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Exercice 1

1. Déterminer deux réels a et b tels que, pour tout entier naturel n non nul, on a :

3

n(n+ 3)
=

a

n
+

b

n+ 3

2. Déterminer le nombre réel α tel qu’il existe une variable aléatoire X à valeurs dans N∗

vérifiant :
∀n ∈ N∗ , P(X = n) =

3

n(n+ 1)(n+ 2)(n+ 3)
α.

Exercice 2

Soit n ∈ N∗. On lance un dé parfait à 5 faces n fois, avec des faces numérotés de 1 à 5.

Pour tout entier n ⩾ 1, on note An l’événement « la somme des n lancers donne un nombre
pair », et pn = P(An).

1. Calculer p1.
2. Montrer que

P(An+1) = PAn(An+1)P(An) + PAn
(An+1)P(An).

3. Déterminer PAn(An+1) et PAn
(An+1) et en déduire que

∀n ∈ N∗ , pn+1 = apn + b

avec a et b des constantes à préciser.
4. Calculer alors pn pour tout n, n ⩾ 1 et en déduire la limite de (pn)n⩾1 lorsque n tend

vers +∞.
5. Sauriez-vous généraliser à un dé à f faces, f ⩾ 1 ?

Exercice 3 (Source : Feller)

On suppose que 1 pn = αpn est la probabilité qu’une famille ait exactement n enfants avec
n ⩾ 1 et p0 = 1 − αp(1 + p + p2 + · · · ). On suppose de plus que toutes les distributions des n
enfants selon le sexe ont la même probabilité.
On considère les événements An « la famille a n enfants », Bk « la famille a k garçons, n et k
des entiers.

1. Déterminer p0.

1. p = 0, 7358 dans les statistiques Américaines : A.J. Lotka, Théorie analytique des associations biologiques
II, actualités scientifiques et industrielles, no 780, Paris 1939
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2. Montrer que la famille (An)n∈N est une suite complète d’événements.
3. Montrer que si k ∈ N∗,

P (Bk) =
+∞∑
n=k

PAn(Bk).P (An)

4. Justifier par dénombrement précis que PAn(Bk) =
1

2n

(
n

k

)
.

5. En déduire que

P (Bk) = α
+∞∑
n=k

(
n

k

)(p
2

)n
6. Justifier par récurrence sur k, k ∈ N, que si x ∈]− 1, 1[,

+∞∑
n=k

n!

(n− k)!
xn−k =

k!

(1− x)k+1

7. En déduire la valeur de P (Bk) pour k ⩾ 1.
8. Déterminer P (B0).

Exercice 4
Soit X une variable aléatoire discrète à valeurs réelles sur un espace probabilisé (Ω,A,P). On
pose si x ∈ R,

F (x) = P(X ⩽ x)

1. Montrer que F est une fonction croissante sur R, bornée par 0 et 1. Que peut-on en
déduire ?

2. On note pour tout entier n, An = (X ⩽ n). Montrer que la suite (An) est une suite
croissante d’événements.
Montrer (rigoureusement) que

+∞∪
n=0

An = Ω

et en déduire la limite de F (x) en +∞.
3. Sauriez-vous déterminer de même la limite de F en −∞ ?
4. Soit a ∈ R, on considère les événements An définis par

An =

(
X ⩽ a+

1

n

)
pour n ⩾ 1. Montrer que (An)n⩾1 est une suite décroissante d’événements. En déduire
que

lim
n→+∞

F

(
a+

1

n

)
= F (a).

En déduire que F est continue à droite en a.
5. On suppose que X est la variable aléatoire dont la valeur est égal au chiffre obtenu lors

d’un lancer d’un dé à 6 faces.
Calculer F (x) pour tout x réel et représenter la fonction F . Est-ce compatible avec les
propriétés vues dans les questions précédentes ?
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Devoir surveillé 5 : correction Lycée Jean Perrin
PC

Exercice 1

1. Nous avons facilement directement si n entier non nul,

1

n
− 1

n+ 3
=

n+ 3− n

n(n+ 3
=

3

n(n+ 3

2. La condition est que l’on ait P(X = n) positif pour tout n de N∗, c’est à dire α positif

avec
+∞∑
n=1

P(X = n) = 1. Or

3

n(n+ 1)(n+ 2)(n+ 3)
=

3

n(n+ 3)
× 1

(n+ 1)(n+ 2)
=

1

n(n+ 1)(n+ 2)
− 1

(n+ 1)(n+ 2)(n+ 3)

et ainsi par télescopage,

N∑
n=1

3

n(n+ 1)(n+ 2)(n+ 3)
=

1

6
− 1

N(N + 1)(N + 2)(N + 3)
−→

N→+∞

1

6
.

Ainsi la condition est α = 6.

Exercice 2

1. On a p1 = P(A1) =
2
5

puisque nous avons 2 façons sur 5 (uniforme) d’obtenir un nombre
pair en un seul lancer.

2. Nous avons le système complet d’événements (An, An), et ainsi en appliquant la formule
des probabilités totales avec ce système complet pour le calcul de la probabilité de An+1,
nous obtenons

P(An+1) = PAn(An+1).P(An) + PAn
(An+1).P(An).

3. Soit n ∈ N∗. Sachant que An est réalisé, la somme des n lancers est paire, la somme des
n+ 1 est paire si et seulement si le lancer n+ 1 donne un chiffre pair, et ainsi

PAn(An+1) =
2

5
.

Sachant que An est réalisé, la somme des n lancer est impaire, la somme des n + 1 est
paire si et seulement si le lancer n+ 1 donne un chiffre impair, et ainsi

PAn
(An+1) =

3

5
.

Ainsi en repportant, nous obtenons

pn+1 =
2

5
pn +

3

5
(1− pn) = −1

5
pn +

3

5
.

4. La suite (pn)n⩾1 est une suite récurrente arithmético-géométrique. On recherche le point
fixe associé : on a

x = −1

5
x+

3

5
⇐⇒ 5x = −x+ 3 ⇐⇒ 6x = 3 ⇐⇒ x =

1

2
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et alors si n ⩾ 1,
pn+1 −

1

2
= −1

5
(

(
pn −

1

2

)
ce qui conduit à

∀n ⩾ 1 , pn −
1

2
=

(
−1

5

)n−1(
p1 −

1

2

)
soit encore

∀n ⩾ 1 , pn =
1

2
− 1

10

(
−1

5

)n−1

.

Comme 1
5
< 1, nous obtenons que la suite (pn)n⩾1 converge vers 1

2
, en ocsillant autour

de la limite (plus petit, puis plus grand, etc).
5. Lorsque f est pair, nous obtenons en fait p1 =

1
2

et

P(An+1) = PAn(An+1).P(An) + PAn
(An+1).P(An) =

1

2
pn +

1

2
(1− pn) =

1

2

et ainsi la suite (pn) est constante égale à 1
2
.

Lorsque f est impair, f = 2k + 1, nous obtenons en fait p1 =
k

2k+1
et

P(An+1) = PAn(An+1).P(An) + PAn
(An+1).P(An) =

k

2k + 1
pn +

k + 1

2k + 1
(1− pn)

= − 1

2k + 1
pn +

k + 1

2k + 1

La suite (pn)n⩾1 est une suite récurrente arithmético-géométrique. On recherche le point
fixe associé : on a

x = − 1

2k + 1
x+

k + 1

2k + 1
⇐⇒ fx = −x+ k + 1 ⇐⇒ (2k + 2)x = k + 1 ⇐⇒ x =

1

2

et alors si n ⩾ 1,
pn+1 −

1

2
= − 1

2k + 1

(
pn −

1

2

)
ce qui conduit à

∀n ⩾ 1 , pn −
1

2
=

(
−1

5

)n−1(
p1 −

1

2

)
soit encore

∀n ⩾ 1 , pn =
1

2
− 1

2(k + 1)

(
− 1

2k + 1

)n−1

.

Comme 1
2k+1

< 1, nous obtenons que la suite (pn)n⩾1 converge vers 1
2
, en oscillant autour

(plus petit, plus grand, etc).

Exercice 3
1. Une famille admet un nombre d’enfant n et un seul, avec n ∈ N, et ainsi (An)n∈N est

une suite complète d’événements. On a pn = P(An) et ainsi
+∞∑
n=0

pn = 1 et donc

p0 = 1−
+∞∑
k=1

pk = 1− α
p

1− p
=

1− (1 + α)p

1− p
.

4



2. Une famille admet un nombre d’enfant n et un seul, avec n ∈ n, et ainsi (An)n∈N est
une suite complète d’événements. On peut aussi considèrer la variable aléatoire N dont
la valeur est le nombre d’enfant d’une famille. C’est une variable aléatoire prenant les
valeurs de N, et An = (X = n), et ainsi la famille ((X = n))n∈N est une famille complète
d’événements.

3. Soit k ∈ N∗, on applique la formule des probabilités totales avec la famille ((X = n))n∈N
qui est une famille complète d’événements, on a

P (Bk) =
+∞∑
n=0

PAn(Bk).P (An)

Or si n < k, nous avons PAn(Bk) = 0 puisque si An est réalisé, la famille ne peut pas
avoir k garçons avec n < k ou encore

PAn(Bk) =
P (An ∩ Bk)

P (An)
=

P (∅)
P (A)

= 0.

Ainsi la somme se réduit à

P (Bk) =
+∞∑
n=k

PAn(Bk).P (An)

4. Sachant que la famille possède n enfant, on considère l’obtention de k succès (garçon)
parmi n, de loi B(n, 1/2), et ainsi

PAn(Bk) =
1

2n

(
n

k

)
.

5. En déduire que

P (Bk) = α
+∞∑
n=k

(
n

k

)(p
2

)n
6. Montrons par récurrence sur k, k ∈ N, que si x ∈]− 1, 1[,

+∞∑
n=k

n!

(n− k)!
xn−k =

k!

(1− x)k+1

Pour k = 0, nous avons bien si x ∈]− 1, 1[

+∞∑
n=0

xn =
1

1− x
.

Si on suppose que pour k fixé, avec k ⩾ 0, si x ∈]− 1, 1[, alors

+∞∑
n=k

n!

(n− k)!
xn−k =

k!

(1− x)k+1

alors par dérivation sur ]− 1, 1[,

+∞∑
n=k

n!(n− k)

(n− k)!
xn−k−1 =

k!(k + 1)

(1− x)k+2
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soit encore
+∞∑

n=k+1

n!(n− k)

(n− k)!
xn−k−1 =

(k + 1)!

(1− x)k+2

soit
+∞∑

n=k+1

n!

(n− k − 1)!
xn−k−1 =

(k + 1)!

(1− x)k+2

c’est à dire
+∞∑

n=k+1

n!

(n− (k + 1)!
xn−(k+1) =

(k + 1)!

(1− x)(k+1)+1

ce qui achève la récurrence.
7. On en déduit alors la valeur de P (Bk) pour k ⩾ 1. En effet, nous avons en transférant

le terme en k!
+∞∑
n=k

n!

k!(n− k)!
xn−k =

1

(1− x)k+1

et en multipliant par xk

+∞∑
n=k

n!

k!(n− k)!
xn =

xk

(1− x)k+1

d’où en apliquant à x = p
2
,

P (Bk) = α
+∞∑
n=k

(
n

k

)(p
2

)n
= α

pk

2k
(
1− p

2

)k+1
=

2αpk

(2− p)k+1

8. On détermine aussi P (B0). On a deux méthodes :
• Par complémentarité, on a

P (B0) = 1−
+∞∑
k=1

P (Bk) = 1− 2α
+∞∑
k=1

pk

(2− p)k+1

= 1− 2αp

(2− p)2

+∞∑
k=1

pk−1

(2− p)k−1

= 1− 2αp

(2− p)2
× 1

1− p
2−p

= 1− αp

(1− p)(2− p)

• Directement, comme ci-dessus

P (B0) =
+∞∑
n=0

PAn(B0).P (An) = 1.p0 +
+∞∑
n=1

αpn
1

2n

= 1− α
p

1− p
+ α

p

2

1

1− p
2

= 1− α
p

1− p
+ α

p

2− p

= 1− αp

(1− p)(2− p)
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Exercice 4

1. Soit (x, y) ∈ R2, avec x ⩽ y. Si X ⩽ x, alors X ⩽ y et ainsi (X ⩽ x) ⩽ (Y ⩽ y) et
comme la probabilité est croissante, on a P(X ⩽ x) ⩽ p(X ⩽ y) et donc F (x) ⩽ F (y).
Ainsi la fonction F est une fonction croissante.
De plus par définition d’une probabilité, on a pour tout x réel, P(X ⩽ x) ∈ [0, 1] et donc
F est bornée par 0 et 1.
D’après le théorème de la limite monotone pour les fonctions, on peut en déduire que F
admet des limites en −∞ et en +∞ avec

0 ⩽ ℓ = lim
x→−∞

F (x) ⩽ lim
x→+infty

F (x) = L ⩽ 1.

On peut aussi en déduire que F admet des limite à droite et à gauche en tout point a
de R, avec

0 ⩽ ℓ ⩽ lim
x→a
x<a

F (x) ⩽ lim
x→a
x>a

F (x) ⩽ l ⩽ 1.

2. Soit n ∈ N, si x ⩽ n, alors X ⩽ n + 1 et ainsi (X ⩽ n) ⊂ (x ⩽ n + 1) soit An ⊂ an+1.
Ainsi la suite (An) est bien une suite croissante d’événements.

Comme Ω est l’univers, on a l’inclusion
+∞∪
n=0

An ⊂ Ω

On peut aussi préciser que An est un événement (défini à l’aide de la variable aléatoire
X) et que la réunion dénombrable est aussi un événement, donc contenu dans l’univers
Ω et même apprtenant à la tribu A.

Réciprquement, si ω ∈ Ω, nous avons x = X(ω) ∈ R, et il existe un entier n0 par exemple
n0 = [x] + 1 tel que X(ω) ⩽ n0 et ainsi ω ∈ (X ⩽ n0) = An0 . On en déduit que ω est

dans
+∞∪
n=0

An.

Finalement, on a bien par double inclusion
+∞∪
n=0

An = Ω.

Par théorème de continuité croissante, on a alors

1 = P(Ω) = P

(
+∞∪
n=0

An

)
= lim

n→+∞
P(An) = lim

n→+∞
F (n) = L

et ainsi la limite de F en +∞ est L = 1.
3. On définit les événements Bn = (X ⩽ −n) pour n entier. Nous avons alors une suite

décroissante d’événements, avec
+∞∩
n=0

Bn = ∅

En effet, si ω est dans cette intersection, pour tout n, on a X(ω) ⩽ −n, ce qui est
impossible puisque −n tend vers −∞ lorsque n tend vers+∞. Notre intersection est
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vide.
En appliquant le théorème de continuité décroissante, nous obtenons

0 = P(∅) = P

(
+∞∩
n=0

Bn

)
= lim

n→+∞
P(Bn) = lim

n→+∞
F (−n) = ℓ

et ainsi la limite de F en +∞ est ℓ = 0.
4. Soit n ⩾ 1, si An+1 est réalisé, X ⩽ a + 1

n+1
et ainsi X ⩽ 1

n
et donc An est réalisé.

Donc An+1 ⊂ An. On en déduit que la suite (An)n⩾1 est bien une suite décroissante
d‘’événements. De plus, on a

+∞∩
n=1

An = (X ⩽ a)

L’inclusion ⊃ est claire et pour ⊂, si ω ∈
∩+∞

n=1 An, on a pour tout n ⩾ 1, X(ω) ⩽ a+ 1
n

et ainsi en passant à la limite en n, X(ω) ⩽ a.

On applique alors le théorème de la continuité décroissante,

lim
n→+∞

P(An) = P

(
+∞∩
n=1

An

)
= P(X ⩽ a) = F (a)

d’où le résultat.

Comme F admet une limite à droite en a (monotonie de F ), cette limite est forcément
F (a), d’où la continuité de F en a.

5. Nous avons de façon immédiate

F (x) =



0 si x < 1
1
6

si x ∈ [1, 2[
2
6

si x ∈ [2, 3[
3
6

si x ∈ [3, 4[
4
6

si x ∈ [4, 5[
5
6

si x ∈ [5, 6[

1 si x ⩾ 6

On représente la fonction F :

1

On retrouve la croissance, toutes les limites, la continuité à droite.
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