PC CHAPITRE 1 : SOURCES DU CHAMP ELECTROMAGNETIQUE Electromagnétisme

Introduction

Ce premier chapitre consacré a 1’électromagnétisme décrit tout d’abord les sources du champ électromagnétique dans
le cadre de I'approximation des milieux continus. Dans un second temps nous effectuerons un bilan local des charges
électriques pour établir I’équation locale traduisant le principe de conservation de la charge.

Cette équation ne sera pas sans rappeler d’autres équations fondamentales obtenues dans d’autres domaines de la
physique comme la diffusion de particules, la diffusion thermique ou bien encore la mécanique des fluides. Ces analogies
formelles se retrouveront également dans les prochains chapitres consacrés a 1’électromagnétisme.
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I- Description microscopique et mésoscopique des sources

Les sources du champ électromagnétique sont les charges électriques. Parmi elles, on distingue les charges mobiles et
les charges fixes. Lorsque les charges sont mobiles, on introduit la grandeur courant électrique.

1) Approximation des milieux continus

A Véchelle atomique, deux noyaux d’atomes voisins sont séparés par du vide. Alors que la dimension du noyau est
de l'ordre de 107° m, la distance entre deux noyaux les plus proches est d’environ 107° m. La masse étant concentrée en
quasi-totalité dans les noyaux (de masse trés supérieure a celle des électrons), on en déduit que la matiére est concentrée
dans des petits espaces séparés de vide : la masse est donc discontinue a 1’échelle atomique.

A Véchelle macroscopique, c’est-a-dire a I’échelle de mesure que notre ceil peut appréhender (le millimetre), une planche
nous parait homogene et la discontinuité précédente n’est pas ressentie. Il en est de méme a l'échelle dite mésoscopique
du micrometre, tres grande devant 1’échelle atomique, mais infinitésimale devant 1’échelle macroscopique. Un élément de
volume mésoscopique d7 semble infinitésimal a I’échelle macroscopique; il apparait alors comme un point. Ainsi, 1 ym?
d’eau contient approximativement 10! atomes. On ne peut alors pas distinguer les masses et le vide dans le volume d7. On
suppose alors que la matiére est un milieu continu.

En seconde année, on se place a 1'échelle mésoscopique : un volume "infiniment petit" ou "élémentaire" est alors de
dimension mésoscopique et on peut donc appliquer 1’approximation des milieux continus a toutes les situations.

2) Densité volumique de charges

Lorsqu’un élément de volume dz centré sur un point M contient une charge électrique élémentaire dg, on peut définir la
densité volumique de charge p présente en un point M :

Défnition :
La densité volumique de charges présente en un point M de 'espace est :
_ 49
P=ar

ou dg est la charge électrique élémentaire présente dans le volume élémentaire dt centré sur le
point M.
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L'unité SI de la densité volumique de charge p est le C.m ™, la charge dg s’exprimant en coulomb C et le volume dz en
3
m

Ainsi, la charge électrique comprise dans le volume (V) est égale a la somme des charge présentes en tous point M

CO1x IStltual"lt le \% Olume .
%

3) Vecteur densité de courant; intensité du courant

N

Le courant électrique correspond a un mouvement de charges électriques. On mesure a l'aide d’un ampéremeétre
I'intensité du courant électrique qui parcourt un fil.

Lorsque l'on se place a une échelle d’observation mésoscopique, le fil n’est plus infiniment fin et apparait comme un
solide (c’est un milieu conducteur, dans lequel le déplacement des charges est possible). A 1échelle mésoscopique, la matiére
de ce milieu peut libérer n porteurs de charges par unité de volume (densité particualire). On note q la charge de chaque
porteur mobile.

On consideére un volume élémentaire centré sur un point M. On choisit un cylindre droit de base dS et de génératrice de

colinéaire au courant électrique, supposé suivant Ox.
E d
_.. -
4
>
X
E E
—> —>
Le volume élémentaire dt = d5.dZ contient alors dN = ndt = ndS.d? porteurs de charges libres 4. La charge du volume
dt est donc:

Zl_h_

3

|

= ||

dg =gdN = nqd_)S.d_)f

Les charges mobiles possédant la vitesse v (il s’agit ici d’une valeur moyenne) parcourent la hauteur d¢ du cylindre
élémentaire pendant un intervalle de temps élémentaire df tel que : df = vdt.???? Ainsi, l'intensité élémentaire di du
courant électrique traversant 1’élément de surface dS est donnée par :

dg dN
= — = q— =n
dt dt
Pour obtenir 'intensité totale du courant électrique, il faut ajouter toutes les intensités élémentaires, sur toute la section

di q7.ds

S du conducteur. On introduit alors j_)= nqo = pyT, ol py, = nq représente la densité volumique de charges mobiles possédant

la vitesse .
I:f&:j‘ff
[©)]

L’intensité totale s’écrit alors :
Py
L'intensité totale qui traverse une section S de conducteur est donc égale au flux du vecteur densité de courant j a
travers cette section.
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Défnition :  Vecteur densité de courant
Noté j, il est défini par :

-

j=nqv = pud
ol p,, = nq est la densité volumique de charges des porteurs mobiles de vitesse .

N
L'intensité totale I qui traverse une section S de conducteur est obtenue en calculant le flux de j a

travers cette section :
> -
= j.dS
S

L'intensité I s’exprimant en amperes A et la surface dS en m?, 'unité du module du vecteur densité de courant ]?est
Am™,

II - Conservation de la charge électrique

1) Equation locale de conservation de la charge

Considérons le volume infintésimal dV d’un conducteur électrique homogene situé entre les abscisses x et x + dx, de
section droite S et de densité volumique de charges p(x, t).

Vi jx+dx)
u, —> >
_> l
|
X x+dx

On se place dans une géométrie unidimensionnelle, en coordonnées cartésiennes, et on suppose que le vecteur densité

2 e oy . . . A PR .
de courant j est dirigé selon i/,. Réalisons un bilan de charge électrique sous la méme forme qu’en mécanique des fluides
ou pour la diffusion :

1. On calcule la charge nette entrante pendant dt, en estimant la charge entrante en x et sortante en x+dx :

OFent(x) = j(x,1).S
et
6‘750rt(x + dx) = ](x + dx, t)S
soit
dqent,dt = (j(x, t) - ](x + dx, t)S

2. Cette variation de charge est a 1’origine d’une variation de la densité volumique de charges entre f et t+dt; on peut

écrire :
dgent,ar = Sdx(p(x, t + dt) — p(x, 1))

On peut alors faire un DL a I’ordre 1 de ces expressions et on trouve :

dj  dp
ox T or

Cette équation est appelée équation locale de conservation de la charge. Soulignons le point suivant : cette équation est tout
a fait analogue a celles obtenues dans I'étude de la diffusion des particules et de la conservation de la masse pour un fluide
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en mouvement. En outre, on congoit aisément que cette relation peut se généraliser dans un probléme a trois dimensions et
dont nous admettrons 1’écriture.

EQUATION LOCALE DE CONSERVATION DE LA CHARGE
dp
ot

divj+ 0

Pour obtenir cette équation, il faut considérer un volume quelconque entouré d’une surface S, intégrer, et utiliser le
théoreme de Green-Ostrogradski.

2) Conséquences en régime stationnaire

rd P . . .
L'équation locale se simplifie en divj = 0 en régime stationnaire, soit encore

5@6 Fds=0
S)

Le flux sortant a travers une surface fermée (S) est donc nul. On dit que le flux de j_)est conservatif. On retrouve alors les
lois usuelles de I'électrocinétique étudiées en premiere année :
e L'intensité du courant électrique I est identique en tout point d’'une méme branche de circuit électrique a chaque
instant

Le vecteur j est colinéaire a I'axe de symétrie de la portion de conducteur. Son flux a travers la surface latérale du

conducteur est donc nul, ainsi :
I= f ]_)(—dgl) = f ]_)dgz
(51) (52)

L’intensité est donc constante en tout point d’une méme branche électrique a chaque instant.
e la somme algébrique des courants en un nceud de circuit électrique est nulle a chaque instant.

I (S)

— 1 | —p

-~
—
B~

Au noeud, on a ici

soit: 1+, = 13 + Iy.

IIT - Conduction électrique dans un conducteur ohmique

1) Loi d’Ohm locale

Nous allons a présent nous intéresser au cas particulier du conducteur ohmique toujours en restant dans 1’approximation
des milieux continus. Il s’agira pour nous d’'un métal que nous supposerons fixe dans le référentiel d’étude. Nous nous
proposons d’établir la loi d’Ohm sous forme locale en utilisant un modéle microscopique classique : le modéle dit de Drude.
Les porteurs de charges (électrons de charge g et de masse ) ont un densité totale 7. Ils sont soumis a la force électrique
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qﬁ mais il faut également prendre en compte l'effet d’agitation thermique et les interactions avec le réseau cristallin’.

Modélisons de maniere phénoménologique ces deux phénomenes en introduisant une force de frottement fluide écrite

sous la forme —27 (Il s?agit donc d’une modélisation par un terme de frottement fluide. L'expression du "coefficient de

frottement” est assez naturelle : le frottement est d’autant plus important que la masse des porteurs de charges est grande

et que le parametre 7 est faible, parametre introduit pour quantifier la nature du milieu dans lequel le transport s’effectue.).
L'application du principe fondamental & un porteur de charge donne alors? :

dﬁ) = (N
ma = gE - o
ED d’ordre 1, a coefficients constants, avec second membre constant ; la résolution donne :

N > ¢ qT—)
o(t) = Ae"* + —E
m

ol A est une constante d’intégration. A l'instant initial, la vitesse moyenne des porteurs est nulle car avant application
du champ électrique, leur mouvement est désordonné du fait de 1’agitation thermique : o(t = 0) = 0, soit

it ="TE(1-e")

2 »
La vitesse U atteinte en régime permanent vaut Uw = L-E. On peut alors exprimer le vecteur densité de courant j tel
que:

nd - VlzTE—>
=Nl = —
j=ngde = —

g A RETENIR N

Dans un conducteur ohmique au repos, il existe une relation linéaire entre le vecteur densité de courant et le champ
électrique appelée loi d’"Ohm locale :

- -

J=Y

oll y désigne la conductivité électrique du matériau.

Ici:y = %ZT

e Ordres de grandeur de 7 : prenons le cas particulier du cuivre qui est le plus utilisé dans les circuits électriques
et dont la conductivité électrique est de ’ordre de 5,8.10" Q~'.m~!. Avec m = 9,1.107! kg, q = 1,6.107° C et une
densité n = 8,6.10% m~2, on obtient 7= 2,4.107* s. Cette valeur trés faible nous montre que le régime permanent dans
le milieu conducteur s’établit quasi instantanément. On comprend donc qu’il sera encore possible d’utiliser la loi
d’Ohm locale en régime variable dans le temps a la condition que le champ électrique ne fluctue pas trop rapidement,
quantitativement si sa fréquence est inférieure a % soit environ 4.10"® Hz. Ce domaine de fréquence correspond au
domaine infrarouge du spectre électromagnétique.

Fropricté :  Laloi d’Ohm locale est applicable en régime variable pour des fréquences inférieures a

celles des ondes du domaine infrarouge. Elle est en particulier vérifiée dans le domaine des fréquences
usuelles de I'électrocinétique.

e Ordre de grandeur de la vitesse en régime permanent : en prenant un courant d’intensité I = 1 A traversant un
conducteur de section s = 1 mm?, on obtient j = 10° A.m~2 puis a 'aide des relations précédentes v, = gtE/m = j/ng ~
0,07 mm.s~!. Nous retiendrons donc que la vitesse d’ensemble des porteurs de charge est lente.

Remarque :
ajoutons que le modele classique que nous venons de présenter et la loi d’Ohm peuvent étre employés sous certaines
conditions pour d’autres types de milieux conducteurs : électrolyte, semiconducteur, plasmas,...

e Résistance d'une portion de conducteur électrique filiforme : On étudie un conducteur filiforme entre les points M
et N soumis a la tension U et traversé par un courant d’intensité I.

1. Le métal cuivre par exemple est un assemblage d’ions cuivre Cu* avec un électron libre pour chaque ion. Ces électrons ont un mouvement d’ensemble
dt au champ électrique imposé mais qui est perturbé par l'agitation thermique d’une part. D’autre part, 'existence de défauts dans le réseau cristallin
conduit a ralentir également le mouvement des porteurs de charge.

2. La signification physique du parametre 7 apparait clairement a ce stade du calcul : il s’agit de la constante de temps du régime transitoire associé a
la mise en mouvement des porteurs de charge sous 'action du champ électrique extérieur. On parle aussi de temps de relaxation car apres suppression du
champ électrique, le champ des vitesses redevient isotrope au bout de quelques 7 (systéme linéaire du ler ordre).
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Pour une longueur ¢ de celui-ci, le cours de terminale nous a appris que le champ électrique supposé ici uniforme
de module E est tel que U = E.{ et qu'il est orienté dans le sens des potentiels V décroissants. Pour une portion de
longueur d¢ de ce conducteur, on aura alors dV = -Ed¢. Nous admettons provisoirement que U = — f dV, et sachant

quel = f f j_.}d_)S, on obtient :

u_ -fdv [ Edr

I f f( 9 j_.}d_)S f f(s) ]'_fd_)S

Ce rapport est aussi égal a la résistance R de la portion de conducteur.

Puisque le champ électrique est uniforme dans tout le conducteur, il en est de méme pour le vecteur densité de courant.
Dans le cas particulier d’'un conducteur de section S constante (conducteur "cylindrique”), I = j.Set U = E¢ = %, on
en déduit :
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PC

2) Approche descriptive de I’effet Hall

L’étude consiste a observer ce qui se passe au sein d'une plaquette conductrice parallélépipédique parcourue par un

courant d’intensité I constante et plongée dans un champ magnétique B uniforme.

ZA }'

x 2 /

>V

Ce champ magnétique est orthogonal a la direction du courant (et donc orthogonal au vecteur densité de courant).
On se place en régime stationnaire établi et on étudie les forces que subit une particule de charge g se déplagant dans la

plaquette.
Pour simplifier la présentation du probléme, on supposera les charges mobiles positives. La charge g possede la vitesse 7

et est plongée dans le champ magnétique B elle subit donc la force de Lorentz F). Cette force provoque un afflux de charges

positives sur 'une des plaque et de charges négatives sur l'autre.
Les deux plaques chargées positivement et négativement créent entre elles un champ électrostatique Ey dit champ "de

Hall", dirigé de la plaque positive vers la plaque négative.

z
T++++ﬂ++++e__
B® F |
v
c q U, [
EHl F';] )
e —
y C x

Ce champ électrostatique exerce une force de Coulomb Fy = qﬁH de méme sens que lui sur la charge. Cette force est
opposée a la force de Lorentz.

Plus les plaques concernées se chargent, plus la force de Coulomb du champ de Hall est importante et s'oppose a cette
électrisation. Un équilibre s’établit lorsque les deux forces sont de méme intensité et le régime stationnaire est alors établi.

La tension "de Hall" Uy qui est apparue entre les plaques est proportionnelle a I'intensité I du courant et a celle du

champ magnétique notée B.

2023/2024

Page 7



PC CHAPITRE 1 : SOURCES DU CHAMP ELECTROMAGNETIQUE Electromagnétisme

Application : Tension de Hall d"un teslametre

Un teslametre constitué d’un ruban conducteur en argent est plongé dans une B=Bu, z Tézy
zone de champ magnétique B =2 T. Il est traversé par un courant d'intensité [ = T

3 A. Préciser entre quelles faces du ruban schématisé ci-contre il faut effectuer ¢ T

la mesure de la tension de Hall. ST ﬁ =
Calculer cette tension sachant que la densité de porteurs de charges mobiles _
est égale a 6.10%® m™>. Le champ de Hall est supposé uniforme au sein du L 02 mm
ruban. [=12¢cm '

Solution :
Il s’agit d’un ruban métallique, les porteurs de charge sont des charges négatives donc le vecteur vitesse 7 est

colinéaire et de sens opposé au vecteur densité de courant volumique j. Ceci nous permet d’en déduire le sens et la
-
direction de la force de Lorentz F; puis d’identifier les faces chargées avec leur signe :

B=B i,
L'expression de la tension de Hall est obtenue en égalant le module de la force
€lectrique et celui de la force de Lorentz. On a ici : quB = gE avec E = %, /AR L
v= _an oitj =4 etqg=-16.10" C, donc: e V >
1 BI erer

qu_n_q?z:S’lyV zuy E:qVBLiV

X
Cette valeur extrémement faible justifie qu’en pratique pour la mesure de l'intensité d'un champ magnétique, on
utilise non pas des métaux mais des semi-conducteurs pour élaborer une sonde a effet Hall, car leur densité de
porteurs mobiles est beaucoup plus faible. La tension de Hall, image du champ B a mesurer, est alors bien plus
élevée.

Page 8 2023/2024



PC CHAPITRE 1 : SOURCES DU CHAMP ELECTROMAGNETIQUE Electromagnétisme

3) Effet thermique du courant électrique

Considérons un conducteur ohmique soumis a un champ électromagnétique. Soit une charge g de ce conducteur
N R - - N =
possédant la vitesse U; cette charge subit la force de Lorentz : F; = g(E + ¥ A B).

La puissance de la force de Lorentz vaut alors :
P=F.d=gE7

Considérons maintenant une distribution de courant volumique, avec une densité p,, de charges mobiles, dont # est le
nombre de porteurs de charge par unité de volume. Le nombre dN de porteurs de charges mobiles de valeur g compris dans
un volume dt vaut dN = nd7. La charge mobile de ce volume s’écrit alors :

dQ = gdN = ngdt = p,,dt

La puissance dP cédée aux charges mobiles du volume dt vaut alors

P

dP = dQE.7 = j.Edr
En utilisant la loi d’"Ohm locale, il vient :
2
)4

dP P d
— =jE=yE*=
ac 14
Remarque :
L’expression de la puissance volumique ]_)E_) est évidemment valable pour un milieu qui ne serait pas ohmique mais
conducteur (électrolyte, plasma, ...).

Cette quantité est positive mais elle ne peut pas étre emmagasinée par les porteurs de charge : ceux-ci cedent cette
énergie au réseau cristallin au cours de chocs inélastiques qui sera ensuite évacuée a 'extérieur du réseau par conduction

ou rayonnement thermique : il s’agit de l'effet Joule.

A RETENIR

La puissance volumique dissipée par effet Joule dans un conducteur ohmique s’écrit :

Cette relation est également appelée "loi de Joule locale".
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