
Devoir surveillé Lycée Jean Perrin
PC

Devoir surveillé n◦2
3 heures

Cours

On considère les séries numériques
∑
n⩾1

un et
∑
n⩾1

vn avec

un =
(−1)n√

n
vn =

(−1)n√
n

+
1

n

1. Montrer que un ∼ vn.
2. Montrer que

∑
un est convergente ; que dire de la série

∑
vn ? Conclusion ?

Vrai – Faux

Parmi les affirmations suivantes lesquelles sont vraies, lesquelles sont fausses et pourquoi ?
1. Lorsque la suite (un) converge vers 0, la série

∑
un est convergente.

2. La série
∑

1
n!

est convergente.
3. Lorsque la série

∑
un est convergente, la série

∑
u2
n aussi.

4. Soit q ∈ C, la série
∑

q2n converge si et seulement si |q| < 1.
5. La série

∑ (−1)n

n+en est divergente.
6. Si une série ne converge pas absolument, alors elle ne converge pas.
7. La série produit de Cauchy de la série

∑
n⩾0

1 avec la série
∑
n⩾0

e−n est convergente.

Exercice

Pour tout a > 0, on considère la série numérique∑
n⩾0

(−1)n

n+ a

1. Soit a > 0. Démontrer que la série numérique
∑
n⩾0

(−1)n

n+ a
est convergente.

Est-elle absolument convergente ?

On pose ainsi si a > 0,

f(a) =
+∞∑
n=0

(−1)n

n+ a

On pose aussi les sommes partielles et restes d’ordre n :

Sn(a) =
n∑

k=0

(−1)k

k + a
Rn(a) =

+∞∑
k=n+1

(−1)k

k + a
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2. Quel est le signe de Rn(a) ? Justifier que l’on a

|Rn(a)| ⩽
1

n+ 1 + a

3. En déduire que la série numérique ∑
n⩾0

einθ
n+ 1

Rn(a)

est convergente pour tout a > 0 et θ ∈ R.
4. Soit a > 0. Montrer que l’on a |f(a)| ⩽ 1

a
. En déduire la limite de f en +∞.

Quel est le signe de f(a) ?
5. Soit a > 0 et h de sorte que a+ h > 0. Montrer que

f(a+ h)− f(a)

h
=

+∞∑
n=0

(−1)n+1

(n+ a)(n+ a+ h)

puis en justifiant l’existence des sommes infinies si nécessaire que

f(a+ h)− f(a)

h
−

+∞∑
n=0

(−1)n+1

(n+ a)2
= h

+∞∑
n=0

(−1)n

(n+ a)2(n+ a+ h)

En déduire que ∣∣∣∣∣f(a+ h)− f(a)

h
−

+∞∑
n=0

(−1)n+1

(n+ a)2

∣∣∣∣∣ ⩽ h

a2(a+ h)

6. Montrer alors que f est dérivable sur ]0,+∞[ et que l’on a

f ′(a) =
+∞∑
n=0

(−1)n+1

(n+ a)2

et en déduire le signe de f ′(a). Conclusion ?
7. Soit a > 0, on écrit f(a) = 1

a
+R0(a). Justifier que f tend vers +∞ lorsque a tend vers 0+.

8. Construire le graphe de la fonction f en tenant compte des propriétés établies précédement.

Problème

Soit f : [1,+∞[ une fonction continue, positive et décroissante, de limite nulle en +∞.

1 2 n n+ 1

f(1)
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On se propose de démontrer cette remarque géométrique : si, on accumule les erreurs commises en
remplaçant les surfaces associées à la courbe par les surfaces associées aux rectangles situés au-dessus
de la courbe, dans le premier rectangle entre 1 et 2 (par exemple), on constate que l’on obtient une
suite croissante, majorée par la surface du premier rectangle soit f(1), qui donc sera convergente
vers une constante notée γf , sans autre condition (la convergence ou non de la série

∑
f(n) étant

visiblement sans influence).

1 2 n n+ 1

f(1)

On pose (erreur élémentaire)

an = f(n)−
∫ n+1

n

f(x)dx

et (somme des erreurs élémentaires)

An =
n∑

k=1

ak

1. Montrer que pour tout entier k ⩾ 1,

f(k + 1) ⩽
∫ k+1

k

f(x)dx ⩽ f(k)

2. En déduire que pour tout entier k non nul, on a

0 ⩽ ak ⩽ f(k)− f(k + 1)

3. En déduire que
0 ⩽ An ⩽ f(1)− f(n+ 1) ⩽ f(1)

et que la suite (An)n⩾1 est bornée.
4. Montrer que la suite (An)n∈N∗ est strictement croissante.
5. Montrer que la suite (An) converge vers une limite que l’on notera γf .
6. Montrer que si n ⩾ 2,

An−1 = f(1) + · · ·+ f(n− 1)−
∫ n

1

f(x)dx

7. En déduire que
n∑

k=1

f(k) =

∫ n

1

f(x)dx+ γf + o(1)
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8. En déduire que la série
∑

f(n) converge si et seulement si la suite
(∫ n

1

f(x)dx
)

n∈N∗
converge

et que si l’on note dans ce cas
∫ +∞

1

f(x)dx cette limite, on a

+∞∑
n=1

f(n) =

∫ +∞

1

f(x)dx+ γf

9. En déduire qu’il existe une constante 1 γ réelle telle que

Hn = 1 +
1

2
+ · · · 1

n
= ln(n) + γ + o(1)

Montrer que 1− ln 2 < γ et que Hn ∼ ln(n).
10. En déduire de même que si α > 0, α 6= 1, il existe une constante Cα telle que

n∑
k=1

1

kα
=

1

1− α

1

nα−1
+ Cα + o(1)

Que peut-on en déduire si α > 1 ? si α ∈]0, 1[ ? (on suppose non connu les résultats sur les
séries de Riemann).

11. Soit α > 0, on pose

Sn =
n∑

k=1

(−1)k−1

kα
Tn =

n∑
k=1

1

kα

(a) Montrer que si n ⩾ 1, on a
S2n = T2n −

1

2α−1
Tn

(b) Pour α = 1, en remarquant que Tn = Hn, montrer que

S2n = ln(2n)− ln(n) + o(1)

et conclure que (S2n) converge vers ln(2).
Montrer que (S2n+1) converge aussi vers ln(2) et conclure.

(c) Pour α 6= 1, montrer que

S2n =

(
1− 1

2α−1

)
Cα + o(1)

En déduire que (Sn) converge vers Aα =
(
1− 1

2α−1

)
Cα.

(d) Justifier que si α > 1, on a

+∞∑
n=1

(−1)n−1

nα
=

(
1− 1

2α−1

) +∞∑
n=1

1

nα
.

1. il s’agit de la constante γ d’Euler-Mascheroni
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Devoir surveillé 2 : correction Lycée Jean Perrin
PC

Cours
On considère les séries numériques

∑
n⩾1

un et
∑
n⩾1

vn avec

un =
(−1)n√

n
vn =

(−1)n√
n

+
1

n

1. On a
vn − un =

1

n
= o

(
1√
n

)
= o(un)

et ainsi un ∼ vn. On peut aussi montrer que vn
un

−→ 1 :

vn
un

= 1 +
(−1)n√

n
−→ 1

2. La série
∑

un converge, puisqu’elle satisfait les conditions du critère spécial des séries alternées
de Leibniz. Par contre, si

∑
vn était convergente, on aurait

∑
vn−un qui le serait aussi, c’est

la série
∑ 1

n
qui serait convergente, ce qui n’est pas le cas. Ainsi la série

∑
vn est divergente.

Ainsi, pour des séries dont les termes ne sont pas de signe constant (à partir d’aucun rang),
l’équivalence n’est pas comptatible avec la convergence.

Vrai – Faux
Parmi les affirmations suivantes lesquelles sont vraies, lesquelles sont fausses et pourquoi ?

1. Lorsque la suite (un) converge vers 0, la série
∑

un est convergente. FAUX, avec par exemple∑
1
n
.

2. La série
∑

1
n!

est convergente. VRAI puisque par exemple, si n ⩾ 2, on a 0 ⩽ 1
n!

⩽ 1
n(n−1)

∼ 1
n2 .

3. Lorsque la série
∑

un est convergente, la série
∑

u2
n aussi. FAUX avec

∑
n⩾1

(−1)n−1

√
n

.

4. Soit q ∈ C, la série
∑

q2n converge si et seulement si |q| < 1. VRAI puisque q2n = (q2)n et
que |q2| < 1 ⇐⇒ |q| < 1.

5. La série
∑ (−1)n

n+en est divergente. FAUX, on a∣∣∣∣ (−1)n

n+ en

∣∣∣∣ ⩽ 1

en = e−n

et la série géométrique
∑

e−n est convergente. Nous avons donc la convergence absolue, donc
la convergence. On peut aussi procéder avec le critère spécial des séries alternées.

6. Si une série ne converge pas absolument, alors elle ne converge pas. FAUX, avec
∑
n⩾1

(−1)n−1

n
.

7. La série produit de Cauchy de la série
∑
n⩾0

1 avec la série
∑
n⩾0

e−n est convergente. FAUX

puisque le produit de Cauchy est
∑
n⩾0

cn avec

cn =
n∑

k=0

e−k × 1 =
1− e−(n+1)

1− e−1
−→ 1

1− e−1
6= 0
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Exercice

1. Soit a > 0. La série numérique
∑
n⩾0

(−1)n

n+ a
est alternée, et son terme général, en valeur absolue,

qui est 1
n+a

décroit vers 0. Ainsi d’après le critère spécial des séries alternées, la série est bien
convergente.
Comme on a

1

n+ a
∼ 1

n
> 0

et sachant que la série de Riemann (série harmonique)
∑

1
n

diverge, par comparaison par

équivalence (termes positifs) la série
∑ 1

n+ a
diverge et donc la série

∑
n⩾0

(−1)n

n+ a
n’est pas

absolument convergente.
2. De plus, d’après le critère spécial des séries alternées, le signe de Rn(a) est celui du son permier

terme (−1)n

n+1+a
, et on a aussi la majoration en valeur absolue par son premier terme, soit

|Rn(a)| ⩽
1

n+ 1 + a

3. Pour tout a > 0 et θ ∈ R, on a∣∣∣∣ einθ
n+ 1

Rn(a)

∣∣∣∣ ⩽ 1

(n+ 1)(n+ 1 + a)
∼ 1

n2

] et on en déduit par comparaison licite que la série numérique∑
n⩾0

einθ
n+ 1

Rn(a)

est absluement convergente donc convergente.
4. Soit a > 0. Toujours avec la majoration spéciale des séries alternée, on a

|f(a)| =

∣∣∣∣∣
+∞∑
n=0

(−1)n

n+ a

∣∣∣∣∣ ⩽ 1

a

On en déduit que f tend vers 0 en +∞.

De plus, le signe de f(a) est celui du permier terme 1
a
, donc positif.

5. Soit a > 0 et h non nul de sorte que a+ h > 0. On a

f(a+ h)− f(a)

h
=

1

h

[
+∞∑
n=0

(−1)n

n+ a+ h
−

+∞∑
n=0

(−1)n

n+ a

]

=
1

h

+∞∑
n=0

(−1)n[n+ a− (n+ a+ h)]

(n+ a+ h)(n+ a)

=
+∞∑
n=0

(−1)n+1

(n+ a)(n+ a+ h)

Par le critère spécial des séries alternées, la série
+∞∑
n=0

(−1)n+1

(n+ a)2

6



converge, et ainsi on a

f(a+ h)− f(a)

h
−

+∞∑
n=0

(−1)n+1

(n+ a)2
=

+∞∑
n=0

(−1)n+1

(n+ a)(n+ a+ h)
−

+∞∑
n=0

(−1)n+1

(n+ a)2

= −
+∞∑
n=0

(−1)n+1

[
1

(n+ a)(n+ a+ h)
− 1

(n+ a)2

]

= h
+∞∑
n=0

(−1)n

(n+ a)2(n+ a+ h)

Ainsi en utilisant la majoration spéciale des séries alternées, licite ici, on majore par le premier
terme en valeur absolue∣∣∣∣∣f(a+ h)− f(a)

h
−

+∞∑
n=0

(−1)n+1

(n+ a)2

∣∣∣∣∣ ⩽ h

a2(a+ h)

6. On obtient alors que
f(a+ h)− f(a)

h
−

+∞∑
n=0

(−1)n+1

(n+ a)2
−→
h→0

0

ce qui signifie que f est dérivable en a avec f ′(a) =
+∞∑
n=0

(−1)n+1

(n+ a)2
. Ainsi f est dérivable sur

]0,+∞[ et que l’on a

f ′(a) =
+∞∑
n=0

(−1)n+1

(n+ a)2

Toujours avec le critère spécial des séries alternées, f ′(a) est du signe de − 1
a2

, et donc f ′ < 0
ce qui permet d’en déduire que la fonction f est strictement décroissante.

7. Soit a > 0, on écrit f(a) = 1
a
+R0(a) et comme on a la majoration spéciale

|R0(a)| =

∣∣∣∣∣
+∞∑
n=1

(−1)n

n+ a

∣∣∣∣∣ ⩽ 1

1 + a

on obtient que f tend vers +∞ lorsque a tend vers 0+.
8. En tenant compte des propriétés établies précédement, on obtient le graphe de la fonction f

(allure) :
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Problème
1. Si f est décroissante, soit x ∈ [k, k + 1],

f(k + 1) ⩽ f(x) ⩽ f(k)

que l’on intègre sur [k, k + 1]

f(k + 1)× 1 ⩽
∫ k+

k

f(x)dx ⩽ f(k)× 1.

2. Soit k un entier non nul, on a

f(k + 1) ⩽
∫ k+1

k

f(x)dx ⩽ f(k)

d’après la question précédente, d’où en retranchant f(k)

f(k + 1)− f(k) ⩽ −ak ⩽ 0

soit encore
0 ⩽ ak ⩽ f(k)− f(k + 1).

3. Ainsi par sommation, on obtient

0 ⩽
n∑

k=1

ak ⩽
n∑

k=1

(f(k)− f(k + 1))

soit encore par télescopage

0 ⩽ An ⩽ f(1)− f(n+ 1) ⩽ f(1).

Ainsi la suite (An)n⩾1 est bornée (minorée par 0 et majorée par f(1)).
4. Soit n ∈ N∗, on a

An+1 − An =
n+1∑
k=1

ak −
n∑

k=1

ak = an+1 ⩾ 0

Donc la suite (An)n∈N∗ est croissante.
5. La suite (An)n∈N∗ étant croissante et majorée, on en déduit par le théorème de convergence

monotone qu’elle converge, vers une limite que l’on note γf .
6. Soit n ⩾ 2, on a

An−1 =
n−1∑
k=1

ak =
n−1∑
k=1

[
f(k)−

∫ k+1

k

f(x)dx
]

=
n−1∑
k=1

f(k)−
n−1∑
k=1

∫ k+1

k

f(x)dx

= f(1) + · · ·+ f(n− 1)−
∫ n

1

f(x)dx

7. Ainsi on a
f(1) + · · ·+ f(n) = An−1 + f(n) +

∫ n

1

f(x)dx

et comme (An−1) converge vers γf , et (f(n)) vers 0, on a

An−1 = γf + o(1) f(n) = o(1)

et ainsi
n∑

k=1

f(k) =

∫ n

1

f(x)dx+ γf + o(1)
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8. Ainsi si la suite
(∫ n

1

f(x)dx
)

n∈N∗
converge, comme o(1) converge vers 0, on obtient que la

suite
(

n∑
k=1

f(k)

)
converge et on a donc

+∞∑
k=1

f(k) = lim
nto+∞

∫ n

1

f(x)dx+ γf

Réciproquement, si la suite (
∑n

k=1 f(k)) converge, on a la suite
(∫ n

1

f(x)dx
)

n∈N∗
qui converge

vers
n∑

k=1

f(k)− γf .

Ainsi la série
∑

f(n) converge si et seulement si la suite
(∫ n

1

f(x)dx
)

n∈N∗
converge et on a

dans ce cas

+∞∑
k=1

f(k) = lim
n→+∞

∫ n

1

f(x)dx+ γf

9. On considère la fonction x 7→ 1
x

positive continue décroissante vers 0 sur [1,+∞[. D’après la
question 7, il existe une constant γ de sorte que

n∑
k=1

1

k
=

∫ n

1

1

x
dx︸ ︷︷ ︸

=ln(n)

+γ + o(1)

Donc il existe une constante 2 γ réelle telle que

Hn = 1 +
1

2
+ · · · 1

n
= ln(n) + γ + o(1)

Comme la suite (An)n∈N∗ est croissante vers γ, et même en fait strictement croissante puisque
on peut justifier que ak > 0, on a A1 = a1 = 1−

∫ 2

1
1
x
dx = 1− ln 2 < γ.

10. Si α > 0, α 6= 1, la fonction x 7→ 1
xα est positive décroissante vers 0, et on a∫ n

1

1

xα
dx =

1

1− α

1

nα−1
− 1

1− α

il existe une constante γα telle que
n∑

k=1

1

kα
=

1

1− α

1

nα−1
− 1

1− α
+ γα + o(1)

et donc il existe une constante Cα telle que
n∑

k=1

1

kα
=

1

1− α

1

nα−1
+ Cα + o(1)

Lorsque α > 1, comme 1
1−α

1
nα−1 −→ 0, on en déduit la convergence de la série de Riemann

avec
+∞∑
k=1

1

kα
= Cα

2. il s’agit de la constante γ d’Euler-Mascheroni
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Par contre, si α ∈]0, 1[, comme 1
1−α

1
nα−1 −→+∞, on en déduit la divergence de la série de

Riemann avec en plus
n∑

k=1

1

kα
∼ n1−α

1− α

11. Soit α > 0, on pose

Sn =
n∑

k=1

(−1)k−1

kα
Tn =

n∑
k=1

1

kα

(a) Soit n ⩾ 1, on a en séparant les termes positifs des termes négatifs

S2n =
2n∑
k=1

(−1)k−1

kα
=

n∑
k=0

1

(2k + 1)α
−

n∑
k=1

1

(2k)α

=
2n∑
k=1

1

kα
− 2

n∑
k=1

1

(2k)α

= T2n −
1

2α−1
Tn

(b) Pour α = 1, on remarque que Tn = Hn, on a

S2n = H2n −Hn = ln(2n) + γ − ln(n)− γ + o(1) = ln(2n)− ln(n) + o(1) = ln(2) + o(1)

Ainsi (S2n) converge vers ln(2).

Comme S2n+1 = S2n+
1

(2n+1)α
, (S2n+1) converge aussi vers ln(2) et ainsi par théorème (Sn)

converge aussi vers ln(2). On a

+∞∑
n=1

(−1)n−1

n
= ln(2).

(somme alternée des inverses des entiers)
(c) Soit α 6= 1, on a alors

S2n =
1

1− α

1

(2n)α−1
+ Cα − 1

2α−1

[
1

1− α

1

nα−1
− Cα

]
+ o(1)

et ainsi
S2n =

(
1− 1

2α−1

)
Cα + o(1)

On en déduit que (S2n) converge vers Aα =
(
1− 1

2α−1

)
Cα puis comme ci-dessus, que (Sn)

aussi.
(d) Dans le cas où α > 1, on obtient donc la relation entre la somme de Riemann et la somme

de Riemann alternée
+∞∑
n=1

(−1)n−1

nα
=

(
1− 1

2α−1

) +∞∑
n=1

1

nα
.
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