
Programme des colles de Mathématiques Lycée Jean Perrin – PC

Quinzaine 6 du 08/12 au 19/12
Chapitre 6 : Série entière
Série entière de la variable réelle, de la variable complexe.
Lemme d’Abel : si la suite (anz

n
0 ) est bornée alors, pour tout nombre complexe z tel que |z| < |z0|,

la série
∑

anz
n est absolument convergente (*).

Rayon de convergence R défini comme borne supérieure dans [0,+∞] de l’ensemble des réels positifs
r tels que la suite (anr

n) est bornée.
Pour |z| < R, la série

∑
anz

n converge absolument, et pour |z| > R, diverge grossièrement.
Commentaires : les élèves doivent pouvoir exploiter les informations suivantes :
(anz

n
0 ) bornée ; (anz

n
0 ) non bornée ;

∑
anz

n
0 convergente ;

∑
anz

n
0 divergente ;

∑
anz

n
0 absolument

convergente mais divergente ; ∀z avec |z| < r, la suite (anz
n) bornée ou

∑
anz

n convergente ; et
autres, en termes de conséquences sur le rayon.
Disque ouvert de convergence, intervalle de convergence (et cercle d’incertitude)
Si Ra est le rayon de convergence de

∑
anz

n et Rb celui de
∑

bnz
n, alors :

si an = O(bn) ou si an = o(bn), alors Ra ⩾ Rb

si |an| ∼ |bn| ou an ∼ bn, alors Ra = Rb.
Utilisation de la règle de d’Alembert pour les séries numériques au calcul du rayon. La limite du
rapport |an+1|

|an| peut être directement utilisée.
Les élèves doivent savoir utiliser, en adaptant, la règle de d’Alembert pour les séries lacunaires, par
exemple de la forme

∑
bnz

2n et
∑

bnz
2n+1.

Les séries entières
∑

anz
n et

∑
nanz

n ont le même rayon de convergence. Rayon de convergence
d’une série dérivée.

Pour α ∈ R,
∑

nαzn est de rayon 1.
Rayon de convergence de la somme de deux séries entières (*).
Produit de Cauchy de deux séries entières. Rayon de convergence du produit de Cauchy de deux
séries entières.
Pour α ∈ R,

∑
nαzn est de rayon 1.

Convergence normale d’une série entière d’une variable réelle sur tout segment inclus dans l’intervalle
ouvert de convergence.
Exemple où la convergence est normale sur [−R,R] et conséquence.
Continuité de la somme sur l’intervalle ouvert de convergence.
L’étude des propriétés de la somme au bord de l’intervalle ou du disque de convergence n’est pas
un objectif du programme ; étude cependant du cas où le critère spécial de Leibniz s’applique pour
obtenir une convergence uniforme par la majoration du reste sur [0, R] ou [−R, 0] ou [−R,R].
Primitivation d’une série entière d’une variable réelle sur l’intervalle ouvert de convergence.
Caractère C∞ de la somme d’une série entière sur l’intervalle ouvert de convergence et obtention des
dérivées par dérivation terme à terme.
Expression des coefficients d’une série entière au moyen des dérivées successives en 0 de sa somme
(*). Unicité des coefficients pour une série entière de rayon de convergence non nul.

Formule par dérivation successive de 1

1− x
=

+∞∑
n=0

xn,

∀x ∈]− 1, 1[ ,
1

(1− x)p+1
=

+∞∑
n=p

(
n

p

)
xn−p (∗)



Développement en séries entière au voisinage de zéro d’une fonction d’une variable réelle.
Fonction développable en série entière.
Série de Taylor d’une fonction de classe C∞.
Formule de Taylor avec reste intégral. Utilisation avec les fonctions exponentielle (cosinus et sinus,
exponentielle imaginaire).
Développements des fonctions usuelles : les étudiants doivent connaître les développements en série
entière des fonctions exponentielles, cosinus, sinus, cosinus et sinus hyperboliques, x 7→ Arctan x (*),
x 7→ ln(1 + x) (*).
Utilisation des équations différentielles. Développement de (1 + x)α en 0 (*). Cas α ∈ {−1/2, 1/2}.
Expression à l’aide de factorielles.
Continuité de la somme d’une série entière complexe sur le disque ouvert de convergence (admis).
Exemple de la somme géométrique complexe. Développement de exp(z) avec z complexe.

Questions de cours :
— Les énoncés des définitions, des théorèmes.
— Les démonstrations marquées par (*).
— Les méthodes usuelles sur des exemples.


