Devoir n°1

Exercice: dynamique unidimensionnelle

On considère la suite de Fibonacci (a_n) défnie par $a_0 = a_1 = 1$ et la relation de récurrence

$$\forall n \geqslant 2, \, a_n = a_{n-1} + a_{n-2}$$

- 1. Calculer a_n pour $n = 0, \dots, 10$.
- 2. Programmation récursive.
 - (a) La fonction récursive est naturelle à écrire :

```
def a(n):
if n == 0 or n == 1:
    return 1
return a(n-1) + a(n-2)
```

Si $n \in \mathbb{N}$, on note U(n) le nombre d'appels nécessaires pour calculer a_n .

On a U(0) = 1 et U(1) = 1 puisque l'on obtient la valeur de a_0 et a_1 en n'effectuant qu'un seul appel initial, la valeur étant renvoyée dès le premier test d'arrêt.

(b) Montrer que si $n \ge 2$, on a

$$U_n = 1 + U_{n-1} + U_{n-2}$$

On pose $V_n = U_n + 1$. Vérifier que $V_n = V_{n-1} + V_{n-2}$. Remarques ? En déduire que

$$\forall n \in \mathbb{N}, U(n) = \frac{1}{\sqrt{5}} \left[\left(\frac{1 + \sqrt{5}}{2} \right)^{n+1} - \left(\frac{1 - \sqrt{5}}{2} \right)^{n+1} \right] - 1$$

Montrer alors que

$$U(n) \sim \frac{2}{\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right)^{n+1}$$

Quelle est la nature de la complexité en appels récursifs ? Conclusion ?

3. Programmation dynamique avec mémorisation partielle.

Pour calculer a_n , nous avons seulement besoin de connaître les deux termes précédent. Compléter (et vérifier le fonctionnement) la fonction suivante qui programme cette idée :

```
def a_dyn(n):
x, y = 1, 1  # représentent a_0 et a_1
for i in range(?):
    x, y = y, x + y  # affectation en parallèle
return ?
```

Quelle est la complexité d'une telle fonction ?

À votre avis, peut-on l'amméliorer?

4. Programmation dynamique avec mémorisation totale.

On considère la suite de Catalan définie par $C_0=1$ et la relation de récurrence

$$\forall n \in \mathbb{N}^*, C_n = \sum_{k=0}^{n-1} C_k C_{n-1-k}$$

- (a) Calculer C_1 , C_2 , C_3 et C_4 .
- (b) Sachant que $C_n \sim \frac{4^n}{\sqrt{\pi}n^{3/2}}$, quelle sera la complexité en appels récursifs d'une programmation récursive ?
- (c) On propose alors une programmation dynamique avec mémorisation. Compléter alors la fonction suivante qui programme le calcul de C_n de façon dynamique :

```
def C_dyn(n):
C = [0]*(n+1)
C[0] = 1
for i in range(1, n+1):
    s = 0
    for k in range(?):
        s += C[?]*C[?]
    C[?] = ?
```

Déterminer la complexité de cette fonction et conclure.

Exercice: dynamique bidimensionnelle

Un élève de CPGE souhaite gagner de l'argent de poche. Il peut y consacrer un maximum de H heures par semaine. Il a repéré n emplois. Mais le salaire offert pour chaque emplois n'est pas proportionnel au nombre d'heure travaillées. Par exemple, la tableau suivant agrège les salaires s(h,j) de l'emploi j si on travaille h heures (T=4,n=4):

$\begin{array}{c} \text{emploi}: j \\ \text{heures de travail}: h \end{array}$	1	2	3	4
0	0	0	0	0
1	26	24	16	20
2	38	34	32	34
3	47	42	48	48
4	50	49	64	52

1. La méthode gloutonne est directe (et donc pas très intéressante à programmer ici), elle consiste sur l'exemple à choisir les 4 heures qui payent le plus, soit l'emploi 3. Ce choix est-il pertinent ?

2. On note P(h, j) le salaire maximum perçu possible en travaillant, de façon donc optimale, h heures parmi les emplois de 1 à i.

On pose aussi P(0, j) = 0 si $1 \le j \le n$.

- (a) Quelle valeur de P(h, j) doit-on calculer pour résoudre le problème ?
- (b) Que vaut P(h, 1) pour $0 \le h \le H$?
- (c) Soit $2 \le j \le n$. Montrer que si on travaille h heures parmi les emplois de 1 à j de façon optimisée, alors en notant k le nombre d'heures travaillées parmi les emplois parmi 1 à j-1, le salaire de ces k heures parmi les emplois de 1 à j-1 est aussi optimisé.
- (d) En déduire la formule si $2 \le j \le n$, $0 \le h \le H$,

$$P(h,j) = \max_{k=0\cdots h} P(k,j-1) + s(h-k,j)$$

- (e) Oubliant les problèmes dus à la récursivité, on écrit une fonction récursive permettant d'appliquer la formule de récursivité ci-dessus.
 - i. Compléter et commenter la fonction suivante, pour quelle fonctionne avec s défini par

```
\mathbf{s} = [[0,0,0,0],[26,24,16,20], [38,34,32,34], [47,42,48,48], [50,49,64,52]]
```

c'est à dire que les emplois sont numérotés 0 à 3.

```
def p_rec(s, h, j):
if j == 0:
    return ?
m = s[0][j] # k=0
for k in range(1, h+1):
    p = p_rec(s, ?, j-1) + s[?][?]
    if p > m :
        m = ?
return ?
```

Pour l'exemple, on exécute donc

```
p_rec(s, 4, 3)
```

pour obtenir le résultat.

ii. Pour évaluer la complexité de cette fonction récursive, on note C(h, j + 1) le nombre d'appels à la fonction récursive pour calculer P(h, j). Nous avons

$$C(h,1) = 1$$
 $C(0,j) = 1$

Montrer que si $j \ge 2$,

$$C(h,j) = 1 + \sum_{k=1}^{h} C(k,j-1) = \sum_{k=0}^{h} C(k,j-1)$$

En déduire que :

$$C(T,2) = T+1$$
 $C(T,3) = \frac{(T+2)(T+2)}{2}$ $C(T,4) = \frac{(T+1)(T+2)(T+3)}{6}$

On conjecture alors la formule (si n = 1, produit vide égal à 1)

$$C(T,n) = \frac{(T+1)\cdots(T+n-1)}{(n-1)!} = \binom{T+n-1}{T} = \binom{T+n-1}{n-1}$$

et une preuve par récurrence sur n conduit, pour prouver l'héridité, à montrer la formule

$$\sum_{k=0}^{T} {k+n-1 \choose n-1} = {T+n \choose n}$$

- iii. Montrer que la formule ci-dessus est vraie, par récurrence sur T.
- (f) La méthode par récursitié n'est pas efficace. Nous procédons alors par programmation dynamique, à l'aide d'un tableau bi-dimensionnel. Compléter et commenter la fonction suivante, qui renvoie le salaire maximisé :

(g) Appliquer la méthode à l'exemple. On obtiendra le tableau p suivant qu'il faudra établir complètement :

$\begin{array}{c} \text{emploi}: j \\ \text{heures de travail}: h \end{array}$	1	2	3	4
0	0	0	0	0
1	26	26	26	26
2	?	?	?	?
3	?	?	?	?
4	50	?	?	86

- (h) Déterminer la complexité de la fonction p_dyn . On considèrera que le corps de la boucle en k est à temps constant.
- (i) Peut-on à l'aide du tableau p déterminer les emplois avec leurs nombres d'heures qui permettent d'optimiser le salaire ?

Que faut-il ajouter dans la fonction p_dyn pour pouvoir effectuer un backtracing?

Compléter la fonction pour qu'elle renvoie la liste des emplois avec le nombre d'heures pour optimiser le salaire.

Appliquer la méthode à l'exemple.

