Quinzaine 5 du 24/11 au 05/12

Chapitre 5 : Probabilités - Partie I

Si Ω est un ensemble, on appelle tribu sur Ω une partie \mathcal{A} de l'ensemble $\mathcal{P}(\Omega)$ des parties de Ω telle que :

- $-\Omega \in \mathcal{A},$
- pour tout $A \in \mathcal{A}$, $\overline{A} = \Omega \setminus A \in \mathcal{A}$,
- pour toute suite $(A_n)_{n\geqslant 0}$ d'éléments de \mathcal{A} , la réunion $\bigcup_{n=0}^{+\infty} A_n$ appartient à \mathcal{A} .

Stabilité par les opérations ensemblistes finies ou dénombrables.

L'ensemble Ω est l'univers ; il n'est pas en général précisé. Les éléments de \mathcal{A} sont les événements. Les étudiants doivent savoir expliciter un événement à partir d'autres événements en utilisant la réunion, l'intersection et le complémentaire, différence, privé de. On fait le parallèle entre le vocabulaire probabiliste et le vocabulaire ensembliste.

L'événement $\bigcap_{n=0}^{\infty} A_n$ est réalisé si et seulement si, pour tout n de \mathbb{N} , A_n est réalisé.

L'événement $\bigcup_{n=0}^{n-1} A_n$ est réalisé si et seulement si, il existe n de \mathbb{N} , tel que A_n est réalisé.

Exemple de la tribu totale $\mathcal{P}(\Omega)$.

Si Ω est un ensemble et \mathcal{A} une tribu sur Ω , on appelle *probabilité* sur (Ω, \mathcal{A}) une application $\mathbb{P} : \mathcal{A} \to [0, 1]$ telle que :

- $-\mathbb{P}(\Omega)=1,$
- pour toute suite $(A_n)_{n\geqslant 0}$ d'événements incompatibles (deux à deux disjoints),

$$\mathbb{P}\left(\bigcup_{n=0}^{+\infty} A_n\right) = \sum_{n=0}^{+\infty} \mathbb{P}(A_n)$$

(ce qui sous-entend la convergence de la série numérique ou la sommabilité de la famille dénombrable).

On appelle espace probabilisé un triplet $(\Omega, \mathcal{A}, \mathbb{P})$ où \mathcal{A} est une tribu et \mathbb{P} une probabilité sur (Ω, \mathcal{A}) .

Propriétés d'une probabilité : probabilité de l'événement impossible, probabilité de la réunion combinée à l'intersection, de l'événement contraire, de la différence, croissance.

Probabilité d'une réunion disjointe, d'une réunion quelconque de deux événements.

Propriétés:

– Continuité croissante (*) : si $(A_n)_{n\geqslant 0}$ est une suite d'événements telle que pour tout n, on ait $A_n\subset A_{n+1}$, alors :

$$\lim_{n \to +\infty} \mathbb{P}(A_n) = \mathbb{P}\left(\bigcup_{n=0}^{+\infty} A_n\right)$$

– Continuité décroissante : si $(A_n)_{n\geqslant 0}$ est une suite d'événements telle que pour tout n, on ait $A_{n+1}\subset A_n$, alors :

$$\lim_{n \to +\infty} \mathbb{P}(A_n) = \mathbb{P}\left(\bigcap_{n=0}^{+\infty} A_n\right)$$

– Sous additivité : si $(A_n)_{n\geqslant 0}$ est une suite d'événements alors (avec conventions dans cas de divergence de la série) :

$$\mathbb{P}\left(\bigcup_{n=0}^{+\infty} A_n\right) \leqslant \sum_{n=0}^{+\infty} \mathbb{P}(A_n)$$

Application lorsque $(A_n)_{n\in\mathbb{N}}$ est quelconque : $\left(\bigcap_{p=0}^n A_p\right)_{n\in\mathbb{N}}$ est croissante et

$$\lim_{n \to +\infty} \mathbb{P}\left(\bigcup_{p=0}^{n} A_{p}\right) = \mathbb{P}\left(\bigcup_{n=0}^{+\infty} A_{n}\right)$$

et
$$\left(\bigcap_{p=0}^{n} A_{p}\right)_{n\in\mathbb{N}}$$
 est décroissante, et

$$\lim_{n \to +\infty} \mathbb{P}\left(\bigcap_{p=0}^{n} A_p\right) = \mathbb{P}\left(\bigcap_{n=0}^{+\infty} A_n\right)$$

Probabilité d'une réunion quelconque (sous-additivité).

Remarque : événement presque sûr ou quasi certain, négligeable ou presque impossible ou quasi impossible. Exemple.

Si A et B sont deux événements tels que P(B) > 0, on appelle probabilité conditionnelle de A sachant B le réel

$$\mathbb{P}_B(A) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$$

Notations $\mathbb{P}_B(A)$, $\mathbb{P}(A|B)$. L'application \mathbb{P}_B est une probabilité sur (Ω, \mathcal{A}) .

Formule de Bayes. Exemple d'utilisation.

Formule des probabilités composées (*).

Système complet fini ou dénombrable d'événements. Exemple usuel de (A, \overline{A}) avec A un événement. Exemple de système dénombrable.

Formule des probabilités totales : si $(A_n)_{n\in\mathbb{N}}$ est un système complet d'événements, alors la série $\sum \mathbb{P}(B\cap A_n)$ converge et (avec conventions si $\mathbb{P}(A_n)$ s'annule)

$$\mathbb{P}(B) = \sum_{n=0}^{+\infty} \mathbb{P}(B \cap A_n) = \sum_{n=0}^{+\infty} \mathbb{P}(B|A_n)\mathbb{P}(A_n)$$

La formule reste valable dans le cas d'une suite $(A_n)_{n\in\mathbb{N}}$ d'événements deux à deux incompatibles avec $\sum_{n=0}^{+\infty} \mathbb{P}(A_n) = 1$ (système quasi-complet).

Indépendances de deux événements. L'indépendance n'est pas une notion intrinsèque, elle dépend du choix de la probabilité.

Si $\mathbb{P}(B) > 0$, l'indépendance de A et B est équivalente à $\mathbb{P}(A|B) = \mathbb{P}(A)$.

Indépendance (mutuelle) d'une famille finie d'événements. L'indépendance deux à deux des événements A_1, \ldots, A_n n'entraı̂ne pas leur indépendance (mutuelle) si $n \ge 3$: un exemple avec n = 3.

Si A et B sont indépendants, alors A et \overline{B} aussi (*). Extension au cas de n événements.

Si A, B et C sont indépendants, alors $A \cup B$ et C aussi, $A \cap B$ et C aussi.

Questions de cours :

- Les énoncés des définitions, des théorèmes.
- Les démonstrations marquées par (*).
- Les méthodes usuelles sur des exemples.

