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Quinzaine 8 du 19/01 au 30/01

Chapitre 7 : Probabilités - Partie II
Inégalités de Markov, de Bienaymé-Tchebychev (*).
Variance d’une somme de variables aléatoires de carrée d’espérance finie.
Covariance (coefficient de corrélation n’est plus au programme).
Inégalité de Cauchy-Schwarz : si X et Y sont de carré d’espérance finie, alors E(XY )2 ⩽ E(X2)E(Y 2).
Cas d’égalité.
Variance d’une somme de variables aléatoires de carrée d’espérance finie deux à deux indépendantes.
Variables aléatoires à valeurs dans N.
Série génératrice d’une variable aléatoire à valeurs dans N :

GX(t) =
+∞∑
n=0

P(X = n)tn = E(tX)

Le rayon de convergence est au moins égal à 1. Convergence normale de la série génératrice sur [−1, 1].

La loi d’une variable aléatoire X à valeurs dans N est caractérisée par sa série génératrice GX .
Pour tout p entier, sur ]−RX , RX [, on a

G
(p)
X (t) =

+∞∑
n=p

n(n− 1) · · · (n− p+ 1)P(X = n)tn = E(X(X − 1) · · · (X − p+ 1)tX−p)

La variable aléatoire X admet une espérance E(X) si et seulement si GX est dérivable (à gauche) en
1 et, si tel est le cas, E(X) = G′

X(1). Démonstration non exigible.

La variable aléatoire X admet une variance si et seulement si GX est deux fois dérivable (à gauche)
en 1 et on a V(X) = G′′

X(1) +G′
X(1)−G′

X(1)
2. Démonstration non exigible.

Les étudiants doivent savoir retrouver l’expression de V(X) en fonction de G′
X(1) et de G′′

X(1) en cas
d’existence. Cas où le rayon est strictement supérieur à 1.

Série génératrice de la somme de deux variables aléatoires indépendantes (*). Généralisation à plu-
sieurs. Exemple avec des lois de Poisson.

Série génératrice des lois usuelles, espérance et variance (*).

Approximation de la loi binomiale par la loi de Poisson (ce n’est plus au programme) : si pour tout
n, Xn ↪→ B(n, pn) et si lim

n→+∞
npn = λ, alors pour tout k ∈ N, on a :

lim
n→+∞

P (Xn = k) = e−λλ
k

k!

Interprétation de la loi de Poisson comme loi des événements rares.
La notion de convergence en loi est hors programme.



Loi faible des grands nombres (*) : si (Xn)n⩾1 est une suite de variables aléatoires deux à deux
indépendantes et de même loi (identiquement distribuées) admettant un moment d’ordre 2 (une

variance finie), alors, si Sn =
n∑

k=1

Xk, m = E(X1) et σ = σ(X1), on a pour tout ε > 0,

P

(∣∣∣∣ 1nSn −m

∣∣∣∣ ⩾ ε

)
−→

n→+∞
0

sachant que

P

(∣∣∣∣ 1nSn −m

∣∣∣∣ ⩾ ε

)
⩽ σ2

nε2
.

Chapitre 8 : Intégration sur un intervalle quelconque
⋆ Programme de seconde année :
Cette section vise les objectifs suivants :
- étendre la notion d’intégrale étudiée en première année à des fonctions continues par morceaux sur
un intervalle quelconque par le biais des intégrales généralisées ;
- définir, dans le cadre des fonctions continues par morceaux, la notion de fonction intégrable ;
- compléter la section dédiée aux suites et aux séries de fonctions par les théorèmes de convergence
dominée et d’intégration terme à terme ;
- étudier les fonctions définies par des intégrales dépendant dun paramètre.
On évite tout excès de rigueur dans la rédaction. Ainsi, dans les calculs concrets mettant en jeu
l’intégration par parties ou le changement de variable, on n’impose pas de rappeler les hypothèses de
régularité des résultats utilisés. De même, dans l’application des théorèmes de passage à la limite sous
l’intégrale ou de régularité des intégrales à paramètre, on se limite à la vérification des hypothèses
cruciales, sans insister sur la continuité par morceaux en la variable d’intégration.
Les fonctions considérées sont définies sur un intervalle de R et à valeurs dans K, ensemble des
nombres réels ou des nombres complexes.

Fonctions continues par morceaux sur un segment, sur un intervalle de R. Intégrale sur un segment
d’une fonction continue par morceaux : brève extension des propriétés de l’intégrale d’une fonction
continue sur un segment étudiées en première année.

Intégrales généralisées sur [a,+∞[ : si f est une application à valeur complexes continue par mor-

ceaux sur [a,+∞[ alors l’intégrale
∫ +∞

a

f(t)dt est dite convergente si
∫ x

a

f(t)dt a une limite finie

lorsque x tend vers +∞. Si tel est la cas, on note
∫ +∞

a

f(t)dt cette limite.

Si f est continue par morceaux sur [a,+∞[ et à valeurs positives,
∫ +∞

a

f(t)dt converge si et seule-

ment si x 7→
∫ x

a

f(t)dt est majorée. Intégrale divergente. Intégrales généralisée sur un intervalle
quelconque : adaptation du paragraphe précédent aux fonction continues par morceaux définies sur

un intervalle ouvert ou semi-ouvert de R. Notation
∫ b

a

f(t)dt.

Intégrales de référence :
∫ +∞

1

t−αdt,
∫ 1

0

t−αdt (*). Intégrales
∫ b

a

(t− a)−αdt,
∫ b

a

(b− t)−αdt.

Les étudiants doivent connaître la nature de
∫ 1

0

ln(t)dt et
∫ +∞

0

e−αtdt selon le signe de α (*).
Propriétés des intégrales généralisées : linéarité, positivité, croissance, relation de Chasles.



Changement de variables : si ϕ :]α, β[→]a, b[ est une bijection strictement croissante de classe C1 et

f :]a, b[→ C est continue par morceaux alors
∫ β

α

f ◦ ϕ(t)ϕ′(t)dt et convergente si et seulement si∫ b

a

f(t)dt est convergente et, si tel est le cas, elles sont égales.
Adaptation au cas où ϕ est strictement décroissante.

Intégration par parties sur un intervalle quelconque :
∫ b

a

f(t)g′(t)dt = [fg]ba −
∫ b

a

f ′(t)g(t)dt. L’exis-

tence des limites du produit fg aux bornes de l’intervalle assure que les intégrales de fg′ et f ′g sont
de même nature. Notation [fg]ba.

Intégrales absolument convergentes et fonctions intégrables.
La convergence absolue implique la convergence et dans ce cas la valeur absolue (ou le module) de
l’intégrale est inférieure ou égale à l’intégrale de la valeur absolue (ou du module).
Pour une fonction à valeurs réelles, on utilise ses parties positives et négative.

Une fonction continue par morceaux sur un intervalle I est dite intégrable sur I si son intégrale sur
I est absolument convergente. Notations

∫
I

f(t)dt,
∫
I

f .

Pour f et g fonctions continues par morceaux sur [a,+∞[ :
– si |f | ⩽ |g|, alors l’intégrabilité de g implique celle de f sur [a,+∞[ (ou en +infty).
– si f(x) =

x→∞
O(g(x)), alors l’intégrabilité de g implique celle de f sur [a,+∞[ (ou en +∞).

– si f(x) ∼
x→∞

g(x), alors l’intégrabilité de f est équivalente à celle de g sur [a,+∞[ (ou en +∞).

Si f est continue et intégrable sur I, alors
∫
I

|f(t)|dt = 0 implique f = 0.

Espace vectoriel L1(I,K) des fonctions continues par morceaux intégrables sur I.
Adaptation au cas d’un intervalle quelconque.

Convergence de
∫ +∞

0

sin(t)

t
dt (*).

Suites et séries de fonctions intégrables.
Théorème de convergence dominée :
Si (fn) est une suite de fonctions continues par morceaux sur un intervalle I convergeant simplement
sur I vers une fonction f continue par morceaux et telle qu’il existe une fonction ϕ continue par
morceaux et intégrable sur I vérifiant |fn| ⩽ ϕ pour tout n, alors les fonctions (fn) et f sont
intégrables sur I et : ∫

I

fn(t)dt −→
n→+∞

∫
I

f(t)dt

Démonstration hors programme.
L’hypothèse de continuité par morceaux de f , imposée par les limitations du programme, n’a pas
l’importance de l’hypothèse de domination.

Questions de cours :
— Les énoncés des définitions, des théorèmes.
— Les démonstrations marquées par (*).
— Les méthodes usuelles sur des exemples.


