Devoir en temps libre n°3

On pose

$$S(x) = \sum_{n=1}^{+\infty} \frac{e^{-nx}}{n}$$

et pour tout n de \mathbb{N}^* ,

$$f_n(x) = \frac{e^{-nx}}{n}$$

- 1. Montrer que la fonction S est définie uniquement sur $]0, +\infty[$.
- 2. Montrer que la fonction S est décroissante sur $]0, +\infty[$, positive. Que peut-on en déduire du comportement de S en 0 et en $+\infty$?
- 3. Montrer que si x > 0, on a

$$0 \leqslant S(x) \leqslant \sum_{n=1}^{+\infty} e^{-nx} = \frac{e^{-x}}{1 - e^{-x}}$$

et en déduire la limite de S en $+\infty$.

4. Soit $N \in \mathbb{N}^*$, montrer que

$$S(x) \geqslant \sum_{n=1}^{N} \frac{\mathrm{e}^{-nx}}{n}$$

et en déduire que S(x) tend vers $+\infty$ lorsque x tend vers 0.

- 5. Déterminer $||f_n||_{\infty,]0,+\infty[}$ pour tout n de \mathbb{N}^* . La série de fonctions $\sum_{n\geqslant 1}(f_n)$ est-elle normalement convergente sur $]0,+\infty[$?
- 6. Soit a > 0. Montrer que la série de fonctions $\sum_{n \ge 1} (f_n)$ est normalement convergente sur $[a, +\infty[$. En déduire que la fonction S est continue sur $]0, +\infty[$.

Donner une autre méthode pour déterminer la limite de S en $+\infty$.

7. (a) Montrer que la fonction f est de classe \mathcal{C}^1 sur $]0, +\infty[$, et que

$$\forall x > 0, S'(x) = -\sum_{n=1}^{+\infty} e^{-nx} = -\frac{e^{-x}}{1 - e^{-x}} = \frac{1}{1 - e^x}$$

(b) Montrer (sans utiliser le résultat donné) que

$$\int_{0}^{x} \frac{1}{1 - e^{t}} dt = x - \ln(e^{x} - 1) + c$$

On pourra effectuer le changement de variable $u = e^t$.

(c) En déduire que $\forall x \in]0, +\infty[, S(x) = x - \ln(e^x - 1)]$ et retrouver les limites de S en 0 et $+\infty$.

Fin