Exercices du chapitre On2

Ondes électromagnétiques dans le vide

1. Onde électromagnétique entre deux conducteurs
Dans un espace vide compris entre deux miroirs plans
métalliques parfaitement conducteurs, situés aux abscisses
x =0 et x = a, se trouve une onde électromagnétique dont le
champ électrique est de la forme :

E(M,t)=E,f(x)cos(wt)e, .

On précise que les champs E et B sont nuls dans un métal
parfaitement conducteur, et que de part et d’autre d’une
surface, la composante normale du champ B et la composante
tangentielle du champ E sont continues.
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a) Enoncer les équations de Maxwell dans le vide, et en
déduire 1’équation de D’ Alembert vérifiée par EetB.

b) Déduire de 1'une des équations de Maxwell la forme du
champ magnétique B(M ). L’onde est-elle transverse ?

¢) Quelles conditions sur f(x) obtient-on avec les conditions
aux limitesenx=0etx=a ?

d) Déterminer la fonction f(x) et montrer que la pulsation w
est nécessairement quantifiée.

¢) Déterminer complétement le champ magnétique.

f) Calculer 1’énergie électrique &z et 1I’énergie magnétique &g
contenues dans un volume cylindrique d’axe (Ox), de section
de base S, compris entre x = 0 et x = a. En déduire qu’il y a un
échange périodique entre ces deux formes d’énergies.

2. Etats de polarisation

On considére différentes OPPH électromagnétiques dans le
vide, dont les champs électriques ont pour expressions
complexes, dans la base cartésienne :

E(M’t) - Eoei(wt_kz)g ; E(M,t) = Eoei(wz+k2>(ej+ 267) ;
E(MJ)=E0ei(wt—kx>(g+ie—z) :
E(M,t) = Eyel(@i+k») (e—y+2ie—z) :
E{(M,1) = Eye! @) (;; 4ol Z) :
E (M 1) = Ege' @k g

ou E, estune constante réelle positive.

a) Préciser la direction et le sens de propagation de chaque
onde. Déterminer les expressions réelles de ces champs, et en
déduire 1’état de polarisation de chaque onde (rectiligne,
circulaire droite ou gauche, elliptique).

b) Pour les ondes 1 et 3, calculer le champ magnétique et le
vecteur de Poynting ; vérifier la direction et le sens de celui-ci.

Ondes acoustiques dans un fluide

3. Onde acoustique dans un tuyau sonore : clarinette
Un instrument de musique a anche et de perce cylindrique,
comme la clarinette, peut étre modélisé en premicre
approximation comme un tuyau cylindrique, de diamétre D et
de longueur L, fermé a une extrémité et ouvert a 1’autre.
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Lorsqu’on joue une note, une onde stationnaire s’établit dans
le tuyau; une petite partie de 1’énergie de cette onde est
transmise a I’extérieur, mais la pression acoustique pour x > L
a une amplitude trés faible devant celle a 1’intérieur du tube.

a) Rappeler les deux équations couplées reliant la vitesse
v, (x,t) etlasurpression p(x,¢) pour I’onde acoustique 1D.

b) Donner la forme d’une onde stationnaire (nécessairement
sinusoidale) pour la surpression. En déduire, a partir de
I’équation de Navier—Stokes linéarisée, la forme de la vitesse,
puis celle du déplacement &(x,¢) .

¢) Quelles sont les conditions aux limites aux extrémités du
tuyau ? En déduire les fréquences possibles. Vérifier que ce
modele correspond au spectre expérimental ci-dessous.
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d) Représenter Iallure de p(x,t) et de &(x,¢) pour les deux

premiers modes propres, a un instant d’amplitude maximale.

4. Onde acoustique sphérique
a) Rappeler I’équation de D’ Alembert 3D pour la surpression.
b) En coordonnées sphériques, le laplacien peut s’écrire :

10°(rp)
Ap = —
P or?

pour une fonction p(r,t) . Montrer que la
,

fonction r p(r,t) obéit a 1’équation de D’Alembert 1D, et en
déduire la forme de p(r,f) ainsi que la relation de dispersion.
¢) Déterminer le champ de vitesse, et ‘le simplifier dans le cas
r> A (ou A est la longueur d’onde). A quelles distances cette

approximation est-elle correcte pour une voix dans ’air ?
d) Si le niveau sonore vaut 40 dB a 10 m, que vaut-il a 30 m ?

& Réponses partielles

1.b)§=—ﬂﬂsin(wt)2. d) f(x):sin(ﬂxj. f) &
w dx c

3.b) p(x,t)= Acos(kx+y)cos(wt+ @)

_ eoEZS acos*(wt)
—

; ve(x,0) = isin(kx +y)sin(wt+¢).
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