fn—l ) + K(frﬁl -

dz?

1 1
c) e(x,t) =E,uvy(x,t)2 +ET‘V(X’I)2 )

3.d) E=5,72 GPa.

d) y(x,t) = Acos(wt + @)sin(kx) .

Cn) -
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