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EXERCICE 1
On suppose que X1, X2,…, Xn sont des variables aléatoires définies sur le même espace probabi-
lisé, indépendantes et toutes de loi de Bernoulli de paramètre p ∈]0, 1[. On définit les matrices
aléatoires :

U =


X1

X2
...
...

Xn

 M = U × UT =



X2
1 X1X2 X1X3 · · · · · · X1Xn

X2X1 X2
2 X2X3 · · · · · · X2Xn

X3X2 X3X2 X2
3 · · · · · · X3Xn

... ... ... . . . ...

... ... ... . . . ...
XnX1 XnX2 XnX3 · · · · · · X2

n


1. On pose Y = rg(M). Déterminer l’image de Y et en déduire que Y suit une loi de

Bernoulli de paramèrtre 1− (1− p)n.
2. Reconnaître la loi de la variable aléatoire Tr(M).
3. Vérifier que M2 = Tr(M)M et en déduire la probabilité de l’événement « M est une

matrice de projection ».
4. Dans cette question, on suppose que X1, X2,…, Xn sont des variables aléatoires définies

sur le même espace probabilisé, indépendantes et toutes de loi de Poisson de paramètre
λ > 0. On définit la matrice aléatoire M comme ci-dessus. Avec ces nouvelles hypothèses,
calculer à nouveau la probabilité de l’événement « M est une matrice de projection ».
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PROBLÈME
Notations et définitions

— N désigne l’ensemble des entiers naturels et R celui des nombres réels.
— Si X est une variable aléatoire admettant une espérance, on note E(X) cette espérance.

Soit (Ω,A,P) un espace probabilisé. Soit X une variable aléatoire discrète sur (Ω,A,P) à
valeurs dans [−1, 1]. On considère dans ce problème une suite (Xi)i∈N∗ de variables aléatoires
discrètes sur (Ω,A,P), mutuellement indépendantes et de même loi que X. Pour tout n ∈ N∗,
on note

Sn =
X1 + · · ·+Xn

n
.

On admet que Sn est une variable aléatoire discrète.

Objectif
Montrer que si la variable aléatoire X est centrée, c’est à dire si E(X) = 0), alors la suite
(Sn)n⩾1 converge presque sûrement vers la constante 0. Il s’agit d’un cas particulier de la loi
forte des grands nombres.

Q1. Montrer que si Y est une variable aléatoire bornée, alors elle admet une espérance.
En déduire que Y 2 admet aussi une epérance.

On ne suppose pas X centrée dans cette question. Montrer que X admet une espérance.
Montrer que X2 aussi admet une espérance.

On suppose désormais que X est centrée.

Q2. Soit ε > 0, justifier que Sn admet une variance et une espérance, et les déterminer, et
montrer que

P(|Sn| ⩾ ε) ⩽ V(X)

nε2

En déduire que
lim

n→+∞
P(|Sn| ⩾ ε) = 0

On dit que (Sn) converge vers 0 en probabilité (cas particulier de la loi faible des grands
nombres).

Q3. Montrer que |X| admet une espérance et que, pour tout α > 0 :

P
(
|X| ⩾ α

)
⩽

E
(
|X|
)

α
.

Q4. Montrer que, pour tout t > 0, pour tout ε > 0 et pour tout n ∈ N∗,

P
(
Sn ⩾ ε

)
= P

(
etnSn ⩾ etnε

)
⩽
(

E
(
etX
))n

etnε .

On justifiera l’existence des espérances.
Q5. Soit a > 1. On considère la fonction ga définie par

∀x ∈ R, ga(x) =
1− x

2
a−1 +

1 + x

2
a− ax.

Montrer que la fonction ga est dérivable sur R et que la fonction g′a est décroissante sur
R. Vérifier que ga(−1) = ga(1) = 0, et en déduire que g′a s’annule entre −1 et 1. En
déduire que pour tout x ∈ [−1, 1], ga(x) ⩾ 0.
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Q6. En déduire que
∀t > 0, ∀x ∈ [−1, 1], etx ⩽ 1− x

2
e−t +

1 + x

2
et.

Q7. En déduire que
∀t > 0, etX ⩽ 1−X

2
e−t +

1 +X

2
et

puis que
∀t > 0, E

(
etX
)
⩽ ch t.

Q8. Montrer que

∀k ∈ N, ∀t ∈ R,
t2k

(2k)!
⩽ 1

k!

(
t2

2

)k

.

En déduire que
∀t > 0, E

(
etX
)
⩽ et2/2.

Majoration de P(|Sn| ⩾ ε)

Dans ce paragraphe, on considère un entier n ∈ N∗ et un réel ε > 0.

Q9. Montrer que la fonction R 3 t 7−→ e−ntε+nt2/2 atteint un minimum en un point que l’on
précisera.

Q10. En déduire que P(Sn ⩾ ε) ⩽ e−nε2/2, puis que

P(|Sn| ⩾ ε) ⩽ 2e−nε2/2.

Conclusion

Q11. Montrer que, pour tout réel ε > 0, la série de terme général P(|Sn| > ε) converge.
Q12. On fixe un réel ε > 0. On note, pour tout n ∈ N∗ :

Bn(ε) =
∪
m⩾n

{
ω ∈ Ω ; |Sm(ω)| > ε

}
.

Montrer que, pour tout n ∈ N∗ et tout ε > 0, Bn(ε) est un événement.

Montrer que la suite (Bn(ε)) est décroissante, et que P
( ∩

n∈N∗

Bn(ε)

)
= 0.

Q33. Pour tout k ∈ N∗, posons

Ωk =

{
ω ∈ Ω ; ∃n ∈ N∗, ∀m ⩾ n, |Sm(ω)| ⩽

1

k

}
.

Montrer que, pour tout k ∈ N∗, Ωk est un événement.
Écrire l’ensemble A =

{
ω ∈ Ω ; lim

n→∞
Sn(ω) = 0

}
à l’aide des événements Ωk, k ∈ N∗.

En déduire que A est un événement.
Q14. Déduire des questions précédentes que P(A) = 1 et conclure.

Fin
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Exercice
Q1. Soit ω ∈ Ω. Pour tout j ∈ J 1, n K, la jème colonne de la matrice M(ω) est égale à

Xj(ω)U(ω), donc le sous-espace vectoriel de Mn,1(R) engendré par les colonnes de M(ω)
est inclus dans Vect(U(ω)) ; ainsi Y (ω) = rg(M(ω)) ∈ {0, 1}. Cela montre que Y est
une variable aléatoire de Bernoulli.
Si U(ω) est le vecteur nul, alors M(ω) est la matrice nulle de Mn(R) et Y (ω) = 0.
Si U(ω) n’est pas nul, il existe i ∈ J 1, n K tel que Xi(ω) 6= 0, donc le ième élément diagonal
de M(ω), à savoir Xi(ω)

2, est non nul : la matrice M(ω) est non nulle, donc Y (ω) > 0 et
nécessairement Y (ω) = 1.
Ainsi l’événement {Y = 0} est égal l’événement {U = 0n,1}, c’est-à-dire l’intersection
n∩

i=1

{Xi = 0} ; par indépendance mutuelle de (X1, . . . , Xn) on obtient

P(Y = 0) =
n∏

i=1

P(Xi = 0) = (1−p)n d’où P(Y = 1) = 1−P(Y = 0) = 1−(1−p)n

autrement dit, Y suit la loi de Bernoulli de paramètre 1− (1− p)n.
Q2. Pour tout ω ∈ Ω et tout i ∈ J 1, n K on a Xi(ω) ∈ {0, 1} car Xi est une variable aléatoire

de Bernoulli, donc Xi(ω)
2 = Xi(ω) ; par conséquent

Tr(M(ω)) =
n∑

i=1

Xi(ω)
2 =

n∑
i=1

Xi(ω)

donc Tr(M) =
n∑

i=1

Xi. En tant que somme de n variables aléatoires de Bernoulli indé-

pendantes et de même paramètre p,

Tr(M) suit la loi binomiale B(n, p).

Q3. On fixe ω ∈ Ω : on a

M(ω)2 =
(
U(ω)× U(ω)⊤

)2
= U(ω)×

(
U(ω)⊤ × U(ω)

)
× U(ω)⊤

Or U(ω)⊤×U(ω) ∈ M1(R) est assimilée au réel
n∑

i=1

Xi(ω)
2 = Tr

(
M(ω)

)
; il en suit que

M(ω)2 = Tr
(
M(ω)

) (
U(ω)× U(ω)⊤

)
= Tr

(
M(ω)

)
M(ω).

Cela établit que les variables aléatoires M2 et Tr(M)M sont égales.
M(ω) est une matrice de projection si et seulement si

M(ω)2 = M(ω) ⇐⇒ Tr
(
M(ω)

)
M(ω) = M(ω) ⇐⇒ M(ω) = 0n ou Tr

(
M(ω)

)
= 1

donc l’événement
{
M2 = M

}
est la réunion des événements {M = 0n} et {Tr(M) = 1},

qui sont incompatibles. La loi de Tr(M) est la loi binomiale B(n, p) ; l’événement {M = 0n}
est égal à {rg(M) = 0} et la loi de Y = rg(M) a été déterminée ; par additivité finie de
P, on obtient

P(M2 = M) = P(M = 0n)+P(Tr(M) = 1) = P(Y = 0)+

(
n

1

)
p1(1−p)n−1 = (1−p)n+np(1−p)n−1
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La probabilité de l’événement «M est une matrice de projection» est égale à (1 −
p)n + np(1− p)n−1.

Q4. Les calculs d’événements faits restent valables, on doit toutefois recalculer leurs probabili-
tés en tenant compte des nouvelles hypothèses sur (X1, . . . , Xn). Ainsi l’événement consi-
déré

{
M2 = M

}
est toujours égal la réunion des événements incompatibles {M = 0n} et

{Tr(M) = 1}, donc P(M2 = M) = P(M = 0n) + P(Tr(M) = 1). On a

{M = 0n} = {Y = 0} =
n∩

i=1

{Xi = 0}

d’où
P(M = 0n) =

n∏
i=1

P(Xi = 0) =
(

e−λλ
0

0!

)n
= e−nλ

car X1, . . . , Xn sont mutuellement indépendantes de loi de Poisson P(λ). En utilisant
la distribution conjointe de (X1, . . . , Xn) pour exprimer la distribution de probabilité de
Tr(M) on obtient

P(Tr(M) = 1) = P
( n∑

i=1

X2
i = 1

)
=

∑
(x1,...,xn)∈Nn

x2
1+···+x2

n=1

P
(
(X1, . . . , Xn) = (x1, . . . , xn)

)

Pour tout n-uplet (x1, . . . , xn) d’entiers naturels, l’égalité
n∑

i=1

x2
i = 1 est satisfaite si et

seulement s’il existe k ∈ J 1, n K tel que xk = 1 et pour tout i ∈ J 1, n K∖ {k} on a xi = 0 ;
en utilisant l’indépendance de X1, . . . , Xn et leur loi commune P(λ) on obtient

P(Tr(M) = 1) =
n∑

k=1

P
(
{Xk = 1} ∩

∩
i ̸=k

{Xi = 0}
)
=

n∑
k=1

P(Xk = 1)
∏
i ̸=k

P(Xi = 0)

=
n∑

k=1

λe−λ(e−λ)n−1 = nλe−nλ

Finalement, P(M2 = M) = e−nλ + nλe−nλ
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Problème

Q1. Si Y est une variable aléatoire bornée, il existe une constante B de sorte que |Y | ⩽ B,
et comme B admet une espérance, Y aussi.
Comme Y 2 est aussi bornée, Y 2 admet aussi une epérance.

Si X est quelconque, pas forcément centrée, comme X st bornée, X et X2 admettent
une espérance.

Q2. Soit ε > 0, par linéarité, Sn admet une espérance et on a

E(Sn) =
1

n

n∑
i=1

E(Xi) = E(X) = 0

Comme X1, …, Xn admettent une variance, la somme aussi, et par propriété puis indé-
pendance

V(Sn) =
1

n2
V(X1 + · · ·+Xn) =

nV(X)

n2
=

V(X)

n
.

Ainsi, d’après l’inégalité de Bienaymé-Tchebytchev,

P(|Sn − 0| ⩾ ε) ⩽ V(X)

nε2

Ainsi
lim

n→+∞
P(|Sn| ⩾ ε) = 0

On dit que (Sn) converge vers 0 en probabilité (cas particulier de la loi faible des grands
nombres).

Q3. On |X| bornée, donc |X| admet une espérance et on a, pour tout α > 0 par l’inégalité
de Markov,

P
(
|X| ⩾ α

)
⩽

E
(
|X|
)

α
.

Q4. Soit t > 0, ε > 0 et n ∈ N∗, on a

Sn ⩾ ε ⇐⇒ tnSn ⩾ tnε ⇐⇒ etnSn ⩾ etnε

On considère alors la variable aléatoire etnSn , positive, avec tnSn = tn(X1 + · · · +Xn),
bornée, et donc etnSn aussi et donc admet une espérance, et comme

etnSn =
n∏

i=1

etXi

produit de variables aléatoires indépendantes puisque X1, . . . , Xn indépendantes, et donc
f(X1), . . . , f(Xn) aussi avec f(u) = etu, et

E
(
etnSn

)
=

n∏
i=1

E
(
)etXi

)
= E

(
etX
)n

et en appliquant Markov

P
(
Sn ⩾ ε

)
= P

(
etnSn ⩾ etnε

)
⩽
(

E
(
etX
))n

etnε .
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Q5. Soit a > 1. On considère la fonction ga définie par

∀x ∈ R, ga(x) =
1− x

2
a−1 +

1 + x

2
a− ex ln(a)

La fonction ga est dérivable sur R par opérations et on a

g′a(x) = −1

2
a−1 − ln(a)ex ln(a)

avec ln(a) > 0, et donc g′a est décroissante sur R. On a

ga(−1) = a−1 − a−1 = 0 ga(1) = a− a = 0

et ainsi en appliquant le théorème de Rolle à ga sur [−1, 1], ga continue et dérivable sur
]− 1, 1[, g′a s’annule entre −1 et 1 en x0.

On en déduit que pour tout x ∈ [−1, 1], ga(x) ⩾ 0.
Q6. On applique la question précédente à a = etx avec a > 1 puisque tx > 0 : on obtient

∀t > 0, ∀x ∈ [−1, 1], etx ⩽ 1− x

2
e−t +

1 + x

2
et.

Q7. Soit t > 0, comme X prend ses valeurs dans [−1, 1], on en déduit que

∀t > 0, etX ⩽ 1−X

2
e−t +

1 +X

2
et

puis par positivité de l’espérance et la linéarité, sachant que E(X) = 0,

E
(
etX
)
⩽ 1

2
e−t − e−t

2
E(X) +

1

2
et + 1

2
et E(X) = ch(t)

soit
∀t > 0, E

(
etX
)
⩽ ch t.

Q8. Soit k ∈ N∗, on
k!2k

(2k)!
=

2

2k
· · · 2

k + 1
⩽ 1

et ainsi 1

(2k)!
⩽ 1

k!2k
, vrai aussi si k = 0, et donc

∀k ∈ N, ∀t ∈ R,
t2k

(2k)!
⩽ 1

k!

(
t2

2

)k

.

On en déduit que

ch t =
+∞∑
k=0

t2k

(2k)!
⩽

+∞∑
k=0

1

k!

(
t2

2

)k

= et2/2

et donc
∀t > 0, E

(
etX
)
⩽ ch t ⩽ et2/2.

Majoration de P(|Sn| ⩾ ε)

Dans ce paragraphe, on considère un entier n ∈ N∗ et un réel ε > 0.
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Q9. La fonction f : t 7−→ e−ntε+nt2/2 est dérivable sur R avec

f ′(t) = (nt− nε)f(t)

et ainsi elle atteint un minimum en t = ε, qui est

f(ε) = e−nε2/2

Q10. Avec Q4 et Q8, on a si t > 0,

P(Sn ⩾ ε) ⩽ ent2/2−tnε

et avec t = ε, P(Sn ⩾ ε) ⩽ e−nε2/2.
On procède alors de manière symétrique pour (Sn ⩾ −ε) qui est aussi (−Sn ⩾ ε),
sachant que −Sn possède les mêmes propriétés que Sn (ou avec −X). On obtient aussi

P(Sn ⩽ −ε) ⩽ ent2/2−tnε

On en déduit alors sachant que (|Sn| ⩾ ε) = (Sn ⩾ ε) ∪ (sn ⩽ −ε) (disjointe mais pas
nécessaire) que

P(|Sn| ⩾ ε) ⩽ 2e−nε2/2.

Conclusion

Q11. La croissance des mesures de probabilité et la question 40 donnent la majoration

P(|Sn| > ε) ⩽ P(|Sn| ⩾ ε) ⩽ 2e−n ε2

2 .

Le théorème de comparaison et la convergence de la série géométrique de raison e− ε2

2 ∈
]0, 1[ assurent alors la convergence de la série de terme général P(|Sn| > ε).

Q12.
{
ω ∈ Ω ; |Sm(ω)| > ε

}
= S−1

m (] − ∞,−ε[) ∪ S−1
m (]ε,+∞[) est la réunion de deux

événements, donc un événement. Alors, Bn est une réunion dénombrable d’événements,
donc un événement.

Par ailleurs, P(Bn) ⩽
∞∑

m=n

P
({

ω ∈ Ω ; |Sm(ω)| > ε
})

, reste d’une série convergente

d’après la question précédente. Comme la suite (Bn)n est décroissante, il s’ensuit

P
( ∩

n∈N∗

Bn

)
= lim

n→∞
P(Bn) = 0.

Q33. Posons pour plus de clarté Bn(ε) = Bn. On peut écrire

Ωk =

{
ω ∈ Ω ; ∃n ∈ N∗, ∀m ⩾ n : |Sm(ω)| ⩽

1

k

}
=

∞∪
n=1

∞∩
m=n

{
ω ∈ Ω ; |Sm(ω)| ⩽

1

k

}
=

∞∪
n=1

Bn(1/k)

donc Ωk est une réunion dénombrable d’événements et donc un événement. On peut par
ailleurs écrire

A =

{
ω ∈ Ω ; ∀k ∈ N∗, ∃n ∈ N∗, ∀m ⩾ n : |Sm(ω)| ⩽

1

k

}
=
∩
k∈N∗

Ωk,

ce qui montre que A est un événement.
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Q14. En reprenant l’expression de Ωk obtenue, le passage au complémentaire donne Ωk =∩
n∈N∗

Bn(1/k) et en appliquant ce que l’on a montré précédemment, on obtient P
(
Ωk

)
=

0, d’où P(Ωk) = 1.

Enfin,
(
|Sm| ⩽

1

k

)
⊃
(
|Sm| ⩽

1

k + 1

)
, ce qui entraîne que la suite d’événements (Ωk)k

est décroissante. On peut alors conclure :

P(A) = P
( ∩

k∈N∗

Ωk

)
= lim

k→∞
P(Ωk) = 1.

Autrement dit, (Sn)n converge presque sûrement vers 0. Ce résultat est la loi forte des
grands nombres.
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