Devoir en temps libre n°4

Exercice A

Nous disposons d'une pièce faussée et de deux dés équilibrés D1 et D2.

La probabilité d'obtenir pile avec la pièce est de $\frac{1}{3}$.

Les deux dés ont chacun 6 faces, le dé D1 a 4 faces rouges et 2 blanches, le dé D2 a 2 faces rouges et 4 blanches.

L'expérience est la suivante :

- nous commençons par jeter la pièce,
- si nous obtenons pile, nous choisissons le dé D1, sinon nous choisissons le dé D2, choix définitif pour la suite de l'expérience,
- ensuite nous jetons plusieurs fois le dé choisi et pour chaque lancer, nous notons la couleur obtenue. Nous nommons les événements suivants :
- $-D_1$ est l'événement : « nous jouons avec le dé D1 »,
- $-D_2$ est l'événement : « nous jouons avec le dé D2 »,
- pour tout entier naturel n, R_n est l'événement « nous avons obtenu une face rouge au $n^{\text{ème}}$ lancer du dé choisi ».
 - 1. Quelles sont les valeurs de $P(D_1)$? $P(D_2)$? Montrer que $\{D_1, D_2\}$ constitue un système complet d'événements.
 - 2. Soit $n \in \mathbb{N}^*$, quelles sont les valeurs de $P_{D_1}(R_n)$? de $P_{D_2}(R_n)$?
 - 3. Calculer $P(R_1)$.
 - 4. Établir un lien entre les probabilités $P_{D_1}(R_1)$, $P_{D_1}(R_2)$ et $P_{D_1}(R_1 \cap R_2)$. En déduire la valeur de $P(R_1 \cap R_2)$.
 - 5. Montrer que pour tout entier naturel non nul n,

$$P(R_1 \cap R_2 \cap \dots \cap R_n) = \frac{2^n + 2}{3^{n+1}}$$

En déduire que pour tout n appartenant à \mathbb{N}^* , la valeur de $P_{R_1 \cap R_2 \cap \cdots \cap R_n}(R_{n+1})$.

6. Calculer $P_{R_1 \cap R_2}(D1)$, puis de manière générale, pour tout entier naturel non nul n, montrer que :

$$P_{R_1 \cap R_2 \cap \dots \cap R_n}(D_1) = \frac{2^n}{2^n + 2}$$

7. Soit $n \in \mathbb{N}^*$, après n lancers ayant tous amené la face rouge, vaut-il mieux parier sur le fait que le dé est le dé D1 ou sur le fait d'avoir une face rouge au lancer suivant? Au fait, que penser de cette question? ¹

Exercice B

On considère deux variables aléatoires X et Y à valeurs discrètes dans \mathbb{R} .

On dit que X = Y en loi si X et Y ont la même loi de probabilité, c'est à dire si

$$\forall a \in \mathbb{R} , \mathbb{P}(X = a) = \mathbb{P}(Y = a)$$

On suppose que X = Y presque sûrement, c'est à dire que $\mathbb{P}((X = Y)) = 1$.

^{1.} C'est un ajout personnel au sujet.

- 1. Que vaut $\mathbb{P}((X \neq Y))$?
- 2. Soit $a \in \mathbb{R}$. Que dire de $((Y = a), (Y \neq a))$?
- 3. À l'aide de la question précédente, montrer que $(X = a) \subset (Y = a) \cup (X \neq Y)$.
- 4. En déduire que $\mathbb{P}(X = a) \leq \mathbb{P}(Y = a)$.
- 5. En déduire que X et Y ont la même loi de probabilité.

Exercice C

Soit $(\Omega, \mathcal{A}, \mathbb{P})$ un espace probabilisé. On rappelle que si A et B sont deux événements, $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B)$.

1. Montrer que si A, B et C sont trois événements, on a

$$\mathbb{P}(A \cup B \cup C) = \mathbb{P}(A) + \mathbb{P}(B) + \mathbb{P}(C) - \mathbb{P}(A \cap B) - \mathbb{P}(A \cap C) - \mathbb{P}(B \cap C) + \mathbb{P}(A \cap B \cap C)$$

- 2. Pouvez donnez (sans preuve) la formule pour quatre événements?
- 3. (***) Montrer par récurrence sur $n, n \ge 1$, que si A_1, \ldots, A_n sont n événements, alors

$$\mathbb{P}\left(\bigcup_{i=1}^{n} A_i\right) = \sum_{k=1}^{n} (-1)^{k+1} \sum_{1 \leqslant i_1 < \leqslant i_k \leqslant n} \mathbb{P}\left(\bigcap_{j=1}^{k} A_{i_j}\right)$$

4. On propose une autre preuve de cette formule par les indicatrices. Si A est un événement, on considère la fonction dite indicatrice de A

$$\mathbb{1}_A:\Omega\to\{0,1\}$$

définie par

$$\mathbb{1}_A(\omega) = \begin{cases} 1 & \text{si } x \in A \\ 0 & \text{sinon} \end{cases}$$

- (a) Quelles sont les valeurs prises par $\mathbb{1}_A$? Montrer alors que $\mathbb{1}_A$ est une variable aléatoire, elle qu'elle suit la loi de Bernoulli de paramètre $\mathbb{P}(A)$. Quelle est son espérance?
- (b) Soit A et B deux événements. Démontrer que

$$\mathbb{1}_{\overline{A}} = 1 - \mathbb{1}_A \qquad \mathbb{1}_{A \cap B} = \mathbb{1}_A \times \mathbb{1}_B \qquad \mathbb{1}_{A \cup B} = \mathbb{1}_A + \mathbb{1}_B - \mathbb{1}_A \times \mathbb{1}_B$$

En utilisant l'espérance, déduire que $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B)$.

- (c) Soit A_1, \ldots, A_n des événements. Montrer que $\mathbb{1}_{A_1 \cap \cdots \cap A_n} = \prod_{i=1}^n \mathbb{1}_{A_i}$.
- (d) Soit A_1, \ldots, A_n des événements 2 à 2 incompatibles. Montrer que

$$\mathbb{1}_{A_1 \cup \dots \cup A_n} = \sum_{i=1}^n \mathbb{1}_{A_i}.$$

(e) Montrer que si A_1, \ldots, A_n sont des événements quelconques, on a

$$\mathbb{1}_{A_1 \cup \dots \cup A_n} = 1 - \mathbb{1}_{\overline{A_1} \cap \dots \overline{A_n}} = 1 - \prod_{i=1}^n (1 - \mathbb{1}_{A_i})$$

puis que (***)

$$\mathbb{1}_{A_1 \cup \dots \cup A_n} = \sum_{k=1}^n (-1)^{k+1} \sum_{1 \le i_1 \le \le i_k \le n} \mathbb{1}_{A_{i_1} \cap \dots \cap A_{i_k}}.$$

Conclure à l'aide de l'espérance.

Fin