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Exercices du chapitre On2 
 

Ondes électromagnétiques dans le vide 
 

1. Onde électromagnétique entre deux conducteurs 
Dans un espace vide compris entre deux miroirs plans 
métalliques parfaitement conducteurs, situés aux abscisses      
x = 0 et x = a, se trouve une onde électromagnétique dont le 
champ électrique est de la forme : 
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On précise que les champs E
��

 et B
��

 sont nuls dans un métal 
parfaitement conducteur, et que de part et d’autre d’une 
surface, la composante normale du champ B

��

 et la composante 
tangentielle du champ E

��

 sont continues. 

 
a) Énoncer les équations de Maxwell dans le vide, et en 
déduire l’équation de D’Alembert vérifiée par E

��

 et B
��

. 
b) Déduire de l’une des équations de Maxwell la forme du 
champ magnétique ( , )B M t

��

. L’onde est-elle transverse ? 

c) Quelles conditions sur f (x) obtient-on avec les conditions 
aux limites en x = 0 et x = a ? 
d) Déterminer la fonction f (x) et montrer que la pulsation ω 
est nécessairement quantifiée. 
e) Déterminer complètement le champ magnétique. 
f) Calculer l’énergie électrique EE et l’énergie magnétique EB 
contenues dans un volume cylindrique d’axe (Ox), de section 
de base S, compris entre x = 0 et x = a. En déduire qu’il y a un 
échange périodique entre ces deux formes d’énergies. 
 
2. États de polarisation 
On considère différentes OPPH électromagnétiques dans le 
vide, dont les champs électriques ont pour expressions 
complexes, dans la base cartésienne : 

( )
01( , ) i ωt k z

yE M t E e e
��� ���

 ;   ( )
02 ( , ) 2i ωt k z

x yE M t E e e e 
���� ��� ���

 ; 

 ( )
03 ( , ) i ωt k x

y zE M t E e e i e 
��� ��� ���

 ; 

 ( )
04 ( , ) 2i ωt k x

y zE M t E e e i e 
���� ��� ���

 ;  

 ( ) 4
05 ( , ) i ωt k x iπ

y zE M t E e e e e 
��� ��� ���

; 

( )
06 ( , ) x yi ωt k x k y

zE M t E e e 
���� ���

 

où 0E  est une constante réelle positive. 

a) Préciser la direction et le sens de propagation de chaque 
onde. Déterminer les expressions réelles de ces champs, et en 
déduire l’état de polarisation de chaque onde (rectiligne, 
circulaire droite ou gauche, elliptique). 
b) Pour les ondes 1 et 3, calculer le champ magnétique et le 
vecteur de Poynting ; vérifier la direction et le sens de celui-ci. 

Ondes acoustiques dans un fluide 
 

3. Onde acoustique dans un tuyau sonore : clarinette 
Un instrument de musique à anche et de perce cylindrique, 
comme la clarinette, peut être modélisé en première 
approximation comme un tuyau cylindrique, de diamètre D et 
de longueur L, fermé à une extrémité et ouvert à l’autre. 

 
Lorsqu’on joue une note, une onde stationnaire s’établit dans 
le tuyau ; une petite partie de l’énergie de cette onde est 
transmise à l’extérieur, mais la pression acoustique pour x > L 
a une amplitude très faible devant celle à l’intérieur du tube. 
a) Rappeler les deux équations couplées reliant la vitesse 

( , )xv x t  et la surpression ( , )p x t  pour l’onde acoustique 1D. 

b) Donner la forme d’une onde stationnaire (nécessairement 
sinusoïdale) pour la surpression. En déduire, à partir de 
l’équation de Navier–Stokes linéarisée, la forme de la vitesse, 
puis celle du déplacement ( , )ξ x t . 

c) Quelles sont les conditions aux limites aux extrémités du 
tuyau ? En déduire les fréquences possibles. Vérifier que ce 
modèle correspond au spectre expérimental ci-dessous. 
 

 
 

d) Représenter l’allure de ( , )p x t  et de ( , )ξ x t  pour les deux 

premiers modes propres, à un instant d’amplitude maximale. 
 
4. Onde acoustique sphérique 
a) Rappeler l’équation de D’Alembert 3D pour la surpression. 
b) En coordonnées sphériques, le laplacien peut s’écrire : 
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 pour une fonction ( , )p r t . Montrer que la 

fonction ( , )r p r t  obéit à l’équation de D’Alembert 1D, et en 

déduire la forme de ( , )p r t  ainsi que la relation de dispersion. 

c) Déterminer le champ de vitesse, et le simplifier dans le cas 
r λ≫  (où λ est la longueur d’onde). À quelles distances cette 
approximation est-elle correcte pour une voix dans l’air ? 
d) Si le niveau sonore vaut 40 dB à 10 m, que vaut-il à 30 m ? 

 

 

 
 Réponses partielles 
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