Devoir surveillé n°5 2 heures

Exercice I

Soit $\Omega = \mathbb{N}^*$ muni de sa tribu totale.

Pour s>1, on considère une probabilité \mathbb{P} de sorte que

$$\forall n \in \mathbb{N}^*, \, \mathbb{P}(\{n\}) = \frac{\lambda}{n^s}.$$

On rappelle que \mathcal{P} ensemble des nombres premiers est dénombrable et on notera

$$\mathcal{P} = \{2, 3, 5, 7, \ldots\} = \{p_1, p_2, p_3, p_4, \ldots\}.$$

On rappelle la propriété arithmétique suivante : si q_1 , ... q_k sont premiers, alors

$$q_1 \cdots q_k | n \iff \forall i \in \{1, \dots k\}, q_i | n.$$

- 1. Déterminer λ .
- 2. Soit $k \in \mathbb{N}^*$, on considère l'événement

$$A_k = \{n \in \mathbb{N}^*, k|n\}$$

Donner une interprétation de A_k et déterminer $\mathbb{P}(A_k)$.

- 3. Montrer que la famille $(A_{p_n})_{n\in\mathbb{N}^*}$ est une famille d'événements (mutuellement) indépendants.
- 4. Montrer que $\{1\} = \bigcap_{n=1}^{+\infty} \overline{A_{p_n}}$.
- 5. En calculant de deux façons $\mathbb{P}(\{1\})$, montrer que

$$\prod_{p \in \mathcal{P}} \left(1 - \frac{1}{p^s} \right) = \lim_{N \to +\infty} \prod_{i=1}^N \left(1 - \frac{1}{p_i^s} \right) = \frac{1}{\zeta(s)}$$

6. On rappelle que ζ admet $+\infty$ comme limite en 1^+ . La famille $\left(\frac{1}{p}\right)_{p\in\mathcal{P}}$ est-elle sommable? Commentaires.

Exercice II

On considère une marche aléatoire uni-dimensionnelle sur un axe indexé par \mathbb{Z} . À l'instant initial 0 une particule se trouve en position 0; chaque seconde voit celle-ci se déplacer vers la droite avec une probabilité $p \in]0,1[$ et vers la gauche avec une probabilité q=1-p.

On note $X_n \in \mathbb{Z}$ la position de la particule à la date n et $T \in \mathbb{N}^* \cup \{+\infty\}$ la date du premier retour à l'origine.

On pose enfin $a_n = \mathbb{P}(X_{2n} = 0)$ si $n \ge 0$ et $b_n = \mathbb{P}(T = 2n)$ et on considère les séries entières

$$A(x) = \sum_{n=0}^{+\infty} a_n x^n$$
 $B(x) = \sum_{n=1}^{+\infty} b_n x^n$.

On remarquera que $a_0 = 1$ et on convient que $b_0 = 0$.

- 1. Soit $n \in \mathbb{N}$. Que vaut $P(X_{2n+1} = 0)$? P(T = 2n + 1)?
- 2. Montrer que $1 \leqslant R_a \leqslant R_b$.
- 3. Quelles sont les valeurs prises par X_{2n} ? Montrer que $\frac{1}{2}X_{2n} + n \sim \mathcal{B}(2n, p)$. Exprimer alors a_n en fonction de n et en déduire la valeur de R_a .
- 4. Montrer que pour tout $x \in]-R_a, R_a[, A(x) = \frac{1}{\sqrt{1-4pqx}}]$
- 5. Montrer que si $n \ge 1$,

$$a_n = \sum_{k=1}^n b_k a_{n-k}$$

et en déduire une relation liant A(x) et B(x), puis l'expression de B(x) sur $]-R_a,R_a[$.

- 6. Lorsque $p \neq \frac{1}{2}$, déterminer la probabilité qu'il n'y ait jamais de retour à l'origine.
- 7. Quelle est la problématique du cas $p = \frac{1}{2}$?

Fin

Exercice I

1. On doit avoir

$$\mathbb{P}(\mathbb{N}^*) = 1 = \mathbb{P}\left(\bigcup_{n=1}^{+\infty} \{n\}\right) = \sum_{n=1}^{+\infty} \mathbb{P}(\{n\}) = \sum_{n=1}^{+\infty} \frac{\lambda}{n^s} = \lambda \zeta(s)$$

et ainsi on a $\lambda = \frac{1}{\zeta(s)}$.

2. L'événement $A_k = \{n \in \mathbb{N}^*, k|n\}$ est l'événement « on a un multiple de k». On a

$$\mathbb{P}(A_k) = \mathbb{P}\left(\bigcup_{n=1}^{+\infty} \{nk\}\right)$$
$$= \sum_{n=1}^{+\infty} \mathbb{P}(\{nk\}) = \sum_{n=1}^{+\infty} \frac{\lambda}{(nk)^s} = \frac{\lambda}{k^s} \sum_{n=1}^{+\infty} \frac{1}{n^s} = \frac{1}{k^s}$$

3. Soit $(A_{p_{i_1}},\dots,A_{p_{i_k}})$ une sous famille finie de la famille $(A_{p_n})_{n\in\mathbb{N}^*},$ on a

$$n \in \bigcap_{i=1}^{k} A_{p_{i_j}} \iff \forall j \in \{1, \dots, k\}, \ n \in A_{p_{i_j}} \iff \forall j \in \{1, \dots, k\}, \ p_{i_j} | n \iff p_{i_1} \cdots p_{i_k} | n$$

et ainsi

$$\bigcap_{i=1}^k A_{p_{i_j}} = A_{p_{i_1} \dots p_{i_k}}$$

Or

$$\mathbb{P}\left(\bigcap_{j=1}^k A_{p_{i_j}}\right) = \mathbb{P}\left(A_{p_{i_1}\cdots p_{i_k}}\right) = \frac{1}{(p_{i_1}\cdots p_{i_k})^s} = \frac{1}{p_{i_1}^s}\cdots \frac{1}{p_{i_k}^s} = \prod_{j=1}^k \mathbb{P}\left(A_{i_j}\right)$$

Ainsi la famille $(A_{p_n})_{n\in\mathbb{N}^*}$, est une famille d'événements (mutuellement) indépendants.

4. Pour tout n entier non nul, on a 1 non multiple de p_n et ainsi $1 \in \overline{A_{p_n}}$. Donc $\{1\} \subset \bigcap_{n=1}^{+\infty} \overline{A_{p_n}}$.

Réciproquement, si $k \in \bigcap_{n=1}^{+\infty} \overline{A_{p_n}}$, alors pour tout $n, k \in \overline{A_{p_n}}$, et donc k n'est multiple d'aucun nombre premier. Comme tout nombre entier supérieur à 2 se décompose en produit de facteurs premiers, et donc admet au moins un diviseur premier, on a forcément k=1.

Ainsi on a bien $\{1\} = \bigcap_{n=1}^{+\infty} \overline{A_{p_n}}$.

5. On a déjà $\mathbb{P}(\{1\}) = \frac{\lambda}{1^s} = \frac{1}{\zeta(s)}$.

D'autre part, la suite d'événement $(\overline{A_{p_n}})_{n\in\mathbb{N}^*}$, n'étant pas décroissante, on pose celle associée $(B_n)_{n\in\mathbb{N}^*}$, avec

$$B_n = \bigcap_{i=1}^n \overline{A_{p_i}}$$

qui est est bien décroissante au sens de l'inclusion et telle que

$$\bigcap_{n=1}^{+\infty} \overline{A_{p_n}} = \bigcap_{n=1}^{+\infty} \overline{B_n}$$

Alors d'après le théorème de continuité décroissante,

$$\mathbb{P}\left(\bigcap_{n=1}^{+\infty} \overline{A_{p_n}}\right) = \mathbb{P}\left(\bigcap_{n=1}^{+\infty} \overline{B_n}\right) = \lim_{n \to +\infty} \mathbb{P}(\overline{B_n})$$

Or par indépendance, nous avons

$$\mathbb{P}(\overline{B_n}) = \mathbb{P}\left(\bigcap_{i=1}^n \overline{A_{p_i}}\right) = \prod_{i=1}^n \mathbb{P}(\overline{A_{p_i}}) = \prod_{i=1}^n \left(1 - \frac{1}{p_i^s}\right)$$

On en déduit finalement que

$$\prod_{p \in \mathcal{P}} \left(1 - \frac{1}{p^s} \right) = \lim_{N \to +\infty} \prod_{i=1}^N \left(1 - \frac{1}{p_i^s} \right) = \frac{1}{\zeta(s)}$$

6. Si la famille $\left(\frac{1}{p}\right)_{p\in\mathcal{P}}$ était sommable, la série (termes positifs)

$$\sum_{n\geqslant 1} \frac{1}{p_n}$$

serait convergente. Or nous avons puisque $p_n \longrightarrow +\infty, \frac{1}{p_n} \longrightarrow 0$ et ainsi

$$\ln\left(1 - \frac{1}{p_n}\right) \sim -\frac{1}{p_n}$$

et donc la série $\sum_{n\geqslant 1} \ln\left(1-\frac{1}{p_n}\right)$ serait convergente, et alors

$$\sum_{n=1}^{N} \ln \left(1 - \frac{1}{p_n} \right) = \ln \prod_{n=1}^{N} \left(1 - \frac{1}{p_n} \right)$$

admet une limite, et puis $\prod_{n=1}^{N} \left(1 - \frac{1}{p_n}\right)$ aussi, $\ell > 0$. Or si s > 1, on a pour tout i, $p_i^s > p_i$, puis $\frac{1}{p_i^s} < \frac{1}{p_i}$, et $1 > 1 - \frac{1}{p_i^s} > 1 - \frac{1}{p_i} > 0$ d'où

$$\prod_{i=1}^{N} \left(1 - \frac{1}{p_i^s} \right) > \prod_{n=1}^{N} \left(1 - \frac{1}{p_n} \right)$$

et ainsi en passant à la limite lorsque N tend vers $+\infty$,

$$\frac{1}{\zeta(s)} \geqslant \ell > 0$$

On obtient alors une contradiction en faisant tendre s vers 1.

Ainsi la famille $\left(\frac{1}{p}\right)_{p\in\mathcal{P}}$ n'est pas sommable. On a beau enlever tous les nombres non premiers de la somme harmonique, cela n'empêche pas la non sommabilité.

Exercice II

1. Soit $n \in \mathbb{N}$. $(X_{2n+1} = 0)$ est impossible puisque si X = 0, il y a eu autant de pas à droite que de pas à gauche, et donc le nombre de pas est pair. Ainsi $P(X_{2n+1}) = 0$. Ainsi on a aussi P(T = 2n + 1) = 0.

- 2. Nous avons pour tout n, $(T = 2n) \subset (X_{2n} = 0)$ et ainsi $1 \ge a_n \ge b_n$ et alors $R(1.z^n) \le R\left(\sum a_n z^n\right) \le R\left(\sum b_n z^n\right)$. Donc $1 \le R_a \le R_b$.
- 3. La variable aléatoire X_{2n} prend les valeurs $-2n, -2n+2, \ldots -2, 0, 2, \ldots 2n-2, 2n$. En effet, sur les 2n pas, il y en a k à droite et 2n-k à gauche, avec donc une position en k-(2n-k)=2(k-n), et cela pour $k=0,\ldots 2n$, avec une probabilité

$$P(X_{2n} = 2(k-n)) = {2n \choose k} p^k (1-p)^{2n-k}$$

Si on pose $Y_{2n} = \frac{1}{2}X_{2n} + n$, alors

$$(X_{2n} = 2(k-n)) = (Y = k)$$

et donc $\frac{1}{2}X_{2n} + n \sim \mathcal{B}(2n, p)$. On a alors

$$a_n = P(X_{2n} = 0) = P(Y_{2n} = n) = {2n \choose n} p^n (1-p)^n = {2n \choose n} (p(1-p))^n$$

Or

$$\frac{a_{n+1}}{a_n} = p(1-p)\frac{(2n+2)(2n+1)}{(n+1)(n+1)} \longrightarrow 4p(1-p)$$

et ainsi on a par la règle de d'Alembert, $R_a = \frac{1}{4p(1-p)}$.

4. On rappelle que si $t \in]-1,1[$, on a

$$\frac{1}{\sqrt{1+t}} = \sum_{n=0}^{+\infty} \frac{1}{4^n} \binom{2n}{n} (-1)^n t^n$$

Ainsi, pour tout $x \in]-R_a, R_a[$,

$$A(x) = \sum_{n=0}^{+\infty} {2n \choose n} (p(1-p)x)^n = \sum_{n=0}^{+\infty} \frac{1}{4^n} {2n \choose n} (-1)^n (-4p(1-p)x)^n = \frac{1}{\sqrt{1-4p(1-p)x}}$$

Ainsi, pour tout $x \in]-R_a, R_a[, A(x) = \frac{1}{\sqrt{1-4pax}}]$

- 5. Soit $n \ge 1$, Pour avoir $(X_{2n} = 0)$,
 - -ou bien le premier retour à l'origine est en 2 ; les 2n-2 derniers pas se font avec un retour à l'origine : probabilité b_1a_{n-1}
 - ou bien le premier retour à l'origine est en 4; les 2n-4 derniers pas se font avec un retour à l'origine : probabilité b_2a_{n-2}

_ :

- ou bien le premier retour à l'origine est en 2k; les 2n-2k derniers pas se font avec un retour à l'origine : probabilité $b_k a_{n-k}$
- etc

Ainsi on a bien par disjonction et complémentarité des cas

$$a_n = \sum_{k=1}^n b_k a_{n-k}$$

que l'on somme

$$\sum_{n=1}^{+\infty} a_n x^n = \sum_{n=1}^{+\infty} \sum_{k=1}^{n} b_k a_{n-k} x^n$$

et que l'on complète sa chant que $b_0=0$ et $a_0=1$:

$$\sum_{n=0}^{+\infty} a_n x^n = 1 + \sum_{n=1}^{+\infty} \sum_{k=0}^{n} b_k a_{n-k} x^n = 1 + \sum_{n=0}^{+\infty} \sum_{k=0}^{n} b_k a_{n-k} x^n$$

et ainsi par produit de Cauchy,

$$A(x) = 1 + A(x)B(x)$$

d'où B(x)(1-A(x))=1 soit encore si $x\neq 0,$ $B(x)=\frac{1}{1-\frac{1}{\sqrt{1-4p(1-p)x}}}$ ou encore

$$B(x) = \frac{\sqrt{1 - 4p(1 - p)x}}{\sqrt{1 - 4p(1 - p)x} - 1} = \frac{\sqrt{1 - 4p(1 - p)x} - 1 + 4p(1 - p)x}{4p(1 - p)x} = \frac{\sqrt{1 - 4p(1 - p)x} - 1}{4p(1 - p)x} + 1$$

sur] $-R_a, R_a[$.

6. Lorsque $p \neq \frac{1}{2}$, $R_a > 1$, et p(1-p) < 1/4, et

$$\mathbb{P}(T = +\infty) = 1 - \mathbb{P}(T < +\infty) = 1 - \sum_{n=1}^{+\infty} \mathbb{P}(T = 2n) = 1 - B(1) = \frac{1 - \sqrt{1 - 4p(1 - p)}}{4p(1 - p)} > 0$$

7. Si $p = \frac{1}{2}$, $R_a = 1$, on a p(1-p) = 1/4, on ne peut pas utiliser les formules ci-dessus.