PCSI Q cours atomistique

Nombres quantiques:

Citer les quatre nombres quantiques et les valeurs possibles pour ces nombres.

Orbitale atomique (OA) et nombres quantiques ?

Pourquoi y a-t-il 10 colonnes dans le bloc d de la classification périodique ? PCSI Q cours atomistique

Règles de remplissage (« principe d'Aufbau »)

règles permettant d'établir la configuration électronique d'un atome dans son état fondamental PCSI atomistique

Conversions

eV; J; kJ/mol; $nm(\lambda)$;

position de l'IR et de l'UV par rapport au domaine visible

PCSI exo type atomistique

Fer(Z=26)

Fe: $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^6$

Donner sa position dans le tableau périodique (ligne, colonne)

S'agit-il d'un métal de transition?

Structure électronique de Fe²⁺ et Fe³⁺.

 Fe_3O_4 : d.o. moyen du fer ? nombre relatif de Fe^{II} et Fe^{III} ?

 ${\bf n}$: nombre quantique principal :

$$n \in N^*$$
. $(n = 1,2,3...)$

 ℓ : nombre quantique secondaire (ou azimutal):

entier positif ou nul, strictement inférieur à \boldsymbol{n} :

$$(\ell = 0, ..., n-1)$$

 m_{ℓ} : nombre quantique magnétique :

entier relatif, compris entre - ℓ et + ℓ :

$$(\mathbf{m}_{\ell} = -\ell, ..., 0, ..., +\ell)$$

m_s : nombre quantique magnétique de spin de l'électron :

$$m_s = + \frac{1}{2} ou - \frac{1}{2}$$
.

 $(n,\ell, \boldsymbol{m}_\ell)$ définit une OA ; (2,0,0) est l'OA 2s

orbitales nd : $\ell = 2$;

 \mathbf{m}_{ℓ} =-2 ;-1 ;0 ;1 ;2 : 5 OA d

donc 10 électrons au maximum.

Principe d'exclusion de <u>Pauli</u> : deux

électrons ne peuvent être décrits au sein de la même structure atomique par des quadruplets de nombres quantiques (n, ℓ , m_{ℓ} , m_s) identiques (=> au max 2 électrons (spin up et down) par orbitale)

Règle empirique de Klechkowsky:

l'énergie $E_{n,l}$ associée à une sous-couche (n,ℓ) est croissante avec $(n+\ell)$; à $(n+\ell)$ constant, $E_{n,l}$ est croissante avec n grille mn'emotechnique:

n l	U	1	2	
1	1s			
2	2s	2p		
3	3s	3p	3d	
4	4s	4p	4d	
5	5s	5p	5d	
max	2e ⁻	6e-	10e ⁻	

Règle de <u>Hund</u>: maximisation du nombre de spin (alignement de spins parallèles) sur des niveaux dégénérés (appariement minimum)

e = 1,6.10⁻¹⁹ C charge élémentaire

 $N_A = 6,02.10^{23} \text{ mol}^{-1}$.

 $F = 96 500 \text{ C.mol}^{-1} \text{ le Faraday}$

 $h = 6,63.10^{-34}$ J.s constante de Planck

 $c = 3,00.10^8 \text{ m.s}^{-1}$ célérité de la lumière dans le vide

v fréquence en Hertz ($Hz = s^{-1}$)

1 eV <=> 1,6.10⁻¹⁹ J (×e) 1 eV <=> 96.5 kJ.mol⁻¹. (×N_{Δ}×e×10⁻³)

$$\varepsilon = h \times v = \frac{hc}{\lambda}$$

350-400

 $(\varepsilon \text{ en Joule}, v \text{ en Hertz})$

750-800

		^
nn	ր ու	m, λ
(plus énergétiques que le visible)	visible	(moins énergétiqu que le visible)
v ou E		

Fe: 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d⁶ Ou Fe: 1s² 2s² 2p⁶ 3s² 3p⁶ **3d⁶4s²**

Ou
$$1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^6$$

 $n_{max} = 4:$ 4^e ligne

 $1s^{2} 2s^{2} 2p^{6} 3s^{2} 3p^{6} 4s^{2} 3d^{6}$ Ou $1s^{2} 2s^{2} 2p^{6} 3s^{2} 3p^{6} (3d^{6} 4s^{2})$ nb d'électrons de valence : 2+6 = 8 :

8^e colonne

sous couche 3d partiellement remplie : métal de transition.

 $\mathbf{Fe^{2+}}: 1s^2 2s^2 2p^6 3s^2 3p^6 4s^0 3d^6$

(l'ionisation se fait d'abord en enlevant les électrons au niveau (n+1) s avant les nd) $\mathbf{Fe}^{3+} : 1s^2 2s^2 2p^6 3s^2 3p^6 4s^0 3d^5$

Fe₃O₄: $3x+4\times(-II) = 0$: d.o.(Fe dans Fe₃O₄ = +VIII/3; oxvde mixte: 1 Fe^{II} et 2 Fe^{III} PCSI exo type atomistique

Plomb:

On donne la configuration électronique fondamentale de l'atome de plomb :

 $\begin{array}{l} 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^6 5s^2 4d^{10} 5p^6 \\ 6s^2 4f^{14} 5d^{10} 6p^2. \end{array}$

Citer l'atome de plus petit numéro atomique appartenant à la même colonne. PCSI exo type atomistique

Remplissage des OA 2^e période

Cas de l'atome d'oxygène (Z = 8)

PCSI exo type atomistique

Atome d'hydrogène:

Les niveaux d'énergie électronique de l'atome d'hydrogène sont donnés par la formule :

$$E_n = -\frac{13.6}{n^2}$$
 en eV

où n est le nombre quantique principal.

Donner le diagramme énergétique de l'atome d'hydrogène.

PCSI Q cours atomistique

Définitions de :

Energie d'ionisation (non exigible)

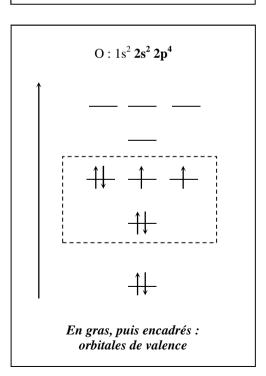
Affinité électronique (non exigible)

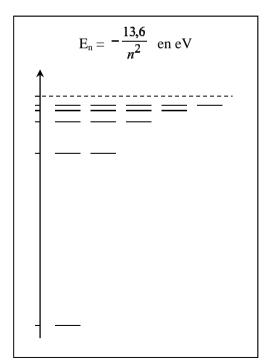
Electronégativité

(cas de l'échelle de Mulliken, non exigible)

Evolution de l'électronégativité au sein du tableau périodique

Le plomb


$$\begin{array}{l} 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^6 5s^2 4d^{10} 5p^6 \\ 6s^2 4f^{14} 5d^{10} 6p^2. \end{array}$$


appartient

au bloc p, 6eme période, 14eme colonne

Cherchons l'atome de Z le plus petit, en np² (donc en 2p²) : $1s^22s^22p^2$ correspond à Z = 6

il s'agit du carbone C(Z = 6)

 \pmb{EI} : plus petite énergie qu'il faut fournir à un atome gazeux pour lui arracher un électron.

$$A_{(g)} \rightarrow A^{+}_{(g)} + e^{-} \qquad EI > 0$$

AE : C'est l'opposé de l'énergie d'attachement électronique, définie par :

$$A_{(g)} + e^{-} \rightarrow A_{(g)}$$
 $E_{att \, el} = -AE$ (pour le signe, retenir $AE(halog\`{e}ne) > 0$)

Electronégativité: capacité d'un atome à attirer à lui les électrons d'un doublet de liaison.

Echelle de Mulliken:

$$\chi_{M}(B) = k_{M} \times (EI + AE) / 2$$
O F
$$\chi \nearrow$$
output
$$\chi \nearrow$$

$$\chi \nearrow$$
O Graz uoples exclusive $\chi \nearrow$