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Introduction

Ce premier chapitre consacré à l’électromagnétisme décrit tout d’abord les sources du champ électromagnétique dans
le cadre de l’approximation des milieux continus. Dans un second temps nous effectuerons un bilan local des charges
électriques pour établir l’équation locale traduisant le principe de conservation de la charge.

Cette équation ne sera pas sans rappeler d’autres équations fondamentales obtenues dans d’autres domaines de la
physique comme la diffusion de particules, la diffusion thermique ou bien encore la mécanique des fluides. Ces analogies
formelles se retrouveront également dans les prochains chapitres consacrés à l’électromagnétisme.
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I - Description microscopique et mésoscopique des sources

Les sources du champ électromagnétique sont les charges électriques. Parmi elles, on distingue les charges mobiles et
les charges fixes. Lorsque les charges sont mobiles, on introduit la grandeur courant électrique.

1) Approximation des milieux continus

À l’échelle atomique, deux noyaux d’atomes voisins sont séparés par du vide. Alors que la dimension du noyau est
de l’ordre de 10−15 m, la distance entre deux noyaux les plus proches est d’environ 10−10 m. La masse étant concentrée en
quasi-totalité dans les noyaux (de masse très supérieure à celle des électrons), on en déduit que la matière est concentrée
dans des petits espaces séparés de vide : la masse est donc discontinue à l’échelle atomique.

À l’échelle macroscopique, c’est-à-dire à l’échelle de mesure que notre œil peut appréhender (le millimètre), une planche
nous paraît homogène et la discontinuité précédente n’est pas ressentie. Il en est de même à l’échelle dite mésoscopique
du micromètre, très grande devant l’échelle atomique, mais infinitésimale devant l’échelle macroscopique. Un élément de
volume mésoscopique dτ semble infinitésimal à l’échelle macroscopique ; il apparaît alors comme un point. Ainsi, 1 µm3

d’eau contient approximativement 1011 atomes. On ne peut alors pas distinguer les masses et le vide dans le volume dτ. On
suppose alors que la matière est un milieu continu.

En seconde année, on se place à l’échelle mésoscopique : un volume "infiniment petit" ou "élémentaire" est alors de
dimension mésoscopique et on peut donc appliquer l’approximation des milieux continus à toutes les situations.

2) Densité volumique de charges

Lorsqu’un élément de volume dτ centré sur un point M contient une charge électrique élémentaire dq, on peut définir la
densité volumique de charge ρ présente en un point M :

Définition :
La densité volumique de charges présente en un point M de l’espace est :

ρ =
dq
dτ

où dq est la charge électrique élémentaire présente dans le volume élémentaire dτ centré sur le
point M.
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L’unité SI de la densité volumique de charge ρ est le C.m−3, la charge dq s’exprimant en coulomb C et le volume dτ en
m3.

Ainsi, la charge électrique comprise dans le volume (V) est égale à la somme des charge présentes en tous point M
constituant le volume :

Q =

∫
dq =

$
V

ρdτ

3) Vecteur densité de courant ; intensité du courant

Le courant électrique correspond à un mouvement de charges électriques. On mesure à l’aide d’un ampèremètre
l’intensité du courant électrique qui parcourt un fil.

Lorsque l’on se place à une échelle d’observation mésoscopique, le fil n’est plus infiniment fin et apparaît comme un
solide (c’est un milieu conducteur, dans lequel le déplacement des charges est possible). À l’échelle mésoscopique, la matière
de ce milieu peut libérer n porteurs de charges par unité de volume (densité particualire). On note q la charge de chaque
porteur mobile.

On considère un volume élémentaire centré sur un point M. On choisit un cylindre droit de base dS et de génératrice ~d`
colinéaire au courant électrique, supposé suivant Ox.

Le volume élémentaire dτ = ~dS. ~d` contient alors dN = ndτ = n ~dS. ~d` porteurs de charges libres q. La charge du volume
dτ est donc :

dq = qdN = nq ~dS. ~d`

Les charges mobiles possédant la vitesse v (il s’agit ici d’une valeur moyenne) parcourent la hauteur d` du cylindre
élémentaire pendant un intervalle de temps élémentaire dt tel que : d` = vdt. ? ? ? ? Ainsi, l’intensité élémentaire di du
courant électrique traversant l’élément de surface dS est donnée par :

di =
dq
dt

= q
dN
dt

= nq~v. ~dS

Pour obtenir l’intensité totale du courant électrique, il faut ajouter toutes les intensités élémentaires, sur toute la section
S du conducteur. On introduit alors ~j = nq~v = ρm~v, où ρm = nq représente la densité volumique de charges mobiles possédant
la vitesse ~v.

L’intensité totale s’écrit alors :

I =

∫
di =

"
(S)

~j. ~dS

L’intensité totale qui traverse une section S de conducteur est donc égale au flux du vecteur densité de courant ~j à
travers cette section.
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Définition : Vecteur densité de courant
Noté ~j, il est défini par :

~j = nq~v = ρm~v

où ρm = nq est la densité volumique de charges des porteurs mobiles de vitesse ~v.
L’intensité totale I qui traverse une section S de conducteur est obtenue en calculant le flux de ~j à

travers cette section :

I =

"
(S)

~j. ~dS

L’intensité I s’exprimant en ampères A et la surface dS en m2, l’unité du module du vecteur densité de courant ~j est
A.m−2.

II - Conservation de la charge électrique

1) Équation locale de conservation de la charge

Considérons le volume infintésimal dV d’un conducteur électrique homogène situé entre les abscisses x et x + dx, de
section droite S et de densité volumique de charges ρ(x, t).

On se place dans une géométrie unidimensionnelle, en coordonnées cartésiennes, et on suppose que le vecteur densité
de courant ~j est dirigé selon ~ux. Réalisons un bilan de charge électrique sous la même forme qu’en mécanique des fluides
ou pour la diffusion :

1. On calcule la charge nette entrante pendant dt, en estimant la charge entrante en x et sortante en x+dx :

δqent(x) = j(x, t).S

et

δqsort(x + dx) = j(x + dx, t).S

soit

dqent,dt = ( j(x, t) − j(x + dx, t).S

2. Cette variation de charge est à l’origine d’une variation de la densité volumique de charges entre t et t+dt ; on peut
écrire :

dqent,dt = Sdx(ρ(x, t + dt) − ρ(x, t))

On peut alors faire un DL à l’ordre 1 de ces expressions et on trouve :

∂ j
∂x

+
∂ρ

∂t

Cette équation est appelée équation locale de conservation de la charge. Soulignons le point suivant : cette équation est tout
à fait analogue à celles obtenues dans l’étude de la diffusion des particules et de la conservation de la masse pour un fluide
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en mouvement. En outre, on conçoit aisément que cette relation peut se généraliser dans un problème à trois dimensions et
dont nous admettrons l’écriture.

div~j +
∂ρ

∂t
= 0

Equation locale de conservation de la charge

Pour obtenir cette équation, il faut considérer un volume quelconque entouré d’une surface S, intégrer, et utiliser le
théorème de Green-Ostrogradski.

2) Conséquences en régime stationnaire

L’équation locale se simplifie en div~j = 0 en régime stationnaire, soit encore	
(S)

~j. ~dS = 0

Le flux sortant à travers une surface fermée (S) est donc nul. On dit que le flux de ~j est conservatif. On retrouve alors les
lois usuelles de l’électrocinétique étudiées en première année :
• L’intensité du courant électrique I est identique en tout point d’une même branche de circuit électrique à chaque

instant

Le vecteur ~j est colinéaire à l’axe de symétrie de la portion de conducteur. Son flux à travers la surface latérale du
conducteur est donc nul, ainsi :

I =

"
(S1)

~j.(− ~dS1) =

"
(S2)

~j. ~dS2

L’intensité est donc constante en tout point d’une même branche électrique à chaque instant.
• la somme algébrique des courants en un nœud de circuit électrique est nulle à chaque instant.

Au noeud, on a ici 	
(S)

~j. ~dS = 0

soit : I1 + I2 = I3 + I4.

III - Conduction électrique dans un conducteur ohmique

1) Loi d’Ohm locale

Nous allons à présent nous intéresser au cas particulier du conducteur ohmique toujours en restant dans l’approximation
des milieux continus. Il s’agira pour nous d’un métal que nous supposerons fixe dans le référentiel d’étude. Nous nous
proposons d’établir la loi d’Ohm sous forme locale en utilisant un modèle microscopique classique : le modèle dit de Drude.
Les porteurs de charges (électrons de charge q et de masse m) ont un densité totale n. Ils sont soumis à la force électrique
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q~E mais il faut également prendre en compte l’effet d’agitation thermique et les interactions avec le réseau cristallin 1.
Modélisons de manière phénoménologique ces deux phénomènes en introduisant une force de frottement fluide écrite
sous la forme −m

τ
~v (Il s ?agit donc d’une modélisation par un terme de frottement fluide. L’expression du "coefficient de

frottement" est assez naturelle : le frottement est d’autant plus important que la masse des porteurs de charges est grande
et que le paramètre τ est faible, paramètre introduit pour quantifier la nature du milieu dans lequel le transport s’effectue.).
L’application du principe fondamental à un porteur de charge donne alors 2 :

m
d~v
dt

= q~E −
m
τ
~v

ED d’ordre 1, à coefficients constants, avec second membre constant ; la résolution donne :

~v(t) = ~Ae−
t
τ +

qτ
m
~E

où ~A est une constante d’intégration. À l’instant initial, la vitesse moyenne des porteurs est nulle car avant application
du champ électrique, leur mouvement est désordonné du fait de l’agitation thermique : ~v(t = 0) = ~0, soit

~v(t) =
qτ
m
~E
(
1 − e−

t
τ

)
La vitesse ~v∞ atteinte en régime permanent vaut ~v∞ =

qτ
m
~E. On peut alors exprimer le vecteur densité de courant ~j tel

que :

~j = nq~v∞ =
nq2τ

m
~E

Dans un conducteur ohmique au repos, il existe une relation linéaire entre le vecteur densité de courant et le champ
électrique appelée loi d’Ohm locale :

~j = γ~E

où γ désigne la conductivité électrique du matériau.

A Retenir

Ici : γ =
nq2τ

m
• Ordres de grandeur de τ : prenons le cas particulier du cuivre qui est le plus utilisé dans les circuits électriques

et dont la conductivité électrique est de l’ordre de 5,8.107 Ω−1.m−1. Avec m = 9,1.10−31 kg, q = 1,6.10−19 C et une
densité n = 8,6.1028 m−3, on obtient τ= 2,4.10−14 s. Cette valeur très faible nous montre que le régime permanent dans
le milieu conducteur s’établit quasi instantanément. On comprend donc qu’il sera encore possible d’utiliser la loi
d’Ohm locale en régime variable dans le temps à la condition que le champ électrique ne fluctue pas trop rapidement,
quantitativement si sa fréquence est inférieure à 1

τ soit environ 4.1013 Hz. Ce domaine de fréquence correspond au
domaine infrarouge du spectre électromagnétique.

Propriété : La loi d’Ohm locale est applicable en régime variable pour des fréquences inférieures à
celles des ondes du domaine infrarouge. Elle est en particulier vérifiée dans le domaine des fréquences
usuelles de l’électrocinétique.

• Ordre de grandeur de la vitesse en régime permanent : en prenant un courant d’intensité I = 1 A traversant un
conducteur de section s = 1 mm2, on obtient j = 106 A.m−2 puis à l’aide des relations précédentes v∞ = qτE/m = j/nq ≈
0,07 mm.s−1. Nous retiendrons donc que la vitesse d’ensemble des porteurs de charge est lente.

Remarque :
ajoutons que le modèle classique que nous venons de présenter et la loi d’Ohm peuvent être employés sous certaines

conditions pour d’autres types de milieux conducteurs : électrolyte, semiconducteur, plasmas,...

• Résistance d’une portion de conducteur électrique filiforme : On étudie un conducteur filiforme entre les points M
et N soumis à la tension U et traversé par un courant d’intensité I.

1. Le métal cuivre par exemple est un assemblage d’ions cuivre Cu+ avec un électron libre pour chaque ion. Ces électrons ont un mouvement d’ensemble
dû au champ électrique imposé mais qui est perturbé par l’agitation thermique d’une part. D’autre part, l’existence de défauts dans le réseau cristallin
conduit à ralentir également le mouvement des porteurs de charge.

2. La signification physique du paramètre τ apparaît clairement à ce stade du calcul : il s’agit de la constante de temps du régime transitoire associé à
la mise en mouvement des porteurs de charge sous l’action du champ électrique extérieur. On parle aussi de temps de relaxation car après suppression du
champ électrique, le champ des vitesses redevient isotrope au bout de quelques τ (système linéaire du 1er ordre).
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Pour une longueur ` de celui-ci, le cours de terminale nous a appris que le champ électrique supposé ici uniforme
de module E est tel que U = E.` et qu’il est orienté dans le sens des potentiels V décroissants. Pour une portion de
longueur d` de ce conducteur, on aura alors dV = -Ed`. Nous admettons provisoirement que U = −

∫
dV, et sachant

que I =
!
~j. ~dS, on obtient :

U
I

=
−

∫
dV!

(S)
~j. ~dS

=

∫ N

M
~E. ~d`!

(S)
~j. ~dS

Ce rapport est aussi égal à la résistance R de la portion de conducteur.

Puisque le champ électrique est uniforme dans tout le conducteur, il en est de même pour le vecteur densité de courant.
Dans le cas particulier d’un conducteur de section S constante (conducteur "cylindrique"), I = j.S et U = E` =

j`
γ , on

en déduit :

R =
`
γS
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2) Approche descriptive de l’effet Hall

L’étude consiste à observer ce qui se passe au sein d’une plaquette conductrice parallélépipédique parcourue par un
courant d’intensité I constante et plongée dans un champ magnétique ~B uniforme.

Ce champ magnétique est orthogonal à la direction du courant (et donc orthogonal au vecteur densité de courant).
On se place en régime stationnaire établi et on étudie les forces que subit une particule de charge q se déplaçant dans la

plaquette.
Pour simplifier la présentation du problème, on supposera les charges mobiles positives. La charge q possède la vitesse ~v

et est plongée dans le champ magnétique ~B ; elle subit donc la force de Lorentz ~Fl. Cette force provoque un afflux de charges
positives sur l’une des plaque et de charges négatives sur l’autre.

Les deux plaques chargées positivement et négativement créent entre elles un champ électrostatique ~EH dit champ "de
Hall", dirigé de la plaque positive vers la plaque négative.

Ce champ électrostatique exerce une force de Coulomb ~FH = q~EH de même sens que lui sur la charge. Cette force est
opposée à la force de Lorentz.

Plus les plaques concernées se chargent, plus la force de Coulomb du champ de Hall est importante et s’oppose à cette
électrisation. Un équilibre s’établit lorsque les deux forces sont de même intensité et le régime stationnaire est alors établi.

La tension "de Hall" UH qui est apparue entre les plaques est proportionnelle à l’intensité I du courant et à celle du
champ magnétique notée B.
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Application : Tension de Hall d’un teslamètre

Un teslamètre constitué d’un ruban conducteur en argent est plongé dans une
zone de champ magnétique B = 2 T. Il est traversé par un courant d’intensité I =
3 A. Préciser entre quelles faces du ruban schématisé ci-contre il faut effectuer
la mesure de la tension de Hall.
Calculer cette tension sachant que la densité de porteurs de charges mobiles
est égale à 6.1028 m−3. Le champ de Hall est supposé uniforme au sein du
ruban.

Solution :
Il s’agit d’un ruban métallique, les porteurs de charge sont des charges négatives donc le vecteur vitesse ~v est
colinéaire et de sens opposé au vecteur densité de courant volumique ~j. Ceci nous permet d’en déduire le sens et la
direction de la force de Lorentz ~Fl puis d’identifier les faces chargées avec leur signe :

L’expression de la tension de Hall est obtenue en égalant le module de la force
électrique et celui de la force de Lorentz. On a ici : qvB = qE avec E = UH

` ,
v =

j
−nq où j = I

h` et q = -1,6.10−19 C, donc :

UH = −
1

nq
BI
h
≈ 3, 1µV

Cette valeur extrêmement faible justifie qu’en pratique pour la mesure de l’intensité d’un champ magnétique, on
utilise non pas des métaux mais des semi-conducteurs pour élaborer une sonde à effet Hall, car leur densité de
porteurs mobiles est beaucoup plus faible. La tension de Hall, image du champ B à mesurer, est alors bien plus
élevée.
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3) Effet thermique du courant électrique

Considérons un conducteur ohmique soumis à un champ électromagnétique. Soit une charge q de ce conducteur
possédant la vitesse ~v ; cette charge subit la force de Lorentz : ~Fl = q(~E + ~v ∧ ~B).

La puissance de la force de Lorentz vaut alors :

P = ~Fl.~v = q~E.~v

Considérons maintenant une distribution de courant volumique, avec une densité ρm de charges mobiles, dont n est le
nombre de porteurs de charge par unité de volume. Le nombre dN de porteurs de charges mobiles de valeur q compris dans
un volume dτ vaut dN = ndτ. La charge mobile de ce volume s’écrit alors :

dQ = qdN = nqdτ = ρmdτ

La puissance dP cédée aux charges mobiles du volume dτ vaut alors

dP = dQ~E.~v = ~j.~Edτ

En utilisant la loi d’Ohm locale, il vient :

dP
dτ

= ~j.~E = γE2 =
j2

γ

Remarque :
L’expression de la puissance volumique ~j.~E est évidemment valable pour un milieu qui ne serait pas ohmique mais

conducteur (électrolyte, plasma, ...).

Cette quantité est positive mais elle ne peut pas être emmagasinée par les porteurs de charge : ceux-ci cèdent cette
énergie au réseau cristallin au cours de chocs inélastiques qui sera ensuite évacuée à l’extérieur du réseau par conduction
ou rayonnement thermique : il s’agit de l’effet Joule.

La puissance volumique dissipée par effet Joule dans un conducteur ohmique s’écrit :

dP
dτ

= γE2

A Retenir

Cette relation est également appelée "loi de Joule locale".
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