PC Lavoisier Jeudi 5 février 2026
Corrigé du devoir d’entrainement de physique n° 6

o Probléme A (Mines-Ponts PSI 2014) )
Corrigé rédigé par Paul Roux (MP*, lycée Claude Fauriel, Saint-Etienne)

6. — ¢y est la ‘ permittivité diélectrique du vide

; elle se mesure usuellement en ‘ farad par meétre |.

7. — A partir de I'équation de Maxwell-Gauss div E = P et de 1a loi ¢'Ohm locale j = ~E, on peut
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recopier I'équation locale de conservation de la charge div j + % 0 sous la forme En + —p= 0|ou
€ . . o
la constante de temps 7 vaut |7 = 70 ~ 107" s|. On en conclut la solution p(7,t) = p(7.0)e""/T donc

p s’annule au bout d’'une durée 7T telle que |7 > 7 |.
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8. — L’équation de Maxwell-Ampére tot B = 140
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Jj+ €05 peut étre simplifiée par "approximation des

états quasi-stationnaires (AEQS) < |17l & condition que g < yE| ou T est la durée
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caractéristique des variations temporelles du champ électrique, donc si
9. — On a maintenant pour systéme d’équations vérifiées en régime permanent dans un (onducteur ohmique
(j=~E.p=0)divE =0et fol E=0.D apres la seconde équation, il existe un potentlel scalaire V'

tel que E = —grad V' ; d’aprés la premiére, ce potentiel vérifie div grad V = 0 ou AV =0]
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10. — On a maintenant ((19 =0et V(0) =U, V(a) =0 donc V est une fonction affine, | V' = ve o [on
— — U — — - 8 U
en deduit E = — grad V donc | E = E’&g et j =~E donc |j = 5'&9 .

11. — L’intensité demandée est le flux du vecteur 7, I = / j-dS avec dS = dr dz iy ; il vient donc I'expression

“U d vy, b U 1
= / r’/ dzou|l = /—Cln—U qu’on écrit I = — avec |R = “

a a R yeln(b/a) |
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12. — La relation demandée est | R = — | Ici, on peut remarquer que In — = In <1 + ) ~ si a
o) a a a
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et b sont proches, donc R ~ ——— ou on reconnait S = ¢(b—a) et L = aav donc | R ~ — |,
~ve(b — a) VS

13. — L’approximation des états quasi-stationnaires (AEQS) a été présentée a la question 8 : elle consiste

o)) L=
a négliger le courant de déplacement GOE devant le courant de conduction j, donc a calculer le

champ magnétique par les équations tof B = ioj | et div B = 0, exactement comme dans le cas

B dF = / ot B - dS pour un contour ferme (C)
(S)

magnétostatique. Le théoréme de Stokes }1{
/()
servant de bord orienté a la surface (S) permet alors d’énoncer le théoréme d’Ampére, la circulation

de B sur un tel contour fermé vérifie 7{ B - dr = poi(sy | ou le courant enlacé i(s) est celui qui
©)

traverse la surface (S).

14. — Tout plan contenant 'axe (Oz) est un plan de symétrie matérielle des courants i(t) et i1 (¢) donc le
champ B créé par ces courants est perpendiculaire a ces plans de symétrie : B(J\I) B(r,0,z)uy. Ce
champ est ¢galement invariant par tout rotation d’un angle multiple de 27/N ; si N est assez grand,
il s’agit pratiquement d’une invariance de révolution donc B(M) = B(r,z)ly. On applique alors le
théoréme d’Ampére a un cercle (C) de rayon r et d’axe (Oz), donc a r et z fixés, et entiérement situé
a lintérieur du tore; on a alors d7¥ = rdfuy donc B - d7¥ = 2wrB(r, z). Le courant traversant un

©
disque de rayon r comporte (dans le sens positif) le courant ¢ au centre en N courants tous égaux a
i1 (puisque le cercle (C) est intérieur au tore, le disque est traversé une seule fois par chacun des fils

formant un rectangle) soit i(s) =i + Ni1 et B(M) = B(r)ig ou B(r) = 2“) (i + Niy) |




15. — Considérant que le bobinage de la pince ampéremétrique est formé de NV rectnloles de cotés b — a

L - N 1
et ¢, il vient ¢ = N/B -dS avec dS = drdz iy donc ® = MQO—W(i + Niy) / - / dz ou enfin
Ne b
b= M;W ‘ In & a (i + Niqp) | Puisque ® = Liy; + Mi pour i et i1 quelconque, on peut identifier les
N%¢ b wINe b L
deux termes | L = fo¥ € In ot et | M = Ho¥e In at = —|
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16. — Avec une résistance par unité de longueur A et un bobinage formé de IV rectangles de cotés b —a et ¢
R,=2\N(b+c—a) |

donc de longueur 2(b+ ¢ —a), on a

li 1i
17. — En circuit fermé, le bobinage est un circuit (R,, L, M) avec u = 0 = Ryi; + L( il + ]\[(1—7 =0 qu’on

L. . . P 1 IMw
écrit en notation complexe (R wlL)i; = —)Mwi soit |H = =% = ————= |

18. — On réalise une mesure de ¢ au moyen d’une mesure de 7; si la relation entre les deux grandeurs
est linéaire, indépendamment de la forme effectivement sinusoidale ou non de ces deux courants; il

R, . . . .
faut donc que |w > TI pour toutes les pulsations w figurant dans le spectre de Fourier du signal a
. M. ) i . .
mesurer. Dans ce cas, i3 = A donc |ip = ot le coefficient N permet de mesurer un corant i

assez élevé avec un fort coefficient d’atténuation.

o Probléme B (Centrale-Supélec TSI 2022)
Corrigeé rédigé par Cécile Bone-Rambaud (MP, lycée Dessaignes, Blois) et Hélene Mouilleron (PC, lycée Saliege, Toulouse)
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Q32. Champ et potentiel créés en M par g au point O : E (M) = et | V(M) = 1
4??50 rr dnegr
Q33. Ligne de champ : ligne colinéaire a E'. en tout point. Un déplacement élémentaire dl sur 5 oy T
— — — * , . P S Rt T
cette ligne vérifie : E A dl = 0. Pour g au point O ce sont des demi-droites radiales. ,// il ) \\
! - e S
Surface équipotentielle : surface a V' constant. Pour g en O ce sont des sphéres de centre O. T \‘\’\".
Q34. Champ électrostatique au point O par superposition : : 4 d- éé\ L
— — = -q = = -2q9 = ===== "-\ g ¢ _P/"“,‘i L
= = —, R S it : = N 4 s sy
E(O) EA (O) + EB (O) - LUy + -'-i»rrsc,az ( “'x) s01 E(O) 4?(806[2 Uy ; \\-,\,i'.x_____-._{./’ /»’
Potenticl en O : V(0) = V,4(0) + Vz(0) = pr T soit: \&_____»f/
MEGT MEGT
av 2 p cos(8)
. . = — Er=- ar ameyr®
Q35. Champ créé a grande distance du dipdle : E = —grad (V) donne .
E, — 18V _ psin(@)
&~ a8 4T En T
sin(@) 1
Q36. Lien entre les angles : tan(a) = — = = —tan (@) ou|tan(-9) =2 tan(a)\
E,- " 2cos(8) 2 T
2 _ _ E(z)e— .
E}" = Ex = £ 3 T Er - Ey =0 (2)
Q37. Pour @ = 0 dmeer  etpour 8 — — . _p
Eg =E, =0 2 (Be=—Ex= = o
e y Amegr 1 E(0)
Q38. Par définition les dérivations unipolaires sont Vg — Viyr, Vi — Viyy et Ve — Wy et : > <
les dérivations bipolaires sont Vi —V;, V; — Vg et Vg — Vg . On peut donc en P
construire 3 de chaque sorte. .
Q39. L’intérét d’associer ces deux types de dérivations peut étre de vérifier les mesures par association. e

En effet on doit avoir (par exemple) : Vg — V, = (Vg — Vi) — (V, — Vi) .
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Q40. Potenticlsen R, Let F:
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Q41. Hypothése 2 : ’origine du dipdle est en O, donc les distances a considérer dans les potentiels doivent étre comptées a partir du
point O. Hypothese 3 : O est le centre de gravité du triangle équilatéral RLF, donc les trois distances sont égales : 1 = 7, = 7.

Q42. La borne centrale de Wilson doit avoir un potentiel nul, or Vg + V; + Ve =0 car R

J_"R + FL + FF = 6 (triangle équilatéral RLF). 1l suffit alors de relier les points R L et F avec trois

résistances identiques a un unique point W, qui est alors de potentiel nul (loi des nceuds en termes de

potentiels) : Vi = %(VR + V. + Vg)=0.




