Devoir n°6

Autour de la transformée de Fourier

Soit f une fonction continue par morceaux sur $\mathbb R$ et intégrable, on définit sur $\mathbb R$ la fonction $\hat f$ dite transformée de Fourier de f par

$$\hat{f}(\nu) = \int_{-\infty}^{+\infty} e^{-2i\pi t\nu} f(t) dt$$

La variable t joue le rôle du temps, ν la fréquence.

- 1. Montrer que la transformée de fourrier \hat{f} d'une fonction f continue par morceaux et intégrable est bien définie sur \mathbb{R} .
- 2. Montrer aussi que \hat{f} est continue sur \mathbb{R} .
- 3. On suppose que f admet un moment d'ordre p, c'est à dire que $t \mapsto t^p f(t)$ est intégrable sur \mathbb{R} , avec $p \ge 1$.
 - (a) Montrer que

$$\forall t \in \mathbb{R} \,,\, |t^{p-1}| \leqslant |t|^p + 1$$

- (b) En déduire que f admet un moment d'ordre p-1 puis que f admet des moments aux ordres $1, 2, \ldots, p$.
- (c) Montrer que \widehat{f} est de classe \mathcal{C}^p et exprimer $(\widehat{f})^{(i)}$ pour $0 \leq i \leq p$.
- 4. Soit f une fonction intégrable sur \mathbb{R} , paire (respectivement impaire). Que peut-on dire de \widehat{f} ?
- 5. Soit f une fonction intégrable sur \mathbb{R} , a un réel. Montrer que $f_a:t\mapsto f(a+t)$ est aussi intégrable sur \mathbb{R} et que

$$\forall \nu \in \mathbb{R}, \, \widehat{f}_a(\nu) = e^{2i\pi a\nu} \widehat{f}(\nu).$$

6. Soit f une fonction de classe C^1 , intégrable sur \mathbb{R} , de limite 0 en $-\infty$ et $+\infty$. Montrer que l'on peut définir \widehat{f}' sur \mathbb{R} et que

$$\forall \nu \in \mathbb{R} \,, \, \widehat{(f')}(\nu) = 2i\pi\nu \hat{f}(\nu).$$

7. Soit $\nu_0 \in \mathbb{R}^+$, on considère la fonction f définie par

$$f(t) = \begin{cases} e^{2i\pi\nu_0 t} & \text{si } t \in \left[-\frac{\tau}{2}, \frac{\tau}{2}\right] \\ 0 & \text{sinon} \end{cases}$$

La fonction complexe f représente un paquet d'onde sinusoïdale (durée finie) L'analyse de Fourier classique des fonctions périodiques ne peut-être utilisée ici. La transformée de Fourier

va permettre d'analyser le spectre d'un tel signal. Pour cet exemple, la fréquence qui doit être mis en évidence est ν_0 . Montrer que

$$\widehat{f}(\nu) = \tau \operatorname{sinc}(\pi \tau (\nu - \nu_0))$$

où sinc représente la fonction sinus cardinale, prolongement continue de $x \mapsto \frac{\sin x}{x}$. Représenter la fonction \hat{f} . Quelle fréquence est mise en évidence?

8. Étudier de même la transformée de Fourier de la fonction

$$f(t) = \begin{cases} 1 & \text{si } t \in \left[-\frac{\tau}{2}, \frac{\tau}{2} \right] \\ 0 & \text{sinon} \end{cases}$$

Représenter la fonction \hat{f} . Quelle est la fréquence mise en évidence?

9. On pose F définie par

$$F(x) = \int_{-\infty}^{+\infty} e^{-2i\pi xt} e^{-t^2} dt$$

transformée de Fourier de la fonction de Gauss $t \mapsto e^{-t^2}$.

(a) Montrer que la fonction $t\mapsto \mathrm{e}^{-t^2}$ est intégrable sur $\mathbb R.$ On admettra pour la suite que

$$\int_{-\infty}^{+\infty} e^{-t^2} dt = \sqrt{\pi}.$$

- (b) Montrer que la fonction F définie une fonction continue sur \mathbb{R} .
- (c) Montrer que la fonction F est de classe \mathcal{C}^1 sur \mathbb{R} et montrer que

$$\forall x \in \mathbb{R}, F'(x) = -2i\pi \int_{-\infty}^{+\infty} t e^{-2i\pi xt} e^{-t^2} dt$$

(d) Montrer à l'aide d'une intégration par partie que l'on justifiera soigneusement que

$$\forall x \in \mathbb{R}, F'(x) = -2\pi^2 x F(x)$$

On rappelle que les solutions de l'équation différentielle

$$y' + a(x)y = 0$$

où a est une fonction continue sur un intervalle I sont les fonctions

$$x \mapsto \lambda e^{-A(x)}$$

où A désigne une primitive de a sur I et λ un scalaire.

(e) Déterminer F(x) pour tout x réel. Conclusion?

Devoir n°6: correction

1. Soit $\nu \in \mathbb{R}$, nous avons pour tout t réel,

$$\left| e^{-2i\pi t\nu} f(t) \right| \leqslant |f(t)|$$

Ainsi puisque f est intégrable sur \mathbb{R} , on en déduit que

$$t \mapsto e^{-2i\pi\nu t} f(t)$$

l'est aussi et ainsi on peut définir $\hat{f}(\nu)$.

La fonction \hat{f} est donc définie sur \mathbb{R} .

2. On pose

$$g(\nu, t) = e^{-2i\pi\nu t} f(t)$$

sur $\mathbb{R} \times \mathbb{R}$.

- Pour tout ν , $t \mapsto g(\nu, t)$ est continue par morceaux
- Pour tout t réel, $\nu \mapsto g(\nu, t)$ est continue sur \mathbb{R}
- Pour tout t réel, ν réel, on a

$$\left| e^{-2i\pi t\nu} f(t) \right| \leqslant |f(t)| = \varphi(t)$$

avec φ continue par morceaux et intégrable.

Ainsi d'après le théorème de continuité des intégrales à paramètre, la transformée de Fourier \widehat{f} de f est continue sur \mathbb{R} .

3. (a) Si $|t| \ge 1$, on a

$$|t|^{p-1} \leqslant |t|^p \leqslant |t|^p + 1$$

Si $|t| \leq 1$, on a

$$|t|^{p-1} \leqslant 1 \leqslant |t|^p + 1$$

(b) On a alors

$$|t^{p-1}f(t)|\leqslant |t^pf(t)|+|f(t)|$$

et ainsi comme f est intégrable et admet un moment d'ordre p, on a $t \mapsto t^{p-1}f(t)$ intégrable par comparaison et ainsi f admet un moment d'ordre p-1.

Par récurrence descendante, on en déduit alors que f admet des moments aux ordres p, $p-1, p-2, \ldots, 2, 1$.

- (c) Vérifions les hypothèses du théorème de classe \mathcal{C}^p pour les intégrales à paramètre.
 - Pour tout ν de \mathbb{R} , $t \mapsto g(\nu, t)$ est continue par morceaux et intégrable.
 - Pour tout t de \mathbb{R} , $\nu \mapsto g(\nu, t)$ est de classe \mathcal{C}^p et on a pour tout j entre 1 et p:

$$\frac{\partial^{j} g}{\partial \nu^{j}}(\nu, t) = (-2i\pi t)^{j} e^{-2i\pi\nu t} f(t)$$

- Pour tout ν de \mathbb{R} , pour tout j entre 1 et $p, t \mapsto \frac{\partial^j g}{\partial \nu^j}(\nu, t)$ est continue par morceaux.
- Pour tout ν de \mathbb{R} , pour tout j entre 1 et p, on a

$$\left| \frac{\partial^j g}{\partial \nu^j}(\nu, t) \right| = |t^j f(t)| = \varphi_j(t)$$

avec φ_i continue par morceaux et intégrable d'après la question précédente.

Ainsi la transformée de Fourier \hat{f} est de classe \mathcal{C}^p et on a pour tout j entre 0 et p

$$\widehat{f}^{(j)}(\nu) = \int_{-\infty}^{+\infty} (-2i\pi t)^j e^{-2i\pi\nu t} f(t) dt$$

4. Soit $\nu \in \mathbb{R}$, on a en effectuant le changement de variable s = -t, de classe \mathcal{C}^1 bijectif décroissant (les intégrales convergent donc) de \mathbb{R} sur \mathbb{R} , ds = -dt,

$$\widehat{f}(-\nu) = \int_{-\infty}^{+\infty} e^{-2i\pi(-\nu)t} f(t) dt$$

$$= -\int_{-\infty}^{+\infty} e^{-2i\pi\nu s} f(-s)(-ds)$$

$$= \int_{-\infty}^{+\infty} e^{-2i\pi\nu s} f(-s) ds$$

Si f paire, on a donc $\widehat{f}(-\nu) = \widehat{f}(\nu)$ et donc \widehat{f} paire.

Si f impaire, on a donc $\widehat{f}(-\nu) = -\widehat{f}(\nu)$ et donc \widehat{f} impaire.

5. La fonction f_a est continue par morceaux. Le changement de variable s=a+t, donne vu la convergence,

$$\int_{-\infty}^{+\infty} |f(s)| ds = \int_{-\infty}^{+\infty} |f(a+t)| dt$$

et ainsi f_a est intégrable sur \mathbb{R} . On a avec le même changement de variable

$$\widehat{f}_a(\nu) = \int_{-\infty}^{+\infty} e^{-2i\pi\nu t} f_a(t) dt$$

$$= \int_{-\infty}^{+\infty} e^{-2i\pi\nu t} f(a+t) dt$$

$$= \int_{-\infty}^{+\infty} e^{-2i\pi\nu t} f(s) ds$$

$$= e^{2i\pi\nu a} \int_{-\infty}^{+\infty} e^{-2i\pi\nu s} f(s) ds$$

$$= e^{2i\pi\nu a} \widehat{f}(\nu).$$

6. Soit $\nu \in \mathbb{R}$, on envisage l'intégrale généralisée

$$\int_{-\infty}^{+\infty} e^{-2i\pi\nu t} f'(t) dt$$

En posant $g(t) = e^{-2i\pi\nu t}$, f et g de classe C^1 ,

$$f(t)g(t) = e^{-2i\pi\nu t}f(t)$$

qui admet comme limites 0 en $-\infty$ et $+\infty$ (exponentielle imaginaire de module 1), par intégration par partie généralisée, l'intégrale est de même nature que

$$\int_{-\infty}^{+\infty} -2i\pi\nu e^{-2i\pi\nu t} f(t) dt = -2i\pi\nu \widehat{f}(\nu)$$

convergente donc, et on a

$$\widehat{f}'(\mu) = \int_{-\infty}^{+\infty} e^{-2i\pi\nu t} f'(t) dt = 2i\pi\nu \widehat{f}(\nu)$$

7. Soit $\nu_0 \in \mathbb{R}^+$,

$$\hat{f}(\nu) = \int_{-\infty}^{+\infty} e^{-2i\pi\nu t} f(t) dt = \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} e^{-2i\pi\nu t} e^{2i\pi\nu_0 t} dt$$
$$= \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} e^{2i\pi(\nu_0 - \nu)t} dt$$

Pour $\nu = \nu_0$, on obtient $\hat{f}(\nu_0) = \tau$, et pour $\nu \neq \nu_0$,

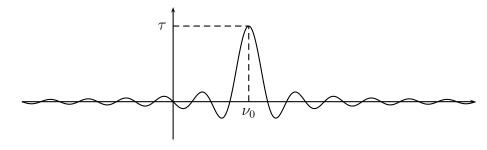
$$\hat{f}(\nu) = \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} e^{2i\pi(\nu_0 - \nu)t} dt = \left[\frac{1}{2i\pi(\nu_0 - \nu)} e^{2i\pi(\nu_0 - \nu)t} \right]_{-\frac{\tau}{2}}^{\frac{\tau}{2}}$$

$$= \frac{1}{2i\pi(\nu_0 - \nu)} \left[e^{i\pi(\nu_0 - \nu)\tau} - e^{-i\pi(\nu_0 - \nu)\tau} \right]$$

$$= \frac{\sin(\pi(\nu_0 - \nu)\tau)}{\pi(\nu_0 - \nu)} = \frac{\sin(\pi(\nu - \nu_0)\tau)}{\pi(\nu_0 - \nu_0)}$$

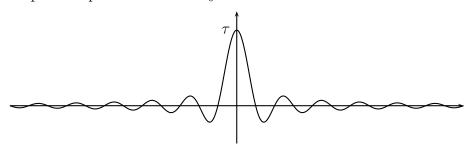
$$= \tau \operatorname{sinc}(\pi\tau(\nu - \nu_0))$$

Connaissant le graphe de la fonction sinus cardinal, on en déduit le graphe de \hat{f} : recentrage en ν_0 (translation selon l'axe des abscisses) et homothétie de τ selon les ordonnées :



ce qui met en évidence la fréquence ν_0 .

8. On applique la question précédente avec $\nu_0 = 0$.



ce qui met en évidence la fréquence 0, ce qui paraît logique pour un signal constant, même constant uniquement sur une durée donnée.

9. (a) La fonction de Gauss $t\mapsto \mathrm{e}^{-t^2}$ est continue sur $\mathbb{R},$ et on a

$$^{2}e^{-t^{2}} \underset{t \to +\infty}{\longrightarrow} 0 \qquad e^{-t^{2}} = o_{\pm \infty} \left(\frac{1}{t^{2}}\right)$$

ce qui assure l'intégrabilité en $\pm \infty$. Ainsi la fonction de Gauss est intégrable sur \mathbb{R} .

(b) Ainsi, par la question Q1, F est bien définie sur \mathbb{R} , et par la question Q2, elle est continue sur \mathbb{R} . C'est la transformée de Fourier de la fonction de Gauss.

5

(c) La fonction $t \mapsto t e^{-t^2}$ est intégrable sur \mathbb{R} (même méthode que pour $t \mapsto e^{-t^2}$), et ainsi par la question Q3, F est de classe \mathcal{C}^1 sur \mathbb{R} et on a

$$F'(x) = -2i\pi \int_{-\infty}^{+\infty} t e^{-2i\pi xt} e^{-t^2} dt.$$

par dérivation sous le signe intégral licite.

(d) On procède par intégration par parties, en remarquant que $(e^{-t^2})' = -2te^{-t^2}$: on pose $f'(t) = -2te^{-t^2}$, $f(t) = e^{-t^2}$, $g(t) = e^{-2i\pi xt}$, $g'(t) = -2i\pi xe^{-2i\pi xt}$, avec

$$f(t)g(t) = -2i\pi x e^{-2i\pi xt} e^{-t^2} \underset{t \to \pm \infty}{\longrightarrow} 0$$

et ainsi (convergence de l'intégrale initiale)

$$F'(x) = i\pi \int_{-\infty}^{+\infty} e^{-2i\pi xt} (-2t) e^{-t^2} dt = -(i\pi)(-2i\pi x) \int_{-\infty}^{+\infty} e^{-2i\pi xt} e^{-t^2} dt = -2\pi^2 x F(x)$$

(e) On pose $a(x) = 2\pi^2 x$, $A(x) = \pi^2 x^2$, et donc

$$F(x) = F(0)e^{-A(x)} = F(0)e^{-\pi^2 x^2}$$

et comme $F(0) = \int_{-\infty}^{+\infty} \mathrm{e}^{-t^2} \mathrm{d}t = \sqrt{\pi}$ on obtient finalement que

$$F(x) = \sqrt{\pi} e^{-\pi^2 x^2}$$

et ainsi F est aussi une fonction de type Gaussienne réelle : la transformée de Fourier d'une Gaussienne est une Gaussienne.