
Devoir en temps libre Lycée Jean Perrin – PC

Devoir en temps libre n◦5

Variations en Poissons majeurs
Soit X une variable aléatoire suivant la loi de Poisson de paramètre λ > 0. On rapelle que

∀n ∈ N , P(X = n) = e−λλ
n

n!

Les questions 1,2,3,4 et 5 sont largement indépendantes.
1. Rappeler l’espérance et la variance de X.
2. Soit n ∈ N. Montrer que

P(X = n+ 1) ⩽ P(X = n) ⇐⇒ λ ⩽ n+ 1

Peut-on avoir P(X = n+ 1) = P(X = n) ?

En déduire les variations de la suite (P(X = n))n∈N. On notera Nλ la partie entière de λ.
A.N. : Tracer la suite (P(X = n))n∈N pour λ = 2, 5 et λ = 3.

3. Soit P l’événement X pair et I l’événement X impair. Montrer que

P(P ) = e−λ ch(λ) ⩾ 1

2
P(I) = e−λ sh(λ) ⩽ 1

2

4. Soit n ∈ N.

(a) Montrer que

P(X ⩽ n) = e−λ

n∑
k=0

λk

k!

(b) Soient r ∈ N, I un intervalle de R et (a, b) ∈ I2. On rappelle que si f est une fonction de
classe Cr+1 sur I, alors on a :

f(b) =
r∑

k=0

f (k)(a)
(b− a)k

k!
+

∫ b

a

f (r+1)(t)
(b− t)r

r!
dt.

Montrer que,

eλ =
n∑

k=0

λk

k!
+

∫ λ

0

eλ−ttn

n!
dt.

(c) En déduire que

P(X ⩽ n) = 1−
∫ λ

0

e−ttn

n!
dt

(d) Déterminer P(X ⩾ n) sous une forme intégrale lorsque n ⩾ 1. Que vaut P(X ⩾ 0) ?
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5. Soit (Xn)n∈N une suite de variables aléatoires indépendantes suivant la même loi de Poisson
P(λ), avec λ > 0. On pose pour tout entier n non nul,

Sn = X1 + · · ·+Xn

et on admettra que Sn ↪→ P(nλ).

(a) Montrer que la variable alétoire Sn

n
admet une variance et la calculer.

(b) Montrer que pour tout ε > 0, pour tout entier n non nul,

P
(
Sn

n
⩾ λ+ ε

)
⩽ P

(∣∣∣∣Sn

n
− λ

∣∣∣∣ ⩾ ε

)
⩽ λ

nε2

(c) Rappeler l’inégalité de Markov pour une variable aléatoire X positive d’espérance finie.
(d) Soit X une variable aléatoire suivant une loi de Poisson de paramètre µ > 0 et x > 0.

i. Montrer que pour tout θ > 0, on a

(X ⩾ x) =
(
eθX ⩾ eθx

)
ii. Justifier que la variable aléatoire eθX est d’espérance finie et montrer que

E
(
eθX

)
= eµ(eθ−1).

iii. Montrer que

P(X ⩾ x) ⩽
E
(
eθX

)
eθx

iv. En déduire que

P(X ⩾ x) ⩽ inf
θ>0

E
(
eθX

)
eθx

v. En déduire que
P
(
Sn

n
⩾ λ+ ε

)
⩽ inf

θ>0
enλeθ−n(λ+ε)θ

vi. Montrer qu’il existe une constante a > 0 (dépendant de λ et ε uniquement) telle que
pour tout entier n non nul

P
(
Sn

n
⩾ λ+ ε

)
⩽ e−na

On étudiera les variations de la fonction f définie sur ]0,+∞[ par

f(θ) = nλeθ − n(λ+ ε)θ

Comparer avec l’inégalité obtenue à la question b).

Fin
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Devoir en temps libre 5 : correction Lycée Jean Perrin – PC

I : Loi de Poisson

1. On rapelle que E(X) = V(X) = λ.
2. Soit n ∈ N. on a

P(X = n+ 1) ⩽ P(X = n) ⇐⇒ e−λλ
n+1

n!
⩽ e−λλ

n

n!

⇐⇒ λ

n+ 1
⩽ 1 ⇐⇒ λ ⩽ n+ 1

On a P(X = n+ 1) = P(X = n) et seulement si λ = n+ 1 ; cela est possible lorsque λ est un
entier non nul et avec donc n = λ− 1.

On en déduit les variations de la suite (P(X = n))n∈N : elle croit strictement lorsque n < λ,
puis éventuellement stagne pour n = λ− 1, λ si λ entier, et sinon décroit strictement ensuite.

A.N. : pour λ = 2, 5 et λ = 3 :

b

b
b

b

b

b

b

b b

b

3. On a

P(P ) =
+∞∑
n=0

P(X = 2n) =
+∞∑
n=0

e−λ λ2n

(2n)!

= e−λ ch(λ) = e−λ eλ + e−λ

2
=

1 + e2−λ

2
⩾ 1

2

P(I) =
+∞∑
n=0

e−λ λ2n+1

(2n+ 1)!

= e−λ sh(λ) = e−λ eλ − e−λ

2
=

1− e−2λ

2
⩽ 1

2

4. Soit n ∈ N.

(a) On a

P(X ⩽ n) =
n∑

k=0

P(X = k) = e−λ

n∑
k=0

λk

k!

(b) On applique la formule de Taylor avec reste intégral à la fonction exponentielle qui est de
classe C∞, sur le segment [0, λ], à l’ordre n, sachant que les dérivées de l’exponentielle sont
égales à elle-même

eλ =
n∑

k=0

(λ− 0)k

k!
+

∫ λ

0

(λ− t)n

n!
etdt
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On effectue le changement de variable u = λ− t = ϕ(t) de classe C1, du = −dt,

eλ =
n∑

k=0

λk

k!
−

∫ 0

λ

un

n!
eλ−udu

soit finalement
eλ =

n∑
k=0

λk

k!
+

∫ λ

0

un

n!
eλ−udu

(c) Ainsi

P(X ⩽ n) = e−λ

n∑
k=0

λk

k!
= e−λ

[
eλ −

∫ λ

0

un

n!
eλ−udu

]
d’où (la variable u est muette)

P(X ⩽ n) = 1−
∫ λ

0

e−ttn

n!
dt

(d) On a alors si n ⩾ 1,

P(X ⩾ n) = 1− P(X ⩽ n− 1) =

∫ λ

0

e−ttn−1

(n− 1)!
dt

On a aussi P(X ⩾ 0) = P(Ω) = 1.

5. Soit (Xn)n∈N une suite de variables aléatoires indépendantes suivant la même loi de Poisson
P(λ), avec λ > 0. On pose pour tout entier n non nul,

Sn = X1 + · · ·+Xn

et on admettra que Sn ↪→ P(nλ).

(a) Comme Sn suit une loi de Poisson, elle admet une variance et on a V(Sn) = nλ. Ainsi Sn

n

admet aussi une variance et on a

V
(
Sn

n

)
=

1

n2
V(Sn) =

λ

n

(b) Soit ε > 0, et n entier non nul, on sait que(
Sn

n
⩾ λ+ ε

)
⊂

(∣∣∣∣Sn

n
− λ

∣∣∣∣ ⩾ ε

)
d’où l’inégalité de gauche. D’autre part, d’après l’inégalité de Bienaymé-Tchebychev, ap-
pliqué à Sn

n
d’espérance 1

n
E(Sn) = λ, et la précision d’écartement ε, on a

P
(∣∣∣∣Sn

n
− λ

∣∣∣∣ ⩾ ε

)
⩽

V
(
Sn

n

)
ε2

⩽ λ

nε2

Donc finalement
P
(
Sn

n
⩾ λ+ ε

)
⩽ P

(∣∣∣∣Sn

n
− λ

∣∣∣∣ ⩾ ε

)
⩽ λ

nε2

(c) Soi X une variable aléatoire X positive d’espérance finie, pout tout ε > 0, on a

P(X ⩾ ε) ⩽ E(X)

ε
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(d) Soit X une variable aléatoire suivant une loi de Poisson de paramètre µ > 0 et x > 0.
i. Soit θ > 0, on a si ω ∈ Ω, puisque la fonction exponentielle est strictement croissante

et θ > 0,
X(ω) ⩾ x ⇐⇒ eθX(ω) ⩾ eθx

ou
X ⩽ x ⇐⇒ eθX ⩽ eθx

et donc
(X ⩾ x) =

(
eθX ⩾ eθx

)
ii. On considère la variable aléatoire eθX . On étudie la convergence absolue de la série

numérique ∑
n⩾0

eθnP(X = n) =
∑
n⩾0

eθne−µµ
n

n!
= e−µ

∑
n⩾0

(µeθ)n
n!

qui est (absolument car à termes positifs) convergente, de somme

e−µeµeθ = eµ(eθ−1)

Ainsi par le théorème de transfert, eθX est d’espérance finie et on a

E
(
eθX

)
= eµeθ−µ.

iii. On a
P(X ⩾ x) = P

(
eθX ⩾ eθx

)
En appliquant l’inégalité de Markov à la variable aléatoire eθX est à la précision eθx,
on a

P
(
eθX ⩾ eθx

)
⩽

E
(
eθX

)
eθx

Ainsi
P(X ⩾ x) ⩽

E
(
eθX

)
eθx

iv. On en déduit que P(X ⩾ x) minore l’ensemble{
E
(
eθX

)
eθx , θ > 0

}

et ainsi est plus petit que sa borne inférieure (la borne inférieure est le plus grand des
minorants), soit

P(X ⩾ x) ⩽ inf
θ>0

E
(
eθX

)
eθx

v. La variable aléatoire Sn suit une loi de Poisson de paramètre λn, et ainsi d’après la
question précédente, appliqué à x = n(λ+ ε) > 0, on a

P(Sn ⩾ n(λ+ ε)) ⩽ inf
θ>0

E
(
eθSn

)
eθn(λ+ε)

avec
E
(
eθSn

)
= enλeθ−nλ

et ainsi finalement
P(Sn ⩾ n(λ+ ε)) ⩽ inf

θ>0
enλeθ−nλ−n(λ+ε)θ
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vi. On étudie les variations de la fonction f définie sur ]0,+∞[ par

f(θ) = nλeθ − n(λ+ ε)θ

La fonction f est dérivable et on a

f ′(θ) = nλeθ − n(λ+ ε)

On en déduit les variations de f sur [0,+∞[ :

f

f ′(θ)

θ

0

0

−

−na′

ln
(
1 + ε

λ

)
+

0

+∞

La valeur minimale de f est donc

f
(

ln
(
1 +

ε

λ

))
= n(λ+ ε)− n(λ+ ε) ln

(
1 +

ε

λ

)
= n(λ+ ε)

(
1− ln

(
1 +

ε

λ

))
= na′

Ainsi pour a = a′ + λ > 0, pour tout entier n non nul on a

P
(
Sn

n
⩾ λ+ ε

)
⩽ e−na

Comparons avec l’inégalité obtenue à la question b) : on avait obtenu

P
(
Sn

n
⩽ λ+ ε

)
= O

(
1

n

)
On obient ici mieux (beaucoup) avec

P
(
Sn

n
⩽ λ+ ε

)
⩽ e−na = o

(
1

n

)
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