
On1 – Corrigé des exercices 3, 4, 5 
¤ Exercice 3 

a) Voir cours. On trouve 
E

c
ρ

 . 

b) Pour une onde stationnaire obéissant à l’équation de D’Alembert, la déformation est de la forme 

( , ) cos( ) cos( )ξ x t A ωt φ k x ψ   . Or la force de traction/compression s’écrit 
( , )

( , )x

ξ x t
T x t ES

x





 (voir démo du cours), ce qui 

donne ( , ) cos( ) sin( )xT x t kESA ωt φ k x ψ    . 

c) Les deux extrémités sont libres, et ne subissent donc pas de force de traction/compression : (0, ) ( , ) 0,x xT t T L t t   . 

On en déduit d’une part sin( ) 0ψ  , on peut donc prendre 0ψ   ; d’autre part, sin( ) 0k L  , d’où la condition de quantification 

n

nπ
k

L
 . La relation de dispersion étant (pour une onde stationnaire obéissant à l’équation de D’Alembert) 

2ω π f
k

c c
  , on en 

déduit les fréquences propres 
2

n

nc
f

L
 . 

d) La fréquence fondamentale permet de calculer 12c L f . Or 
E

c
ρ

  donc 2 2 2
14E ρc ρL f  . AN 5,72 GPaE  . 

¤ Exercice 4 

a) Onde incidente : i ( , ) cos( )y x t A ωt k x φ    soit i i( , ) Re ( )exp( )y x t A x jωt     avec i ( ) exp( )A x A jk x φ   . 

Onde réfléchie : r ( , ) cos( )y x t B ωt k x ψ    soit r r( , ) Re ( )exp( )y x t A x jωt     avec r ( ) exp( )A x B jk x ψ   . 

En un point quelconque, l’onde résultante est i r( , ) ( , ) ( , )y x t y x t y x t  , d’où i r( ) ( ) ( )A x A x A x  . 

b) Si on néglige son poids, la masse m est soumise à la réaction de la tige verticale, qui est normale en l’absence de frottement (soit 

x x z zR R e R e 
�� ��� ���

) et à la tension de l’extrémité de la corde, exercée par la gauche sur la droite, soit (0, )T t
��

 avec la notation du cours. 

PFD pour la masse m : (0, )m a R T t 
� �� ��

. Projection sur ye
���

 (vertical ascendant) : 
2

2

d (0, )
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d
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y t
m T t

t
  . Or on a montré dans le 

cours la relation : 
( , )

( , )y

y x t
T x t T

x





. L’équation différentielle peut donc s’écrire : 

2
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y t y t
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t x


 


. En notation complexe, 

cette équation devient : 2
i r i r(0) (0) (0) (0)mω A A T jk A jk A             soit 2 2

i r(0) (0)A mω Tjk A mω Tjk           et 

finalement : 
2

r

2
i
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A jTk mω
r
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
 


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c) • Cas 0m  , c’est-à-dire si l’extrémité de la corde est libre : 1r  .  

• Cas m  , c’est-à-dire si l’extrémité de la corde est fixée : 1r  . 

d) On suppose (0, ) 0,y t t  . Cela équivaut à i r(0) (0) (0) 0A A A    soit r i(0) (0)A A  , d’où 1r   . 

Or r r( ) (0)exp( )A x A jk x   et i i( ) (0)exp( )A x A jk x  , donc  r i( ) (0) exp( ) exp( ) 2 (0)sin( )A x A jk x jk x j A k x      . 

L’onde réelle est alors :    i( , ) Re ( ) exp( ) Re 2 (0)sin( ) exp( ) Re 2 exp( )sin( ) exp( )y x t A x jωt j A k x jωt jA jφ k x jωt        soit 

 ( , ) Re 2 exp( ( 2))sin( ) 2 cos( 2)sin( )y x t A j ωt φ π k x A ωt φ π k x       et finalement ( , ) 2 sin( )sin( )y x t A ωt φ k x   (on pourrait 

renommer 2A en A, et remplacer le sinus temporel par un cosinus en changeant l’origine des temps). On reconnaît la forme 

caractéristique d’une onde stationnaire : produit réel d’une fonction sinusoïdale temporelle et d’une fonction sinusoïdale spatiale.  

 

¤ Exercice 5 

a) On applique le PFD à l’atome numéroté n, soumis aux forces d’interaction avec ses deux voisins (on néglige le poids) : 

( 1) ( 1)n n n nm a F F    
� �� ��

. Chaque force, modélisée comme celle d’un ressort, s’exprime selon la formule générale 

ressort point0( )F K e   
�� �

ℓ ℓ . Pour le ressort de gauche : 0 aℓ , 1n na ξ ξ   ℓ  et ressort point xe e 
� ���

 donc 

( 1) 1( )n n n n xF K ξ ξ e    
�� ���

. Pour celui de droite : 0 aℓ , 1n na ξ ξ  ℓ  et ressort point xe e  
� ���

 donc ( 1) 1( )n n n n xF K ξ ξ e    
�� ���

. 

La projection du PFD sur xe
���

 est donc : 
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b) 
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 où 

k
c a

m
  : 

c’est la célérité de l’onde. 

d) Avec un modèle macroscopique on a trouvé 
E

c
ρ

 . Or on a établi (voir cours) la relation 
k

E
a

 , et d’autre part 
3

m
ρ

a
  (car 

chaque maille cubique de côté a contient un atome de masse m), donc les deux expressions sont bien identiques. 


