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EXERCICE 1

Soient X et Y deux variables aléatoires a valeurs dans N indépendantes, sur un espace propa-
bilisé (€2, A, P).

1. Donner la formule liant Gx,y a Gx et Gy.

2. On rappelle que par la formule de transfert, si t € [—1, 1],

Gx(t) = +ift”l@(){ =n) =E(tY)

n=0

En déduire une preuve de la formule citée ci-dessus donnant Gx.y en fonction de Gx
et Gy.

EXERCICE 2

On souhaite étudier la loi de X définie par

Vk e N*, P(X = k) = (E)

si cela & un sens.

1. Montrer que sur | — 1, 1],
-z (1—x)?
k=0 k=1

En déduire que (£) définit bien une loi d'une variable aléatoire a valeurs dans N.

2. Montrer que pour t €] — R, R, on a

avec R a préciser.
3. En déduire que X admet une espérance et la calculer.

4. La variable aléatoire X admet-elle une variance ? Comment la calculer ?



EXERCICE 3

On considere un espace probabilisé (€2, 7, P). Soit A € RY et X : 0 — R une variable aléatoire

qui suit la loi de Poisson de parametre A.
+o0o

On note Gx : t — Z P(X = n)t" la fonction génératrice de X.

n=0
L’objectif de cet exercice est d’affiner une majoration donnée par 'inégalité de Bienaymé-

Tchebychev appliquée a une loi de Poisson.

Q1. Sans démonstration, donner I'espérance et la variance de la variable aléatoire X.

Q2. En utilisant une inégalité adaptée, donner une majoration de P(| X — A| > A).

Q3. Justifier parfaitement que 'événement {X > 2A} est inclus dans I'événement {|X —\| >
A}

Q4. En déduire la majoration suivante :

P(X >2)) <

> =
—~
—_
~—

Q5. Donner I’ensemble de définition de Gx.
Q6. Montrer que pour tout t € R, Gy (t) = XY,

Q7. On suppose que t > 1. Montrer que pour tout @ € R, (X > a) = (tX > to‘) puis que

I'on a : o
P(X > a) < fa(t).
Q8. En déduire que :
e A
P(X > 2)) < (Z) . 2)

On étudiera une fonction et on déterminera son minimum.

Q9. On admet que e - (In(4) — 1) > 1,05. Quelle majoration (1) ou (2) de P(X > 2X) est la
plus précise ?
On sera ramené a une étude de fonction.

PROBLEME

On suppose que les variables aléatoires sont toutes définies sur le méme espace probabilisé et
prennent des valeurs entieres.

On appelle fonction caractéristique d’une variable aléatoire X I'application px : R — C définie
par '
px(t) = E (")

sous condition d’existence.
+oo
1. Justifier que ¢y est bien définie sur R et que px(t) = ZeitkP(X = k).
k=0

2. Montrer que ¢x est 2mw-périodique et continue.



3. Calculer ¢x(0).

On suppose que X admet une espérance. Montrer que ¢y est de classe C' sur R et
préciser ¢'y. Interpréter 'y (0).

. On suppose que X admet une variance. Montrer que ¢y est de classe C? sur R, et préciser

¢’y Interpréter ¢’ (0).

6. On suppose dans cette question que X suit une loi de Bernoulli B(p). Déterminer .

7. On suppose dans cette question que X suit une loi Binomiale B(n,p). Déterminer ¢x.

On prendra soin de simplifier au maximum les expressions. Que remarque-t-on ?

8. Et si X suit une loi géométrique ? de Poisson ?

9. Soit X une variable aléatoire quelconque et k£ un entier. Montrer que

10.

1 2 ]
P(X =k) / ox (t)e dt
0

T or

27
/ u(P=49) 4y,
0

En déduire que px = ¢y = Px = Py.

On calculera déja

pour p et q des entiers relatifs.

Soient X et Y deux variables aléatoires indépendantes. Montrer que

PX+y = PX-Py

et retrouver la fonction caractéristique d’une variable aléatoire suivant la loi binomiale.

Fin
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1. On rappelle que si X et Y sont indépendantes a valeurs dans N, on a Gx,y = Gx.Gy

Or les variables aléatoires t* et #* sont de la forme f(X) et f(Y) avec f(u) = t“, et
donc elles sont aussi indépendantes et ainsi, comme elles admettent une espérance, t~.t¥

aussi (on le sait en fait) et on a
E#X.tY) = E(t¥).E#)

et ainsi on retrouve

Gxiy(t) = Gx(t).Gy(t).
Exercice 2

. On rapelle que si x €] — 1, 1],

1 <= .
1—91;:Zx
k=0

que l'on dérive terme a terme (série entiere

S
= kaht = kbt
— 2
1-2)* = P
et ainsi
T &
_ k
(1— )2 o Z ki
k=1
Si k> o1y
ik>1, o >0etona
R N W A
Do =
k=1 k=1 k=1
1
vy 2 51
ot (1= 3)
=2—-1=1
+oo _
On a ainsi Z o = 1 et ainsi nous avons bien une loi d’une variable aléatoire.
k=1

2. On a déja par la regle d’Abel appliquée aux séries entieres, puisque

Qkkl_ k _>1
L 2(k-1) 2

4



k—1
le rayon de Z o7 t* qui est égal & 2. Pour ¢ €] — 1,2[, nous avons (la séparation est

bien licite sur |2, 2[)

+o00 t k +oo t k
-2+(3) -26) ?
JCED ’
2t t 2A—t2-t) P
R s Sy G B LR (4)

. La fonction G est donc de classe C* sur | — 2, 2[ (somme d’une série entiére de rayon 2)
et donc est dérivable en 1, et donc X admet une espérance avec

B0 = 641 (5)
Oron a
s 22—t —(=2)(2—1t)  2A2-t)+22 4t
() = PEOE S T R G

et ainsi E(X) = 4.
. Comme Gx est 2 sois dérivable en 1, X admet une variance et on a
V(X) = G (1) + G (1) - G (1)?

que l'on peut calculer en dérivant une seconde fois Gx.

Exercice 3

. Si X suit une loi de Poisson de parametre A\, X admet une espérance et une variance
avec E(X) =V(X) = A\

. On applique I'inégalité de Bienaymé-Tchebychev,

V(X)

P(X = B(X)| > ) < T

soit ici !

P(X ~ X)) <
. Si X > 2\ alors X — A > A et ainsi [X — A| 2 A. On a donc l'inclusion (X > 2\) C
(1X =\ 0.

. Ainsi, on obtient

1
P(XZ220) < P(|IX =\ =2\ < %
)\TL
. On considere la série entiere Z e_’\—'t”, on reconnait une série exponentielle, de rayon
n!

n>0
+00, avec

VteR, Gx(t) = e M = oAME-1)

>



6. Soitt > 1, « € R, on a In(t) > 0 et ainsi
X>a < Xh{t) > aln(t) = X0l > el — X >y

et ainsi (X > a) = (+* > t*). Alors en apliquant Markov & la variable aléatoire t* et
t*, sachant que +* est d’espérance finie égale & G'x (1),

X
P(X > a)=Pt* >1%) < Eii ) _ ijt).

7. Nous avons donc avec a = 2,

e A(t—1)—2XIn(?)

=

-
<
\%
[\
=
N

£2X2
et cela pour tout t > 1. On pose
O(t) = At —1)—2X1In(¢)

dérivable, avec

2 -2
gty —r— 2 _\22
t t

et ainsi la fonction # admet un minimum en ¢ = 2, ce minimum étant
0(2) =X —2XIn(2) = A\(1 —2In(2)) = A\(1 — In(4))

en en appliquant la majoration pour cette valeur de ¢ = 2, nous obtenons donc

P(X =2\ < (Z)A.

1 A
8. On cherche a comparer donc 3= eIV et (Z) = M) Op a

1
A1) o= \(1—-1n(4)) < —In()) <= ng\)\) >1In(4) — 1
In(A
On pose p(A) = #, de dérivée
, 1 —In(\)
PN =3




Probléme

1. Soit t € R, e™¥ est une variable aléatoire bornée, elle admet donc une espérance finie, et

donc on peut définir px (¢) et par la formule de transfert, on a px(t) = Z e P(X =

2. Soit t € R, on a

t—i—27r Z el(t+27T kP Z eztkemkﬂp Z e'LtkP = oy (t)

et ainsi @y est 2m-périodique.
Posons f(t) = ™ P(X = k), nous avons une série de fonctions continues sur R Z fr
avec si t € R,

[fe(@)] = P(X = k) = a
et ainsi || fx ||oo= P(X = k) = ay, et Z ar, convergente (de somme 1). Nous avons donc

la convergence normale donc uniforme de la série g fx, et ainsi la somme @x est une
fonction continue sur R.

3. On a px(0) = iP(X =k)=1.

4. On suppose que X admet une espérance. On applique le théoréme de classe C! pour
la somme d'une série de fonctions. Les fonctions f;, sont de classe C', la série Z fx
converge simplement sur R, avec

fu(t) = ike™ P(X = k)

avec donc

|fe(O)] = kP(X = k)
et ainsi || fi ||= kP(X = k), et comme X admet une espérance finie, nous avons la
convergence de Z kP(X = k), ce qui assure la convergence normale et donc uniforme

de la série des dérivées Z fr-

Ainsi px est de classe C' sur R et on a par dérivation terme & terme

—+o00

Pi(t) = ike™ P(X = k).
k=0

On a ¢y (0) = iikP(X =k)=14iE(X).

5. On suppose que X admet une variance. On applique le théoréme de classe C? pour la
somme d’une série de fonctions. Les fonctions f; sont de classe C?, la série Z fr converge

simplement sur R, Z 1. aussi avec
H(t) = —k*""P(X = k)

avec donc

(@) = k*P(X = k)



et ainsi || f” ||= k*P(X = k), et comme X? admet une espérance finie, nous avons la

convergence de E E*P(X = k), ce qui assure la convergence normale et donc uniforme

de la série des dérivées E I

Ainsi px est de classe C? sur R et on a par dérivation terme & terme
+oo
—> K™ P(X =k).
k=0

Ona @5 (0) = =Y KP(X =k) = —E(X?).
6. On suppose dans cette question que X suit une loi de Bernoulli B(p). Alors
ox(t) = P(X = 0) + " P(X = 1) = (1 - p) +

7. On suppose dans cette question que X suit une loi Binomiale B(n,p). Alors
_ Z itk (n)pk(l — )k
k
=3 (3)emra-pr

= [(1—p)+e p]"

On remmarque que 1’on obtient la fonction caractéristique précédente a la puissance n.

8. Si X suit une loi géométrique G(p), alors

400 +oo
px(t) =Y e™p(1—p)Ft = pe Y e (1 —p)F!
= k=1
pe” p
S l-et(l-p) et —(1-p)

Si X suit une loi de Poisson P()), alors

px(t) = Ze“k _A

Y = [elt)‘]
¢ el
k=0

_ it it __
—e /\ee A e/\(e 1)

9. Soit X une variable aléatoire quelconque et k& un entier. On a si p et ¢ entiers,

2
/ etulP=a) 1y =
0

27 sip=gq

1 . 2
{_—ew(”_q)} = (0 sinon
i(p—q) 0



10.

Alors en prouvant comme a la question 1 la convergence normale de la série de fonctions

Zeth(X =n)e ™ ona

2 27 00
/ ox(t)e " dt = / Z e P(X = n)dt
0 0 n=0

+00 2 ) )

— Z P(X — Tl)/ emtefztkdt
n=0 0

=2rP(X =k)

et ainsi

1 2 )
P(X =k) / ox(t)e "Fdt
0

T om
Alors si ¢x = @y, pour tout k, nous obtenons

1 21 ) 1 27 )
P(X =k) / ox(t)e thdt = — oy (t)e ™ dt = P(Y = k)
0

" or 2m Jo
et ainsi X et Y ont bien la méme loi. La réciproque est évidente.
Soient X et Y deux variables aléatoires indépendantes. Nous avons

“+oo

pxiv(t) = ZeiktP(X +Y =k)

k=0

400 k

=> MY P(X=pY =k—p)
k=0 p=0
+oco k

=> ) P(X =p)e?'P(Y =k — )’

k=0 p=0

et on reconnalt un produit de Cauchy de deux séries absolument convergentes,

+oo  k
pxay(t) =Y Y P(X =p)e”P(Y =k — p)e'kPV
k=0 p=0
“+00 400
=Y P(X =k)e™ > MPY =k)
k=0 k=0
= ox(t)py(t)

Ainsi
PX+y = PX-Py
et en généralisant a une somme de n variables aléatoires indépendantes par récurrence

par le biais du lemme des coalitions, on retrouve la fonction caractéristique d’une variable
aléatoire suivant la loi binomiale.



