Devoir surveillé Lycée Jean Perrin
PC

Devoir surveillé n°2

3 heures

Cours

On considere les séries numériques E U, et g U, avec
n=>1 n=>1
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1. Montrer que u,, ~ v,.

2. Montrer que ) u, est convergente ; que dire de la série Y v, ? Conclusion ?

Vrai — Faux

Parmi les affirmations suivantes lesquelles sont vraies, lesquelles sont fausses et pourquoi ?

—_

. Lorsque la suite (u,) converge vers 0, la série Y u, est convergente.
. La série ) & est convergente.

L la séri t te, la séri 2 i
. Lorsque la série > u,, est convergente, la série Y u2 aussi.

. Soit g € C, la série Y ¢*" converge si et seulement si |g| < 1.

2
3
4
- (—1)" .
5. La série ) -+ est divergente.
6. Si une série ne converge pas absolument, alors elle ne converge pas.
7

. La série produit de Cauchy de la série Z 1 avec la série Z e " est convergente.
n=0 n=0
Exercice
Pour tout a > 0, on considere la série numérique

—1)"
ZE’LJr)a

n=0

(="

n—+a

1. Soit a > 0. Démontrer que la série numérique Z

n=>0

est convergente.

Est-elle absolument convergente ?

On pose ainsi si a > 0,

n=0

On pose aussi les sommes partielles et restes d’ordre n :

Sn(a):Z% Ra)= Y U




2. Quel est le signe de R, (a)? Justifier que l'on a

1
R,(a)| € ———
[ Fnla)] n+l4+a
3. En déduire que la série numérique
inf
e
> i@
=" +1

est convergente pour tout a > 0 et 6 € R.

4. Soit @ > 0. Montrer que I'on a |f(a)| < L. En déduire la limite de f en +oc.
Quel est le signe de f(a)?

5. Soit @ > 0 et h de sorte que a + h > 0. Montrer que

fla+h) =) 33 (!
(

h “(n+a)(n+a+h)

puis en justifiant 1’existence des sommes infinies si nécessaire que

f((l+h i’i n+1 "i’i (_1)11
“—~ (n+a)? no(n+a)2(n~|—a+h)
En déduire que
fla+ h X (=1)m ! h

M

S a2
o n+a (a+h)

6. Montrer alors que f est dérivable sur ]0, 400 et que 'on a

et en déduire le signe de f’(a). Conclusion ?
7. Soit a > 0, on écrit f(a) = £ + Ry(a). Justifier que f tend vers +oo lorsque a tend vers 0.

8. Construire le graphe de la fonction f en tenant compte des propriétés établies précédement.

Probléme

Soit f : [1,4o00] une fonction continue, positive et décroissante, de limite nulle en +o0.

A

Y

1 2 n n+1




On se propose de démontrer cette remarque géométrique : si, on accumule les erreurs commises en
remplacant les surfaces associées a la courbe par les surfaces associées aux rectangles situés au-dessus
de la courbe, dans le premier rectangle entre 1 et 2 (par exemple), on constate que ’on obtient une
suite croissante, majorée par la surface du premier rectangle soit f(1), qui donc sera convergente
vers une constante notée -y, sans autre condition (la convergence ou non de la série ) f(n) étant
visiblement sans influence).

A

Y

1 2 n n+1

On pose (erreur élémentaire)

et (somme des erreurs élémentaires)

1. Montrer que pour tout entier k£ > 1,
k41

flk+1) < f(x)dz < f(k)

k

2. En déduire que pour tout entier £ non nul, on a
0<ar < f(k)—flk+1)
3. En déduire que
0< A, < f(1) = fln+1) < f(1)
et que la suite (A,,),>1 est bornée.
4. Montrer que la suite (A, ),en+ est strictement croissante.

5. Montrer que la suite (A,,) converge vers une limite que 1'on notera ;.

6. Montrer que si n > 2,

7. En déduire que

3
3



8. En déduire que la série Z f(n) converge si et seulement si la suite ( / f (:L’)dx) converge
1 neN*

+0o0
et que si 'on note dans ce cas (x)dz cette limite, on a
1

+oo

> fn) = 1 (x)dz + 7y

9. En déduire qu’il existe une constante* v réelle telle que
1 1
Hn:1+§+-~ﬁzln(n)+y+o(1)

Montrer que 1 —In2 < 7 et que H, ~In(n).
10. En déduire de méme que si @ > 0, a # 1, il existe une constante C,, telle que

n

Que peut-on en déduire si « > 17 si @ €]0,1[7 (on suppose non connu les résultats sur les
séries de Riemann).

11. Soit a > 0, on pose

(1) =
S, = T, = —
ke ke
k=1 k=1
(a) Montrer que sin > 1, on a
1
SQn - TQn - FTn

(b) Pour o = 1, en remarquant que 7,, = H,,, montrer que
Son = 1In(2n) —In(n) 4+ o(1)

et conclure que (Ss,) converge vers In(2).
Montrer que (S3,41) converge aussi vers In(2) et conclure.

(c) Pour av # 1, montrer que

1
S2n = (1 — 2a—1> Ca + 0(1)

En déduire que (S,) converge vers A, = (1 — 2&%1) C,.
(d) Justifier que si @ > 1, on a

<= (1) 1\ <=1
> () S
ne 2a1 no

n=1 n=1

1. il s’agit de la constante v d’Euler-Mascheroni



Devoir surveillé 2 : correction Lycée Jean Perrin

PC

Cours

On considere les séries numériques E U, et E U, avec

n>1 n>1

Up =

et ainsi u,, ~v,. On peut aussi montrer que Z—" —1:
n

Up, (-1
A T WA
U, NLD
La série > u,, converge, puisqu’elle satisfait les conditions du critere spécial des séries alternées
de Leibniz. Par contre, si Y v, était convergente, on aurait » v, —u, qui le serait aussi, c’est

—1

la série g — qui serait convergente, ce qui n’est pas le cas. Ainsi la série E v, est divergente.
n

Ainsi, pour des séries dont les termes ne sont pas de signe constant (a partir d’aucun rang),
I’équivalence n’est pas comptatible avec la convergence.

Vrai — Faux

Parmi les affirmations suivantes lesquelles sont vraies, lesquelles sont fausses et pourquoi ?

1.

. La série > % est convergente. VRAI puisque par exemple, sin > 2, ona 0 < = <

Lorsque la suite (u,) converge vers 0, la série Y u,, est convergente. FAUX, avec par exemple
1

>

1 1

N_Q'

1
n! n(n—1) n

—1 n—1
Lorsque la série Y u,, est convergente, la série > u2 aussi. FAUX avec Z (=1

n=1 \/ﬁ

Soit ¢ € C, la série Y ¢*" converge si et seulement si |¢| < 1. VRAI puisque ¢*" = (¢*)" et
que || <1 < |q| < 1.

La série ) ED” st divergente. FAUX, on a

n+emr

n 4+ e

et la série géométrique » e " est convergente. Nous avons donc la convergence absolue, donc
la convergence. On peut aussi procéder avec le critére spécial des séries alternées.

-1 n—1
Si une série ne converge pas absolument, alors elle ne converge pas. FAUX, avec Z Q

n=1
La série produit de Cauchy de la série Z 1 avec la série Ze_” est convergente. FAUX
n=0 n>0

puisque le produit de Cauchy est Z Cp avec

n=0

1 — e—(n—i—l) 1

cn:Ze_kxl— — #0
k=0

1—e! 1—e!




Exercice

—1)"

a

. Soit a > 0. La série numérique Z (
n=0

qui est —— décroit vers 0. Ainsi d’apres le critére spécial des séries alternées, la série est bien

convergente

Comme on a

est alternée, et son terme général, en valeur absolue,

1 1
~—>0
n+a n

et sachant que la série de Riemann (série harmonique) > % diverge, par comparaison par

1 (="
équivalence (termes positifs) la série — diverge et donc la série -
q ( p ) > T a g >

n a
n=0 +

n’est pas

absolument convergente.

. De plus, d’apres le critere spécial des séries alternées, le signe de R,,(a) est celui du son permier
=n"

terme et on a aussi la majoration en valeur absolue par son premier terme, soit

n+l+4a’
Ru(a)] < ——
n\@ —
“n4+l+a
. Pour tout a >0 et 6 € R, on a

ein@ 1 1
Rn < ~ —
n+1 (a)’ m+1)(n+14a) n?

] et on en déduit par comparaison licite que la série numérique

inf

Z ne—|— 1 Fn(a)

n=0

est absluement convergente donc convergente.

. Soit a > 0. Toujours avec la majoration spéciale des séries alternée, on a
(=) _1
> <

n-+a
n=0

/()] =

On en déduit que f tend vers 0 en 4o0.

De plus, le signe de f(a) est celui du permier terme é, donc positif.

. Soit @ > 0 et h non nul de sorte que a+h > 0. On a

flath) —fla) 1™ (D" R (=D)"
h :E[ZO +a+h_n: n+a
:l = (=1)"n+a—(n+a+h)
h (n+a+h)(n+a)
=

—~ (n+a)(n+ta+h)

Par le critere spécial des séries alternées, la série

+00 n+1

n+a

3M

(=}



converge, et ainsi on a

f(CL + h +00 n+1 +0o ( )n+1 +00 n+1

Z n+a “~ (n+a)(n+a+h) Z n+a

n—= n—=

__Z DA l n+a)(rj+a—|—h) - (n—ia)z]

- (="
_hz (n+a)?(n+a+h)

n=0

Ainsi en utilisant la majoration spéciale des séries alternées, licite ici, on majore par le premier
terme en valeur absolue

fla+h) = fla) = (=)™ h
h —~ (n+a)? (a+ h)
6. On obtient alors que
h) — X (1)
fla+h) f(a)_z ) .0
h (n+ a)? n—o
n=0
+oo n+1
ce qui signifie que f est dérivable en a avec f'(a) = Z + . Ainsi f est dérivable sur
(n
10, 4+00] et que 'on a
+oo n+1

nz: n+a

Toujours avec le critére spécial des séries alternées, f’(a) est du signe de —a%, et donc [/ <0
ce qui permet d’en déduire que la fonction f est strictement décroissante.

7. Soit a > 0, on éerit f(a) = £ + Ry(a) et comme on a la majoration spéciale

+o00 _1)
Zgz—i-)a

n=

1
<
1+a

| Ro(a)| =

on obtient que f tend vers +oo lorsque a tend vers 07.

8. En tenant compte des propriétés établies précédement, on obtient le graphe de la fonction f
(allure) :




Probléme

1. Si f est décroissante, soit « € [k, k + 1],

fk+1) < f(z) < f(k)
que l'on intégre sur [k, k + 1]

k+

Fk+1)x1< | flo)de < f(k) x 1.
k

2. Soit k£ un entier non nul, on a

k+1

fk+1) < flx)dz < f(k)

k

d’apres la question précédente, d’ou en retranchant f(k)
fk+1) = f(k) < —ar <0

soit encore
0<a, < f(k;) —f(k:—i— 1).

3. Ainsi par sommation, on obtient

3
3

0

N
Q
E
N
=
N
=
o
+

soit encore par télescopage
0< A, < f(1) = fln+1) < f(1).

Ainsi la suite (A,),>1 est bornée (minorée par 0 et majorée par f(1)).

4. Soit n € N* on a
n+1

A1 — E ak—E ar = ap4q1 = 0

k=1
Donc la suite (A, )nen+ est croissante.

5. La suite (A,)nen+ étant croissante et majorée, on en déduit par le théoréeme de convergence
monotone qu’elle converge, vers une limite que ’on note ~s.

6. Soit n > 2, on a

n—l k+1

At - Z SNFCE

k=1

f(.a:)dx]

n-l o ekt1

—Zf Z f(x)dz

k
— )+ =)= [ G
7. Ainsi on a
f) 4+ fln)=Aa1+ f(n /f
et comme (A,,_1) converge vers vy, et (f(n)) vers 0, on a

A =75 +0(1)  f(n)=o(1)

et ainsi

S k) = / " H@)ds + 75 + o(1)



8. Ainsi si la suite < / f (a:)dx) converge, comme 0(1) converge vers 0, on obtient que la
1 neN*

suite (Z f (k)) converge et on a donc
k=1

nto+oo

o0 n
>t = Jim [ ey
k=1 1

Réciproquement, si la suite (3 ,_, f(k)) converge, on a la suite ( / f (x)dx) qui converge
1 neN*
vers Zf(k) — ¢
k=1

n
Ainsi la série Z f(n) converge si et seulement si la suite ( / f (x)dm) converge et on a
1 neN*

dans ce cas

n—-+o0o

o0 n
S f(k) = lim / f(@)dz + 7y
k=1 1

9. On considére la fonction z — L positive continue décroissante vers 0 sur [1, +oo[. D’apres la
question 7, il existe une constant v de sorte que

"1 "
Z—:/ L dz 7+ o(1)
k . T
k=1 N _
=In(n)

Donc il existe une constante? « réelle telle que

1 1
Hn:1+§+---5:1n(n)+’y+0(1)

Comme la suite (A, ),en+ est croissante vers 7, et méme en fait strictement croissante puisque
on peut justifier que a, > 0,ona A; =a; =1— ff %dx =1—-1n2<n.

10. Si a > 0, a # 1, la fonction z +— x% est positive décroissante vers 0, et on a

/n 1 1 1 1
—dz = —
L xe l—an*l 1-—a«

il existe une constante 7, telle que

n

1 1 1 1

Ezl—ana*_l—
k=1

o+ o(1
-t to(l)

et donc il existe une constante C,, telle que

n

1 1 1
— = C, +o0(1
k> 1—anot +Ca+oll)
k=1
Lorsque a > 1, comme ﬁ% — 0, on en déduit la convergence de la série de Riemann

avec

+o0 1
>_ 7 = Ca
k=1

2. il s’agit de la constante v d’Euler-Mascheroni



L1

a1 — 00, on en déduit la divergence de la série de

Par contre, si a €]0, 1], comme

Riemann avec en plus
n nlfa

1
ke 1—a«
k=1

11. Soit a > 0, on pose

2n n
1 1
S N
ko Z (Qk)a
k=1 k=1
1
= TQn - F n

(b) Pour @ = 1, on remarque que 7,, = H,, on a
Son = Hyyy — Hy, = In(2n) +v — In(n) — v+ o(1) = In(2n) — In(n) + o(1) = In(2) + o(1)

Ainsi (Ss,) converge vers In(2).

Comme Sy, 41 = So, + m, (San41) converge aussi vers In(2) et ainsi par théoreme (.S,,)
converge aussi vers In(2). On a

n=1

(somme alternée des inverses des entiers)

(c) Soit av # 1, on a alors

1 1 1 1 1
SQn |:

= EW +C, — a1 — Ca} + 0(1)

1—an~t

et ainsi

1
Sgn = <1 — 2a_1> Ca + 0(1)

On en déduit que (Ss,) converge vers A, = (1 — 204%1) C,, puis comme ci-dessus, que (S,)
aussi.

(d) Dans le cas ot @ > 1, on obtient donc la relation entre la somme de Riemann et la somme

de Riemann alternée
f -yt (1 =1
ne o 2&—1 ne :

n=1 n=1

10



