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EXERCICE 1
Soient X et Y deux variables aléatoires à valeurs dans N indépendantes, sur un espace propa-
bilisé (Ω,A,P).

1. Donner la formule liant GX+Y à GX et GY .
2. On rappelle que par la formule de transfert, si t ∈ [−1, 1],

GX(t) =
+∞∑
n=0

tnP(X = n) = E(tX)

En déduire une preuve de la formule citée ci-dessus donnant GX+Y en fonction de GX

et GY .

EXERCICE 2
On souhaite étudier la loi de X définie par

∀k ∈ N∗ , P(X = k) =
k − 1

2k
(E)

si cela à un sens.
1. Montrer que sur ]− 1, 1[,

1

1− x
=

+∞∑
k=0

xk x

(1− x)2
=

+∞∑
k=1

kxk

En déduire que (E) définit bien une loi d’une variable aléatoire à valeurs dans N.
2. Montrer que pour t ∈]−R,R[, on a

GX(t) =
t2

(2− t)2

avec R à préciser.
3. En déduire que X admet une espérance et la calculer.
4. La variable aléatoire X admet-elle une variance ? Comment la calculer ?
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EXERCICE 3
On considère un espace probabilisé (Ω, T ,P). Soit λ ∈ R∗

+ et X : Ω → R une variable aléatoire
qui suit la loi de Poisson de paramètre λ.

On note GX : t 7→
+∞∑
n=0

P(X = n)tn la fonction génératrice de X.

L’objectif de cet exercice est d’affiner une majoration donnée par l’inégalité de Bienaymé-
Tchebychev appliquée à une loi de Poisson.

Q1. Sans démonstration, donner l’espérance et la variance de la variable aléatoire X.

Q2. En utilisant une inégalité adaptée, donner une majoration de P(|X − λ| ⩾ λ).
Q3. Justifier parfaitement que l’événement {X ⩾ 2λ} est inclus dans l’événement {|X−λ| ⩾

λ}.

Q4. En déduire la majoration suivante :

P(X ⩾ 2λ) ⩽ 1

λ
. (1)

Q5. Donner l’ensemble de définition de GX .

Q6. Montrer que pour tout t ∈ R, GX(t) = eλ(t−1).

Q7. On suppose que t ⩾ 1. Montrer que pour tout α ∈ R, (X ⩾ α) =
(
tX ⩾ tα

)
puis que

l’on a :
P(X ⩾ α) ⩽ GX(t)

tα
.

Q8. En déduire que :

P(X ⩾ 2λ) ⩽
(e
4

)λ

. (2)

On étudiera une fonction et on déterminera son minimum.
Q9. On admet que e · (ln(4)− 1) ⩾ 1, 05. Quelle majoration (1) ou (2) de P(X ⩾ 2λ) est la

plus précise ?
On sera ramené à une étude de fonction.

PROBLEME
On suppose que les variables aléatoires sont toutes définies sur le même espace probabilisé et
prennent des valeurs entières.

On appelle fonction caractéristique d’une variable aléatoire X l’application φX : R → C définie
par

φX(t) = E
(
eitX

)
sous condition d’existence.

1. Justifier que φX est bien définie sur R et que φX(t) =
+∞∑
k=0

eitkP (X = k).

2. Montrer que φX est 2π-périodique et continue.
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3. Calculer φX(0).
4. On suppose que X admet une espérance. Montrer que φX est de classe C1 sur R et

préciser φ′
X . Interpréter φ′

X(0).
5. On suppose que X admet une variance. Montrer que φX est de classe C2 sur R, et préciser

φ′′
X . Interpréter φ′′

X(0).
6. On suppose dans cette question que X suit une loi de Bernoulli B(p). Déterminer φX .
7. On suppose dans cette question que X suit une loi Binomiale B(n, p). Déterminer φX .

On prendra soin de simplifier au maximum les expressions. Que remarque-t-on ?
8. Et si X suit une loi géométrique ? de Poisson ?
9. Soit X une variable aléatoire quelconque et k un entier. Montrer que

P (X = k) =
1

2π

∫ 2π

0

φX(t)e−itkdt

On calculera déjà ∫ 2π

0

eiu(p−q)du

pour p et q des entiers relatifs.

En déduire que φX = φY =⇒ PX = PY .
10. Soient X et Y deux variables aléatoires indépendantes. Montrer que

φX+Y = φX .φY

et retrouver la fonction caractéristique d’une variable aléatoire suivant la loi binomiale.

Fin
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Devoir surveillé 6 : correction Lycée Jean Perrin
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Exercice 1

1. On rappelle que si X et Y sont indépendantes à valeurs dans N, on a GX+Y = GX .GY

sur [−1, 1] de façon générale.
2. Si t ∈ [−1, 1], par la formule de transfert, on a

GX+Y (t) = E(tX+Y ) = E(tX .tY )

Or les variables aléatoires tX et tY sont de la forme f(X) et f(Y ) avec f(u) = tu, et
donc elles sont aussi indépendantes et ainsi, comme elles admettent une espérance, tX .tY
aussi (on le sait en fait) et on a

E(tX .tY ) = E(tX).E(tY )

et ainsi on retrouve
GX+Y (t) = GX(t).GY (t).

Exercice 2

1. On rapelle que si x ∈]− 1, 1[,
1

1− x
=

+∞∑
k=0

xk

que l’on dérive terme à terme (série entière

1

(1− x)2
=

+∞∑
k=0

kxk−1 =
+∞∑
k=1

kxk−1

et ainsi
x

(1− x)2
=

+∞∑
k=1

kxk

Si k ⩾ 1, k − 1

2k
⩾ 0 et on a

N∑
k=1

k − 1

2k
=

N∑
k=1

k

2k
−

N∑
k=1

1

2k

−→
N→+∞

1
2(

1− 1
2

)2 − 1

= 2− 1 = 1

On a ainsi
+∞∑
k=1

k − 1

2k
= 1 et ainsi nous avons bien une loi d’une variable aléatoire.

2. On a déjà par la règle d’Abel appliquée aux séries entières, puisque
k

2k+1

k−1
2k

=
k

2(k − 1)
−→ 1

2
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le rayon de
∑ k − 1

2k
tk qui est égal à 2. Pour t ∈]− 1, 2[, nous avons (la séparation est

bien licite sur ]2, 2[)

GX(t) =
+∞∑
k=1

k − 1

2k
tk (1)

=
+∞∑
k=1

k

(
t

2

)k

−
+∞∑
k=1

(
t

2

)k

(2)

=
t
2(

1− t
2

)2 −
t
2

1− t
2

(3)

=
2t

(2− t)2
− t

2− t
==

2t− t(2− t)

(2− t)2
=

t2

(2− t)2
(4)

3. La fonction G est donc de classe C∞ sur ]− 2, 2[ (somme d’une série entière de rayon 2)
et donc est dérivable en 1, et donc X admet une espérance avec

E(X) = G′
X(1)

(
t

2

)k

Or on a

G′
X(t) =

2t(2− t)2 − t2(−2)(2− t)

(2− t)4
=

2t(2− t) + 2t2

(2− t)3
=

4t

(2− t)3

et ainsi E(X) = 4.
4. Comme GX est 2 sois dérivable en 1, X admet une variance et on a

V(X) = G′′
X(1) +G′

X(1)−G′
X(1)

2

que l’on peut calculer en dérivant une seconde fois GX .

Exercice 3
1. Si X suit une loi de Poisson de paramètre λ, X admet une espérance et une variance

avec E(X) = V(X) = λ.
2. On applique l’inégalité de Bienaymé-Tchebychev,

P (|X − E(X)| ⩾ λ) ⩽ V (X)

λ2

soit ici
P (|X − λ)| ⩾ λ) ⩽ 1

λ
.

3. Si X ⩾ 2λ, alors X − λ ⩾ λ et ainsi |X − λ| ⩾ λ. On a donc l’inclusion (X ⩾ 2λ) ⊂
(|X − λ| ⩾ λ).

4. Ainsi, on obtient
P (X ⩾ 2λ) ⩽ P (|X − λ| ⩾ λ) ⩽ 1

λ
.

5. On considère la série entière
∑
n⩾0

e−λλ
n

n!
tn, on reconnaît une série exponentielle, de rayon

+∞, avec
∀t ∈ R , GX(t) = e−λeλt = eλ(t−1).
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6. Soit t ⩾ 1, α ∈ R, on a ln(t) ⩾ 0 et ainsi

X ⩾ α ⇐⇒ X ln(t) ⩾ α ln(t) ⇐⇒ eX ln(t) ⩾ eα ln(t) ⇐⇒ tX ⩾ tα

et ainsi (X ⩾ α) = (tX ⩾ tα). Alors en apliquant Markov à la variable aléatoire tX et
tα, sachant que tX est d’espérance finie égale à GX(t),

P (X ⩾ α) = P (tX ⩾ tα) ⩽ E(tX)

tα
=

GX(t)

tα
.

7. Nous avons donc avec α = 2λ,

P (X ⩾ 2λ) ⩽ eλ(t−1)

t2λ
= eλ(t−1)−2λ ln(t)

et cela pour tout t ⩾ 1. On pose

θ(t) = λ(t− 1)− 2λ ln(t)

dérivable, avec
θ′(t) = λ− 2λ

t
= λ

t− 2

t

et ainsi la fonction θ admet un minimum en t = 2, ce minimum étant

θ(2) = λ− 2λ ln(2) = λ(1− 2 ln(2)) = λ(1− ln(4))

en en appliquant la majoration pour cette valeur de t = 2, nous obtenons donc

P (X ⩾ 2λ) ⩽
(e
4

)λ

.

8. On cherche à comparer donc 1

λ
= e− ln(λ) et

(e
4

)λ

= eλ(1−ln(4)). On a

eλ(1−ln(4)) ⩽ e− ln(λ) ⇐⇒ λ(1− ln(4)) ⩽ − ln(λ) ⇐⇒ ln(λ)
λ

⩾ ln(4)− 1

On pose φ(λ) =
ln(λ)
λ

, de dérivée

φ′(λ) =
1− ln(λ)

λ2

et ainsi φ admet un maximum en e valant 1

e . Alors

ln(λ)
λ

⩽ 1

e ⩽ ln(4)− 1

1, 05
⩽ ln(4)− 1

et donc si λ > 0,
(e
4

)λ

⩽ 1

λ
. La seconde majoration de P (X ⩾ 2λ) est la plus précise.
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Problème

1. Soit t ∈ R, eitX est une variable aléatoire bornée, elle admet donc une espérance finie, et

donc on peut définir φX(t) et par la formule de transfert, on a φX(t) =
+∞∑
k=0

eitkP (X = k).

2. Soit t ∈ R, on a

φX(t+2π) =
+∞∑
k=0

ei(t+2π)kP (X = k) =
+∞∑
k=0

eitke2ikπP (X = k) =
+∞∑
k=0

eitkP (X = k) = φX(t)

et ainsi φX est 2π-périodique.
Posons fk(t) = eitkP (X = k), nous avons une série de fonctions continues sur R

∑
fk

avec si t ∈ R,
|fk(t)| = P (X = k) = ak

et ainsi ‖ fk ‖∞= P (X = k) = ak, et
∑

ak convergente (de somme 1). Nous avons donc
la convergence normale donc uniforme de la série

∑
fk, et ainsi la somme φX est une

fonction continue sur R.

3. On a φX(0) =
+∞∑
k=0

P (X = k) = 1.

4. On suppose que X admet une espérance. On applique le théorème de classe C1 pour
la somme d’une série de fonctions. Les fonctions fk sont de classe C1, la série

∑
fk

converge simplement sur R, avec

f ′
k(t) = ikeitkP (X = k)

avec donc
|f ′

k(t)| = kP (X = k)

et ainsi ‖ f ′
k ‖= kP (X = k), et comme X admet une espérance finie, nous avons la

convergence de
∑

kP (X = k), ce qui assure la convergence normale et donc uniforme
de la série des dérivées

∑
f ′
k.

Ainsi φX est de classe C1 sur R et on a par dérivation terme à terme

φ′
X(t) =

+∞∑
k=0

ikeitkP (X = k).

On a φ′
X(0) = i

+∞∑
k=0

kP (X = k) = iE(X).

5. On suppose que X admet une variance. On applique le théorème de classe C2 pour la
somme d’une série de fonctions. Les fonctions fk sont de classe C2, la série

∑
fk converge

simplement sur R,
∑

f ′
k aussi avec

f ′′
k (t) = −k2eitkP (X = k)

avec donc
|f ′′

k (t)| = k2P (X = k)
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et ainsi ‖ f ′′′
k ‖= k2P (X = k), et comme X2 admet une espérance finie, nous avons la

convergence de
∑

k2P (X = k), ce qui assure la convergence normale et donc uniforme
de la série des dérivées

∑
f ′′
k .

Ainsi φX est de classe C2 sur R et on a par dérivation terme à terme

φ′′
X(t) = −

+∞∑
k=0

k2eitkP (X = k).

On a φ′′
X(0) = −

+∞∑
k=0

k2P (X = k) = −E(X2).

6. On suppose dans cette question que X suit une loi de Bernoulli B(p). Alors

φX(t) = eit0P (X = 0) + eit1P (X = 1) = (1− p) + eitp

7. On suppose dans cette question que X suit une loi Binomiale B(n, p). Alors

φX(t) =
n∑

k=0

eitk
(
n

k

)
pk(1− p)n−k

=
n∑

k=0

(
n

k

)
(eitp)k(1− p)n−k

=
[
(1− p) + eitp

]n
On remmarque que l’on obtient la fonction caractéristique précédente à la puissance n.

8. Si X suit une loi géométrique G(p), alors

φX(t) =
+∞∑
k=1

eitkp(1− p)k−1 = peit
+∞∑
k=1

[eit(1− p)]k−1

=
peit

1− eit(1− p)
=

p

e−it − (1− p)

Si X suit une loi de Poisson P(λ), alors

φX(t) =
+∞∑
k=0

eitke−λλ
k

k!

= e−λ

+∞∑
k=0

[eitλ]k
k!

= e−λeeitλ = eλ(eit−1)

9. Soit X une variable aléatoire quelconque et k un entier. On a si p et q entiers,

∫ 2π

0

eiu(p−q)du =


2π si p = q[

1

i(p− q)
eiu(p−q)

]2π
0

= 0 sinon
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Alors en prouvant comme à la question 1 la convergence normale de la série de fonctions∑
n

eintP (X = n)e−itk, on a

∫ 2π

0

φX(t)e−itkdt =
∫ 2π

0

+∞∑
n=0

einte−itkP (X = n)dt

=
+∞∑
n=0

P (X = n)

∫ 2π

0

einte−itkdt

= 2πP (X = k)

et ainsi
P (X = k) =

1

2π

∫ 2π

0

φX(t)e−itkdt

Alors si φX = φY , pour tout k, nous obtenons

P (X = k) =
1

2π

∫ 2π

0

φX(t)e−itkdt = 1

2π

∫ 2π

0

φY (t)e−itkdt = P (Y = k)

et ainsi X et Y ont bien la même loi. La réciproque est évidente.
10. Soient X et Y deux variables aléatoires indépendantes. Nous avons

φX+Y (t) =
+∞∑
k=0

eiktP (X + Y = k)

=
+∞∑
k=0

eikt
k∑

p=0

P (X = p, Y = k − p)

=
+∞∑
k=0

k∑
p=0

P (X = p)eiptP (Y = k − p)ei(k−p)t

et on reconnaît un produit de Cauchy de deux séries absolument convergentes,

φX+Y (t) =
+∞∑
k=0

k∑
p=0

P (X = p)eiptP (Y = k − p)ei(k−p)t

=
+∞∑
k=0

P (X = k)eikt
+∞∑
k=0

eiktP (Y = k)

= φX(t)φY (t)

Ainsi
φX+Y = φX .φY

et en généralisant à une somme de n variables aléatoires indépendantes par récurrence
par le biais du lemme des coalitions, on retrouve la fonction caractéristique d’une variable
aléatoire suivant la loi binomiale.
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