Onl - Corrigé d ices 3,4, 5

o Exercice 3

. E
a) Voir cours. On trouve|c =, [—|.
p
b) Pour une onde stationnaire obéissant a [’équation de D’Alembert, la déformation est de la forme

‘g“(x, t) = Acos(wt + @) cos(kx+y) ‘ Or la force de traction/compression s’écrit 7, (x,t) = ES (voir démo du cours), ce qui

O&(x,t)
ox

donne

T, (x,1) = —kESAcos(wt + p)sin(kx + )],

c¢) Les deux extrémités sont libres, et ne subissent donc pas de force de traction/compression :

T,(0,6) = T,(L,1) = 0, V¢,

On en déduit d’une part sin(y) =0, on peut donc prendre y =0 ; d’autre part, sin(kL)=0, d’ou la condition de quantification

nmw . . ., . . . e . , 0 2r
k, :T. La relation de dispersion étant (pour une onde stationnaire obéissant a 1’équation de D’Alembert) k =— :—f , on en
c c
o , ne
déduit les fréquences propres | f, = 5L

d) La fréquence fondamentale permet de calculer ¢ =2Lf, . Or ¢ = \/E donc ‘E =pc? =4pl? 1?2 ‘ AN|E =5,72 GPa|
p

o Exercice 4
a) Onde incidente : |yi (x,t) = Acos(wt —kx+ ) ‘ soit y;(x,t) =Re [ﬁi (x) exp(jwt)] avec |éi (x) = Aexp(—jkx +¢) |
Onde réfléchie :
En un point quelconque, I’onde résultante est y(x,?) = y;(x,1) + y,(x,1), d’ou A(x) = 4,(x)+4,.(x).

¥, (x,t) = Bcos(wt + kx+y) \ soit y,(x,7) = Re[ 4, (x)exp(jwr) | avec \ A (x) = Bexp(+jkx+y) \

b) Si on néglige son poids, la masse m est soumise a la réaction de la tige verticale, qui est normale en I’absence de frottement (soit

R=R, Z +R_e. ) etalatension de Pextrémité de la corde, exercée par la gauche sur la droite, soit ~T(0,¢) avec la notation du cours.

d?y(0,2)
ds?

PFD pour la masse m : ma=R-T (0,7) . Projection sur a (vertical ascendant) : m =0-T,(0,¢). Or on a montr¢ dans le

d?y(0,t) __r oy(0,1)
ds Ox

cette équation devient : —maw?[4,(0)+4,(0)]=-T[-jk4;(0)+ jkA.(0)] soit A, (0) mw*+Tjk |= A4, (0)-me? +Tjk ] et

_A4.(0) Tk +mo?

T A4,(0)  jThk—mao? |

c) * Cas m — 0, c’est-a-dire si ’extrémité de la corde est libre ﬂ

« Cas m — o, ¢’est-a-dire si I’extrémité de la corde est fixée : [r — —1].

d) On suppose y(0,¢) =0,Vz. Cela équivaut a A(0) = 4,(0)+ A4,(0) =0 soit 4,(0)=-4,(0), d’ou .

Or A.(x)=A4,(0)exp(+jkx) et 4,(x)=A4,(0)exp(—jkx),donc A(x)=A4, (0)[exp(+jkx) —exp(—jkx)] =-2jA,(0)sin(kx) .

L’onde réelle est alors : y(x,f)=Re [ﬁ(x) exp( jwt)] = Re[—2 JA;(0)sin(kx)exp( jwt)] = Re[—2 JAexp(jo)sin(kx)exp( jwt)] soit

y(x,t) =Re[2Aexp(j(owt + 9 —/2))sin(kx)] = 2Acos(wt + p—/2)sin(kx) et finalement ‘ y(x,t) = 2Asin(wt + @) sin(k x) | (on pourrait

% . En notation complexe,
x

cours la relation : 7, (x,1) =T . L’équation différentielle peut donc s’écrire : m

finalement :

I~

renommer 24 en A4, et remplacer le sinus temporel par un cosinus en changeant I’origine des temps). On reconnait la forme
caractéristique d’une onde stationnaire : produit ée/ d’une fonction sinusoidale temporelle et d’une fonction sinusoidale spatiale.

o Exercice 5
a) On applique le PFD a I’atome numéroté n, soumis aux forces d’interaction avec ses deux voisins (on néglige le poids) :

ma=F@_yon+Fu-n - Chaque force, modélisée comme celle d’un ressort, s’exprime selon la formule générale
F=-K({—1{y)eressort>pont - Pour le ressort de gauche : [ly=a , {(=a+{,—&, | €t eresortopoint =€  donc

Fouysn =—K(&,—¢,.1)e, . Pour celuide droite : £y =a, {=a+¢,, 1 —C, et erssortpoint = —€, donc F,.n-n = +K (&0 —E)e, .

2
La projection du PED sur e, est donc : |m (L:Z" =—K(&, —& )+ K (S =& |

_ o a % Daf) = % a2 %
b) &((n+1a,t)=E(nat)+a . (na,t)+ e (na,t) et &((n—VDa,t)=E(na,t)—a e (na,t)+ T (na,t).

2
¢) L’équation devient : m% _
t

—K (&(na,n)—&(n-1a,0))+ K (E((n+1)a,t)—E(na,t))

2192 292 2 62 t 1 82 ¢ k
=-K a% a,t)—a—%("a,f) +K %+a—%(na,t) =Ka2%(na,t) soit cnh)_ 10l )=O ou c=a\/: :
x 2 ox? x 2 Ox? ox? ox? cr o m

c’est la célérité de 1’onde.

d) Avec un modéle macroscopique on a trouvé ¢ = |— . Or on a établi (voir cours) la relation E =—, et d’autre part p =— (car
\j p a a

chaque maille cubique de c6té a contient un atome de masse m), donc les deux expressions sont bien identiques.



